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We present derivations of shallow water model
equations of Korteweg–de Vries and Boussinesq
type for equatorial tsunami waves in the f -plane
approximation and discuss their applicability.

This article is part of the theme issue ‘Nonlinear
water waves’.

1. Introduction
We consider two-dimensional one-layer oceanic flows in
the equatorial region. Using methods from asymptotic
analysis, we derive two shallow water model equations
for waves of small amplitude from the f -plane
approximation of the Euler equations for divergence-
free incompressible fluids with the usual boundary
conditions for free surface waves over a flat bed. In
contrast with well-known shallow water models, such
as the Korteweg–de Vries equation (KdV), our equations
account for the effects of the Earth’s rotation on the fluid,
the so-called Coriolis effect, which becomes relevant for
large-scale ocean waves.

Introducing suitable far-field variables, we derive the
following geophysical KdV-type equation (gKdV)

2ητ − 2ω0ηξ + 3ηηξ + 1
3 ηξξξ = 0, (1.1)

where η denotes the free surface elevation and ω0 is
a constant related to the Coriolis effect (see §2). We
provide explicit travelling wave solutions of gKdV and
compare them to the explicit solutions of the standard
KdV to analyse the effect of the Coriolis term 2ω0ηξ ,
cf. §3. We proceed with a discussion on the applicability
of gKdV for tsunami waves in equatorial regions. Our
considerations extend the papers [1–3] to include the
Coriolis effect.
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Similarly, as for the standard KdV equation, we find that also for gKdV the balance between
nonlinear effects and dispersion in the far-field is reached only after extremely large distances.
Hence, the applicability of this model is questionable, cf. §4. This suggests the derivation
of an alternative model equation in the near-field, where the balance between nonlinearity
and dispersion occurs at much shorter, realistic distances. Using near-field variables and the
additional assumption of an irrotational velocity field, we derive the following geophysical
Boussinesq-type equation (gBouss)

Htt − 2ωHtX − HXX + 3(H2)XX − HXXXX = 0, (1.2)

where H is related to the free surface elevation and ω is a constant related to the Coriolis force
(cf. §5). This equation possesses explicit travelling wave solutions for wave speeds greater than
the linear propagation speed, cf. remark 5.1. The effect of the presence of the Coriolis term on the
shape of the travelling waves is apparent from the explicit expression for the solutions, similarly
as for gKdV. In §6, we discuss the applicability of both gKdV and gBouss as models for tsunami
wave propagation.

The modelling of ocean dynamics which include the Coriolis effect in different geophysical
contexts is of increasing interest. For general qualitative investigations near the Equator including
the effects of density stratification and the interaction of waves with depth-dependent currents,
we refer the reader to the discussions in [4–13] and the references therein. For an investigation
of the effects of underlying currents on the propagation of tsunamis, we refer to [14]. Exact
solutions are presented in [15–19]. For a numerical study on the influence of the Coriolis force
on the propagation of tsunami waves in the tropical ocean, we refer to [20]. The geophysical
models derived in the present paper do not capture such complex interactions. In a first stage of
investigation, however, the restriction to two-dimensional flows in the f -plane approximation is
reasonable because the Equator acts as a wave guide (see [21]) and the depth-dependent currents
are confined to a shallow near-surface layer with considerable attenuation at the free surface
(i.e. variations due to internal waves and underlying currents will not affect the surface, see the
discussion in [6]). It is worth noting that a two-component rotational Camassa–Holm system
modelling equatorial waves was derived in [22]. Furthermore, a geophysical Camassa–Holm
equation was derived in [23] for irrotational one-layer equatorial flows by means of variational
techniques. Moreover, we point to [24] for a discussion of qualitative aspects of the flow beneath
periodic travelling equatorial waves in the f -plane approximation.

2. The governing equations in the f -plane
For the modelling of oceanic wave motion in a neighbourhood of the Equator, it is reasonable
to consider the f -plane approximation of the inviscid Euler equations for two-dimensional flows,
cf. [25] and the discussion in [6]. Together with the usual boundary conditions for one-layer flows,
this system of equations, written in physical variables, is given by

ut + uux + vuy + 2ωv = −ρ−1px v = ηt + uηx on y = h0 + η(x, t)

vt + uvx + vvy − 2ωu = −ρ−1py − g p = patm on y = h0 + η(x, t)

ux + vy = 0 v = 0 on y = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where t denotes the time and x, y denote the directions of increasing azimuth and vertical
elevation, respectively. Analogously, u = u(x, y, t) and v = v(x, y, t) denote the horizontal and
vertical fluid velocity component in the direction of increasing azimuth and elevation. Moreover,
p = p(x, y, t) denotes the pressure and η(x, t) measures the free surface elevation above an average
water depth h0. The constant ω ≈ 7.29 × 10−5 rad s−1 denotes the rotational speed of the Earth
around the polar axis, thus the two ω-terms in (2.1) capture the effects of the so-called Coriolis
force. We denote by patm the atmospheric pressure, g ≈ 9.81 m s−2 is the gravitational acceleration
and ρ denotes the constant fluid density.
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Table 1. The non-dimensional parameters ω and ε are of the same order of magnitude for typical values of water depth
and wave amplitude for offshore ocean waves near the Equator.

ε = a/h0

h0 ω = 7.29 × 10−5 h0√
gh0

a= 1 m a= 3 m a= 5 m a= 7 m a= 9 m

1500 m 0.0009 0.0007 0.0020 0.0033 0.0047 0.0060
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2000 m 0.0010 0.0010 0.0015 0.0025 0.0035 0.0045
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2500 m 0.0012 0.0004 0.0012 0.0020 0.0028 0.0036
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3000 m 0.0013 0.0003 0.0010 0.0017 0.0023 0.0030
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3500 m 0.0014 0.0003 0.0009 0.0014 0.0020 0.0026
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4000 m 0.0015 0.0003 0.0008 0.0013 0.0018 0.0023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To non-dimensionalize the set of equations (2.1), we use standard reference length scales: a
typical amplitude of the surface wave a, the average undisturbed water depth h0 as the vertical
scale and a typical wavelength λ as the horizontal scale, cf. [2,26,27] for more details. We introduce
(without changing the notation) the following set of non-dimensional variables:

x �→ λx, y �→ h0y, t �→ λ√
gh0

,

u �→
√

gh0u, v �→
√

gh0
h0

λ
v, η �→ aη

and p �→ patm + ρgh0(1 − y) + ρgh0p.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

The constant ω related to the Coriolis force is brought to dimensionless form by the scaling

ω �→
√

gh0

h0
ω. (2.3)

In view of the non-dimensionalization (2.2) and (2.3), the governing equations read

ut + uux + vuy + 2ωv = −px v = ε(ηt + uηx) on y = 1 + εη(x, t)

δ2(vt + uvx + vvy) − 2ωu = −py p = εη on y = 1 + εη(x, t)

ux + vy = 0 v = 0 on y = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

where we have introduced the two fundamental dimensionless parameters

ε := a
h0

and δ := h0

λ
, (2.5)

referred to as the amplitude and the shallowness parameter, respectively.

This paper deals with shallow water equations which model tsunami waves in the vicinity of
the Equator. In such regions, large parts of the ocean bed are almost flat, as assumed in our model,
and located at depths between 2000 m and 4000 m, cf. [28]. Average amplitudes of observed
surface waves take values up to several metres, while a typical tsunami wave has an amplitude
of approximately 1 m. This implies, in view of the scaling (2.3), that the amplitude parameter ε

and the Coriolis parameter ω are of the same order of magnitude: the size of both ε and ω is
approximately 10−3 m, see table 1.

It is, therefore, reasonable to assume that

ω = εω0, (2.6)

for some appropriate constant ω0, see remark 2.1. Additionally, we perform the usual scaling
u �→ εu, v �→ εv, p �→ εp, see [2] for more details, to obtain the governing equations for equatorial
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Figure 1. The shaded region indicates forwhich values of amplitude andwater depth the scaling relation (2.6) is applicable; the
curves depict the corresponding values ofω0 in (2.6); amplitudes a are taken between 0.1 and 9 m and plotted against water
depths h0 between 1000 and 4000 m. (Online version in colour.)

waves in scaled, dimensionless form:

ut + ε(uux + vuy) + 2εω0v = −px v = ηt + εuηx on y = 1 + εη(x, t)

δ2(vt + ε(uvx + vvy)) − 2εω0u = −py p = η on y = 1 + εη(x, t)

ux + vy = 0 v = 0 on y = 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

Remark 2.1. In view of (2.3), (2.5) and the scaling (2.6), we find that the non-dimensional
constant ω = 7.29 × 10−5(h0/

√
gh0) = ω0(a/h0) and therefore

a ≈ 2.3 × 10−5ω−1
0 h3/2

0 . (2.8)

As ω0 should not alter the order of magnitude in (2.6), we require that 1/2 < ω0 < 5. Figure 1 shows
the range of water depths and wave amplitudes required for assumption (2.6) to be applicable.

3. Geophysical Korteweg–de Vries equation equation
The system (2.7) of governing equations for equatorial waves serves as a starting point for our
derivations. To proceed, we assume the fundamental water wave parameters δ and ε to be small.
Our approximate model equations are derived by applying formal asymptotic procedures, where
the solutions are assumed to admit power series expansions in the small parameters. We follow
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the techniques presented in [26,27]. A remarkable feature of system (2.7) is that the parameter δ

can be scaled out in favour of ε by the transformation

x �→ δ√
ε

x, y �→ y, t �→ δ√
ε

t

p �→ p, η �→ η, u �→ u and v �→
√

ε

δ
v,

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

where the scaling of v is required to ensure a divergence free flow field in the resulting system.
We note that this transformation remains non-singular for ε and δ tending to zero only if these
parameters satisfy a certain asymptotic relation, i.e. the transformation (3.1) implicitly implies
that we are working in the regime for shallow water waves of small amplitude:

δ � 1, ε =O(δ2). (3.2)

The result of the transformation (3.1) is system (2.7) but with δ2 replaced by ε. By retaining just
the leading order terms (i.e. by setting ε = 0), one obtains the linear system

ut = −px v = ηt on y = 1

0 = −py p = η on y = 1

ux + vy = 0 v = 0 on y = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

We deduce from (3.3) that the free surface η is described by the linear wave equation ηtt − ηxx = 0
whose general solution is of the form η(x, t) = F

�
(x − t) + F

�
(x + t), for arbitrary functions F

�

and F
�

. To study the evolution of the right-propagating solution, a certain period of time after it
has been generated, we introduce the far-field variables

ξ = x − t, τ = εt. (3.4)

Finally, taking into account the transformation (3.1) and rewriting (2.7) in terms of (3.4), the system
of governing equations for equatorial waves in the far-field reads

−uξ + ε(uτ + uuξ + vuy + 2ω0v) = −pξ v + εηvy = −ηξ + ε(ητ + uηξ ) on y = 1

ε(−vξ + ε(vτ + uvξ + vvy) − 2ω0u) = −py p + εηpy = η on y = 1

uξ + vy = 0 v = 0 on y = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

Note that in order to transfer the free surface to a fixed boundary, we have rewritten the boundary
conditions at the free surface by means of Taylor expansions of the involved variables u, v and p
about y = 1. To obtain an asymptotic solution of system (3.5), we formally expand the respective
variables η, u, v and p in the form q ∼ ∑∞

n=0 qnεn. At leading order, we obtain the linear system

−u0ξ = −p0ξ v0 = −η0ξ on y = 1

0 = −p0y p0 = η0 on y = 1

u0ξ = −v0y v0 = 0 on y = 0,

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

which implies that u0 = p0 = η0 and v0 = −yη0x for all y ∈ [0, 1], where η0 = η0(ξ ) is an arbitrary
function up to this point. In particular, u0, p0 and η0 do not dependent on the depth y. The first-
order system thus reads

−u1ξ + u0τ + u0u0ξ + 2ω0v0 = −p0ξ v1 + η0v0y = −η1ξ + η0τ + u0η0ξ on y = 1

−v0ξ − 2ω0u0 = −p1y p1 = η1 on y = 1

u1ξ + v1y = 0 v1 = 0 on y = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.7)
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Figure 2. A solitary travelling wave solution of the geophysical KdV equation (1.1) with Coriolis parameter ω0 = 0 (plain)
andω0 ≈ 1 (dashed). (Online version in colour.)

In order to solve this system, we recall that u0 = p0 = η0 and integrate the second equation in
(3.7) with respect to y to obtain p1 = h1 + (y − 1)2ω0y0 + 1

2 (1 − y2)h0ξξ . Hence, mass conservation
and the first equation yield v1y = −η0τ − η1ξ − η0η0ξ + 2ω0η0ξ + 1

2 (y2 − 1)η0ξξξ . The boundary
condition at the flat bed, therefore, yields

v1 = y3

6
η0ξξξ − y

(
1
2
η0ξξξ − 2ω0η0ξ + η0η0ξ + η0τ + η0ξ

)
for y ∈ [0, 1]. (3.8)

Evaluating (3.8) at y = 1 gives

v1 = 1
6 η0ξξξ − ( 1

2 η0ξξξ − 2ω0η0ξ + η0η0ξ + η0τ + η1ξ ) on y = 1. (3.9)

By combining (3.9) and the first boundary condition in system (3.7), we infer that

2η0τ − 2ω0η0ξ + 3ηη0ξ + 1
3 η0ξξξ = 0.

Thus, the leading-order approximation for the free surface η, where η ∼ η0 + O(ε), satisfies the
geophysical KdV equation (gKdV)

2ητ − 2ω0ηξ + 3ηηξ + 1
3 ηξξξ = 0,

with a remainder term of order O(ε) presented in the introduction as equation (1.1). We note that
at leading-order, the horizontal component of the velocity field u is also described by the same
equation (at any fixed depth).

The explicit travelling wave solutions of (1.1) of the form η(x, t) = ϕ(ξ − cτ ) for wave speeds
c > 0 can be expressed by Jacobi elliptic functions similarly as for the standard KdV equation, cf.
for instance [26]. Assuming decay at infinity, the function ϕ : R → R given by

ϕ(ξ − cτ ) = 2(c + ω0) sech2
(√

3
2 (c + ω0) (ξ − cτ )

)
(3.10)

is a travelling wave solution with speed c > 0. Note that the Coriolis parameter ω0 alters the shape
of the solution just as the speed c does: when its value increases, the solitary wave becomes taller
and narrower, cf. figure 2 and the discussion in [26]. However, the presence of the Coriolis term
has a notable impact on the shape of the solution only for sufficiently small wave speeds c: because
the constant ω0 introduced in (2.6) is O(1), it is clear that for larger wave speeds the profile of the
solitary solution (3.10) of gKdV with non-zero ω0 is almost unchanged compared to the standard
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KdV solitary wave without Coriolis parameter. For periodic travelling wave solutions, whose
explicit expression can be obtained in a similar way, we observe the same behaviour.

4. The near-field versus the far-field
The KdV equation is the paradigmatic example of an integrable equation which embodies soliton
theory [29]. It describes a balance between nonlinear and dispersive effects stemming from (3.2).
In the previous section, we have seen that this balance occurs for gKdV (as well as for KdV) in
the region where the non-dimensional scaled far-field variables satisfy ξ =O(1) and τ =O(1). In
view of the definition of the far-field variables (3.4) and the scaling (3.1), this region of space can
be estimated in original physical variables by x =O(λδε−3/2). Taking into account the definition
of the amplitude and shallowness parameters (2.5) yields that λδε−3/2 = a−3/2h5/2

0 . In view of
(2.8), we may, therefore, conclude that an estimate for the distance where the balance occurs is
approximately 9 × 106 × ω

3/2
0 h1/4

0 . This relation implies immediately that for typical ocean depths
of a few thousand metres, the waves would have to travel several thousands of kilometres before
a balance could occur. For instance, for an average ocean depth of h ≈ 3500 m and amplitude of
about a ≈ 4 m, the balance would be achieved only after roughly 9 × 104 km—a distance much too
large given the size of the Earth.

Looking at the near-field, however, the qualitative picture changes. The region where the non-
dimensional scaled near-field variables satisfy x =O(1) and t =O(1) can be estimated in original
physical variables by x =O(λδε−1/2) in view of the scaling (3.1). Again taking into account the
relations (2.5) and (2.8), we find that λδε−1/2 = a−1/2h3/2

0 . Hence, the balance occurs after a distance

of approximately 2 × 102 × ω
1/2
0 h3/4

0 . This relation implies for the same choice as taken above,
i.e. for h ≈ 3500 m and a ≈ 4 m, that the balance would already occur after approximately 100 km,
which is a far more realistic scenario.

In the next section, we proceed by deriving a geophysical model equation for equatorial
tsunami waves in the near-field.

5. Geophysical Boussinesq equation
We pursue a derivation of a geophysical shallow water model for small amplitude waves in
near-field variables (x, t). In this setting, we require an additional assumption to eliminate the
dependence of u on the vertical coordinate y at leading order. To this end, we assume that the
flow is irrotational and thus the corresponding dimensionless velocity field satisfies the condition

uy = δ2vx. (5.1)

Although equatorial flows generally may present non-uniform underlying currents, their effects
on the free surface are relatively small, in particular in the shallow water (long wave) regime that
we consider here, cf. [2,6,30]. This justifies the irrotationality assumption (5.1).

The starting point for our derivation is the set of governing equations (2.7). We scale out the
parameter δ by virtue of the transformation (3.1), which is justified as we are restricting ourselves
to the shallow water small amplitude regime characterized by (3.2). Rewriting the boundary
conditions at the free surface by using Taylor expansions of the involved functions about y = 1
yields

ut + ε(uux + vuy + 2ω0v) = −px v + εηvy = ηt + εuηx on y = 1

ε(vt + ε(uvx + vvy) − 2ω0u) = −py p + εηpy = η on y = 1

ux + vy = 0 v = 0 on y = 0

uy − vx = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.2)
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To obtain an asymptotic solution of system (5.2), we formally expand the respective variables
and obtain at leading order the linear system

− u0t = −p0x v0 = −η0t on y = 1

0 = −p0y p0 = η0 on y = 1

u0x = −v0y v0 = 0 on y = 0

u0y = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.3)

which implies that p0 = η0 and v0 = −yη0x for all y ∈ [0, 1] and η0tt − η0xx = 0. The first-order
system, therefore, reads

− u1t + u0u0x + 2ω0v0 = −p1x v1 − η0u0x = η1t + u0η0x on y = 1

v0t − 2ω0u0 = −p1y p1 = η1 on y = 1

u1x = −v1y v1 = 0 on y = 0

u1y = −v0x.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.4)

To solve this system, we integrate the second equation in (5.4) and find, using u0y = 0, that p1 =
1
2 (y2 − 1)u0xt + 2ω0u0(y − 1) + η1. Substituting this in the first equation and differentiating with
respect to x, we find that

v1t = 1
6 y3u0xxxt + y(− 1

2 u0xxxt + η1xx + (u0u0x)x − 2ω0u0xx),

in view of v1yt = −u1xt. Taking the time derivative of the first boundary condition and subtracting
the resulting equation from the last expression evaluated in y = 1 yields

η1tt − 2ω0η0tx − η1xx − ( 1
2 η2

0 + u2
0)xx − 1

3 η0xxxx = 0.

Expressing u0 = − ∫x
−∞ η0t dx and recalling that η0tt − η0xx = 0, we obtain a Boussinesq type

equation in non-local form for the free surface η which holds at order ε, i.e. η ∼ η0 + εη1 + O(ε2):

ηtt − 2εω0ηtx − ηxx − ε

[
1
2
η2 −

(∫ x

−∞
ηt dx

)2
]

xx

− ε

3
ηxxxx = O(ε2). (5.5)

Equation (5.5) can be rewritten in local form using the transformation

X = x + ε

∫ x

−∞
ηt dx, H = η − εη2, (5.6)

where the corresponding equation for H = H(X, t) is given by

Htt − 2εω0HtX − HXX − 3ε

2
(H2)XX − ε

3
HXXXX = O(ε2). (5.7)

By means of the scaling

H �→ −2
ε

H, (X, t) �→
√

ε

3
(X, t) (5.8)

we obtain from (5.7) the geophysical Boussinesq equation (gBouss),

Htt − 2ωHtX − HXX + 3(H2)XX − HXXXX = 0,

with an O(ε2) remainder term, which we presented in the introduction as equation (1.2). This
equation has explicit travelling wave solutions, which can be represented in terms of Jacobi elliptic
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functions. To see this, we first assume that the traveling wave ϕ = ϕ(x, t) = ϕ(x − ct), where c ∈ R

is a fixed wave speed, and its derivatives decay sufficiently fast to zero at infinity, e.g. ϕ ∈ S (R).
Therefore, ϕ solves (1.2) if and only if

(c2 + 2cω − 1)ϕ + 3(ϕ2) − ϕ′′ = 0, (5.9)

where the prime denotes differentiation with respect to the moving frame variable x − ct. It can
be directly checked that the function ϕ : R → R given by

ϕ(x − ct) := − c2 + 2cω − 1
2

sech2

⎛
⎝

√
c2 + 2cω − 1

4
(x − ct)

⎞
⎠ (5.10)

is a solution of (5.9) provided that the wave speed c satisfies

c ≤ c− or c ≥ c+ where c± := ω ±
√

ω2 + 1. (5.11)

The explicit expression (5.10) reveals the influence of the Coriolis term on the shape of the
traveling wave solutions of gBouss. Similarly to the case of the traveling wave solutions of gKdV,
discussed in §3, the presence of ω makes the solitary waves slightly taller and narrower. Finally,
we note that an explicit traveling wave solution for the non-local equation (5.5) can be recovered
by taking the solution (5.10) and reversing the transformation (5.6).

Remark 5.1. The relation
c2 + 2ωc − 1 = 0 (5.12)

is the so-called dispersion relation for small-amplitude geophysical shallow water waves, see [23]. It can
be found by replacing εω0 with the dimensionless ω in (5.2) in our derivation of gBouss. The
corresponding linearization then yields that η satisfies

ηtt − 2ωηtx − ηxx = 0, (5.13)

which gives rise to (5.12). In view of (5.10) and (5.11), we conclude that non-trivial explicit solitary
travelling wave solutions of gBouss exist only if the wave speed exceeds the geophysical shallow
water speed, i.e. c > c+ for right-moving waves and c < c− for left-moving waves.

Remark 5.2. We remark that many structural properties known for the standard Boussinesq
equation continue to hold for gBouss. For instance, observing that gBouss can be written as the
pair of equations

Ht = −UX

and Ut = (2ωU + H − 3H2 + HXX)X,

⎫⎬
⎭ (5.14)

we immediately obtain the conservation laws
∫
R

Ht dX = const. and
∫
R

Ut dX = const., (5.15)

where the first one corresponds to conservation of mass and the second to conservation of
momentum, cf. [26]. In fact, gBouss (as well as gKdV) can be reduced to its classical versions by
employing suitable scalings, so that properties like integrability and the existence of infinitely
many conservation laws carry over. The effect of the Earth’s rotation captured by means of
the Coriolis parameter does not alter the overall qualitative features of solutions, but modifies
slightly some specific quantitative aspects, as can be seen from the explicit solutions of gKdV
and gBouss.

6. Applicability for tsunami modelling
Finally, we comment on the applicability of gKdV and gBouss as models for tsunami wave
propagation. Shallow water models have been frequently used to model the propagation of
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tsunami waves in the open ocean, see for instance the discussions in [31,32]. The shallow water
assumption is reasonable as the wavelength of tsunamis is much longer than the average ocean
depth. Moreover, the amplitude of a tsunami is very small offshore, typically less than 1 m, so
that the smallness assumption on the amplitude is also justified. It has been pointed out in a
series of papers that the applicability of KdV as a model for tsunami wave propagation should
be questioned; see the discussions in [1,2,33,34]. The main argument is that the balance between
nonlinearity and dispersion as embodied by KdV would occur at time and length scales which
cannot be realized on Earth. Our analysis in §4 for gKdV shows that the inclusion of Coriolis
effects in the model does not alter this fact.

The discussion in §4 shows, however, that gBouss, which was derived in near-field variables
as opposed to the far-field variables used for gKdV, may be an appropriate model to study
tsunami wave propagation, because the relevant distances required for the near-field balance are
more realistic. Our derivation is based on the f -plane approximation, which is applicable in the
context of tsunami waves near the Equator. As an example, we mention the 2004 tsunami, which
was generated by an earthquake with epicentre off the west coast of Sumatra, Indonesia, and
consequently spread across the Indian Ocean in a neighbourhood of the Equator: one wavefront
propagated eastward from the fault line, and another front moved in the opposite direction,
roughly parallel to the Equator, cf. [30,35,36]. With regard to applications of these equations to
tsunami modelling, the equatorial regions in the Indian ocean are of great interest. Also, a broadly
taken view is that the largest shallow earthquakes occur in the subduction zones which ring the
Pacific Ocean, where also volcanoes abound, and the tsunami hazard throughout the tropical
Pacific is, therefore, potentially high. However, the Polynesian islands have typically steep-sided
reefs that act as a natural protection against tsunamis. Let us finally remark that, in contrast with
the 2004 tsunami, which caused a devastating flood on the coasts of Sri Lanka, the 1883 tsunami
generated by the volcanoes at Krakatoa was hardly notable in Sri Lanka, although both tsunamis
were triggered in a similar region by comparably strong seismic events. The huge difference in the
effects on the coast of Sri Lanka could be explained by the fact that the earlier event happened in
the month of August as opposed to the 2004 tsunami which occurred in the month of December
when under the northeast monsoon the Equatorial Indian Ocean current propagates along the
equator towards Sri Lanka, thus enhancing the effect; see the discussion in [34,35,37–39]. It is,
therefore, of interest to investigate the effects of tropical currents on the propagation of tsunami
waves in the spirit of [14] taking into account also the influence of the Coriolis effect, see [7,8] for
recent discussions of equatorial current fields.
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