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ABSTRACT In current and former clinical trials for the development of antibacterial
drugs, various primary endpoints have been used, and treatment effects are evalu-
ated mostly in noninferiority analyses at the end of follow-up, which varies between
studies. A more convincing and highly patient-relevant statement would be a nonin-
feriority assessment over the entire follow-up period with cure and death as copri-
mary endpoints, while preserving the desired alpha level for statistical testing. To ac-
count for the time-dynamic pattern of cure and death, we apply a cure-death
multistate model. The endpoint of interest is “get cured and stay alive over time.”
Noninferiority between treatments over the entire follow-up period is studied by
means of one-sided confidence bands provided by a flexible resampling technique.
We illustrate the technique by applying it to a recently published study and estab-
lish noninferiority in being cured and alive over a time frame of interest for the en-
tire population, patients with hospital-acquired pneumonia, but not for the subset of
patients with ventilator-associated pneumonia. Our analysis improves the original re-
sults in the sense that our endpoint is more patient benefiting, a stronger noninferi-
ority statement is demonstrated, and the time dependency of cure and death, com-
peting events, and different follow-up times is captured. Multistate methodology
combined with confidence bands adds a valuable statistical tool for clinical trials in
the context of infection control. The framework is not restricted to the cure-death
model but can be adapted to more complex multistate endpoints and equivalence
or superiority analyses.
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Severe bacterial diseases arising in hospitalized patients include, for example,
hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP).

The economic impact of HAP and VAP is an immense burden on health care resources
(1). In current and former clinical trials, a variety of primary endpoints have been used
(2–4)— even recommendations given by existing guidelines are not consistent. The
European Medicines Agency (EMA) (5) proposes clinical cure, the clinical outcome of a
test-of-cure (TOC) visit, as an acceptable primary endpoint. In contrast, the Food and
Drug Administration (FDA) (6) recommends considering 28-day mortality as the primary
endpoint. The drawback of the former endpoint is that cure is a sojourn state (patients
may still die after cure), while the latter does not account for cure status. Below, we will
account for both cure and vital status.

Especially in an intensive care unit with severely ill patients, a high mortality rate can
be assumed within the first days after infection, and thus, death may preclude the TOC
as a so-called “competing event” (7). Also, death following shortly after cure should be
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considered, since cure then does not benefit the patient. Recently, Doshi pointed to a
situation where patients were considered cured but died on the same day (8). The joint
analysis of nonmortal endpoints like cure and the competing endpoint, death over
time, can be captured by the flexible multistate framework (9, 10), which found its way
into applied infection control literature (11–18). For that purpose, it has recently been
suggested to simultaneously study the two coprimary endpoints, cure and death (2,
19), in order to understand how the new treatment influences the whole etiological
cure process, even beyond the TOC. This is achieved by a multistate “cure-death” model
(19), which accounts for the time dependency of cure and death, the presence of
competing risks, and various follow-up times. The patient-relevant outcome of interest
is to be cured and alive over time. In terms of studying the efficacy of a novel treatment,
such an outcome as the probability to be cured and alive is sometimes used in the
context of bone marrow transplant studies (20), in a similar way, when estimating
current leukemia-free survival (21) or for the estimation of being alive without relapse
and immunosuppression for graft-versus-host disease in a population of patients with
acute lymphoblastic leukemia (22). The purpose of such an outcome is to synthesize the
different summary statistics commonly used, the proportion of patients who respond,
and the average duration of response (here defined as the proportion of cured patients
and the average duration of cure). Our approach can distinguish between a treatment
producing a high cure rate but generally short-lived cure cases and another treatment
with a low cure rate but longer cure durations. This is highly relevant from the patients’
perspective and provides a complete summary and an attractive visual display of the
given data.

Further, the benefit of newly developed treatments over existing treatments in
terms of efficacy is often only marginal, but these new treatments might be rather
advantageous in reducing costs or having fewer adverse effects. Thus, noninferiority
analyses are indispensable (23). For serious infections such as HAP and VAP, the EMA
as well as the FDA recommended that it is possible to set up a reliable and consistent
estimate of the efficacy of active treatment relative to a comparator, which can serve
as the basis for defining a new inferiority margin for an active-controlled noninferiority
trial (5, 6). The traditional noninferiority procedure for a treatment comparison is to
examine the difference in cure proportions with corresponding confidence intervals at
a prespecified time point, most often the end of follow-up. However, both from the
patients’ and from a biological perspective, a much more convincing statement than
merely demonstrating noninferiority at a single point in time is how the active
treatment performs over the complete cure process (24, 25) and, simultaneously, if the
treatment is also beneficial in terms of mortality. A time-simultaneous analysis also
allows to put results from former trials with possibly different times of follow-up into
perspective. This requires more advanced statistical methodology and has not been
evaluated so far for clinical cure. To assess noninferiority over the entire follow-up
period, a so-called “confidence band” is required, in which the difference in probabil-
ities of being cured and alive for active treatment A minus control B over a relevant
time interval (and not just at a single time point, possibly differing between studies and
also within studies, where such time points may differ between patients), lies within a
probability of, e.g., 95%. Such a confidence band generalizes the concept of a confi-
dence interval to an entire time interval of interest. Treatment A can be deemed
noninferior to B if the confidence band for the difference of the treatment-specific
probability curves lies above the protocol-defined noninferiority margin over the whole
time period. Finally, and to demonstrate direct implications to trial results, we applied
this procedure to actual antimicrobial trial data.

In this article, the application of the cure-death model to a recently published
ceftobiprole trial (26) is given in Results. In this trial, described in Materials and
Methods, the new regimen of ceftobiprole was compared to the two-drug regimen of
ceftazidime plus linezolid for the treatment of patients with HAP and VAP. We introduce
the concept of the cure-death multistate model (Fig. 1) and describe how to assess
noninferiority over an interval of interest. The application of the cure-death model to
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the ceftobiprole trial is shown to yield a much stronger noninferiority statement, both
from the patients’ and from a biological perspective, than that published previously,
without changing the noninferiority margin. We describe the benefits and limitations of
the proposed methodology in Discussion. Details and an illustrative implementation
example are provided in the Supplemental text.

RESULTS

The Aalen-Johansen estimator of the probability to be cured and alive over the
whole time frame of interest is displayed in the upper panels of Fig. 2. For the entire
sample (781 patients) and the HAP-excluding-VAP group (571 patients), the probability
curves show a similar course across treatment groups. In the VAP-only group (210
patients), there is a clear distinction between treatments, favoring ceftazidime plus
linezolid. The lower panels of Fig. 2 illustrate the probability of being cured and alive
difference at time t [PCAD(t)] (solid black line) together with the 95% one-sided
simultaneous confidence band (dashed black line) on the time interval of interest [0, 47]
(in days). The interval is chosen such that all observed transition times are covered. The
boundary values (q) for the construction of the respective confidence band are also

FIG 1 The cure-death model for comparing two antimicrobial therapies with an initial infection/
randomization state, a cured and alive state, and a death state. The direction of arrows illustrates the
potential transitions between the states determined by transition hazards. They can be interpreted as the
momentary forces that pull a subject out of one state into another.

FIG 2 Transition probabilities and differences in probabilities derived from the Aalen-Johansen estimator for subgroups in the ceftobiprole
trial (26). (Top) Probability to be cured and alive. (Bottom) Estimated difference of probabilities, PCAD, with the 95% one-sided
simultaneous confidence band (CB), the corresponding boundary value, q, and the protocol-defined noninferiority (NI) margin of �15%
on the time interval [0, 47].
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displayed [see Materials and Methods for details on PCAD(t) and q]. It can be seen that
for both the entire sample and the HAP-excluding-VAP group, the confidence band lies
above the noninferiority margin of �15% (solid gray line) for the entire interval [0, 47],
but this is not true for the group of VAP patients. Hence, for the entire sample and the
HAP-excluding-VAP group, noninferiority concerning “cured and alive” over the time
period of interest is shown. All results do support the original analysis (26), which
showed noninferiority of overall cure proportions for both the entire sample (cure risk
difference ceftobiprole minus ceftazidime/linezolid of �2.9 [�10.0, 4.1]) and the HAP-
excluding-VAP group (cure risk difference ceftobiprole minus ceftazidime/linezolid of
0.8 [�7.3, 8.8]) at the end of follow-up.

DISCUSSION

Our analysis not only confirms the noninferiority of ceftobiprole as found by Awad
et al. (26) but also provides a stronger and more patient-benefiting noninferiority result.
First, the endpoint “get cured and stay alive over time” is a highly relevant outcome in
the context of antimicrobial trial data, because patients benefit from cure only when
staying alive for a certain time. Second, we demonstrate noninferiority of being cured
and alive over the complete treatment process and not only at the end of follow-up as
intended in the original analysis. To include all time points simultaneously avoids
having to decide for a single time point, especially when there is no agreement of the
adequate time point for the TOC (4) or when a patient’s status may be highly time
dependent on a daily basis. Third, in contrast to the traditional proportion comparisons,
the comprehensive cure-death multistate model captures the complex timing of cure
and death and competing events and also allows for different follow-up times due to
death or right-censoring.

We emphasize that a multistate analysis may offer a more detailed insight into how
treatment influences the cure and death process in other situations. For instance, even
though noninferior cure and (30-day) all-cause mortality proportions for the treatment
group may be observed at some prespecified time point, the probability of being cured and
alive as a function in time may be substantially higher for the control group during some
stages of follow-up, i.e., noninferiority cannot be established for some points in time.
However, such time-dynamic patterns are important from a patients’ perspective, may have
direct impact on patient care (see also references 27 and 28), and may provide additional
biological insight. Depending on the disease and the medical indication, these additional
clinical data can point out, e.g., that additional clinical action may be required. But this is not
the case in the present study example; thus, continual noninferiority is demonstrated.
Further, in a recent article (19), we examined several simulation scenarios in which a
treatment might be beneficial by the end of follow-up but not over the entire treatment
process. Such time-varying treatment effects might be detected by the approach sug-
gested in the present paper but not by a conventional analysis.

In the aforementioned article (19), we used innovative regression methods for a risk
ratio of being cured and alive and a restricted log rank-based test for a formal treatment
comparison. However, the approach in reference 19 does not immediately lend itself to
comparing absolute differences between the outcome probabilities and a subsequent
noninferiority analysis.

The applied cure-death multistate model requires a time-inhomogeneous Markov
assumption (9), which is tantamount to assuming that the 1¡2 hazard depends only
on the time since randomization and not on the time since cure. According to the
approach described by Beyersmann et al. (10), we assumed the Markov assumption to
be reasonable in the present situation. If the Markov assumption is violated, a time-
simultaneous analysis is still feasible, but the technical details become more involved.
To begin, the Aalen-Johansen estimation of state occupation probabilities as consid-
ered in this work will still apply (29). The technical requirements on the censoring
mechanism will be stricter but likely be met in a situation such as ours. Confidence
bands may again be constructed using resampling techniques, either sampling with
replacement from the individual patients or using an approach as in the present paper,
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adapted to the method seen in reference 29. We also note that modeling is done within
treatment strata.

Another point worth mentioning is that while this is a time-simultaneous approach,
we do not extrapolate beyond follow-up. In other words, also the time-simultaneous
approach is limited to the duration of follow-up within a study.

The proposed resampling procedure is not restricted to the cure-death model but can
be applied to arbitrary multistate models with finite state spaces, which makes it attractive
for various applications not restricted to the context of antimicrobial trial data. For instance,
an illness-death model with recovery can be used to quantify alternative efficacy measures
in clinical trials such as the probability to be alive and not under mechanical ventilation in
patients with acute respiratory distress (30), the probability to be alive and not under
immunosuppressive therapy in leukemia patients after stem cell transplantation (22, 31), or
the probability to have a sustained cure (to be cured and free of recurrent infection) in
patients with Clostridium difficile infection (27). Furthermore, it can easily be adapted to
investigate the equivalence or superiority of a treatment A compared to a treatment B
concerning an outcome transition probability over a time frame of interest, or it can be
applied to more complex functionals incorporating the matrix of transition probabilities
that quantify, e.g., length of stay (32).

A different question that can be posed is what if cure were assessed as a continuous
variable and artificial dichotomization should be avoided. Then, one option would be
a joint model (33) for the longitudinal continuous outcome, informatively censored by
death. One might still envisage a comparison of cure curves in a such a case; however,
how to define an endpoint that accounts for both vital and cure status is less clear.

In conclusion, we propose an approach that addresses three significant issues often
arising in noninferiority clinical trials in the context of infection control, namely, the
arbitrary nature of the timing of endpoint assessment within and not across the time
interval of interest, the erosion of the 5% significance level over the entire endpoint
interval due to multiple testing, and the lack of accounting for vital status after cure.
Our approach optimizes use of the available data by assessing the endpoint “get cured
and stay alive” over the entire time period of interest while calculating a confidence
band over that period preserving the 5% confidence level. Most importantly, our
proposal develops both a patient-centric and a biologically relevant approach and adds
a valuable statistical tool for such analyses.

MATERIALS AND METHODS
Example study data. Treatment with ceftobiprole was established to combat a wide range of

Gram-positive bacteria, and this drug belongs to the class of �-lactam antibiotics. The noninferiority trial
described here (26) compared the new regimen of ceftobiprole to the two-drug regimen of ceftazidime
plus linezolid. It was a double-blind, randomized, multicenter comparison involving 781 patients with
HAP, among them 210 with VAP.

Clinical cure diagnosed at the TOC visit, mostly held within a time frame of 7 to 14 days after the end
of treatment, served as the primary endpoint, and all-cause mortality was the secondary endpoint. With
the protocol-defined noninferiority margin of �15%, risk differences of proportions of cured patients at
the TOC showed that ceftobiprole is noninferior to ceftazidime plus linezolid for the entire study
population of patients with HAP (�2.9 [�10.0, 4.1]) and for the population of HAP patients excluding the
VAP patients (0.8 [�7.3, 8.8]). But noninferiority was not demonstrated in VAP patients (�13.7 [�26.0,
�1.5]). These results were given by Awad et al. (26) and refer to ceftobiprole versus ceftazidime/linezolid.

The cure-death model. In order to suitably account for the time-dynamic pattern of cure and death
after randomization, we focus on the “illness-death model without recovery” embedded in the flexible
and powerful multistate model framework (9, 10). Since the context here is hospital-acquired infection,
we call this model “cure-death model” (19) (Fig. 1), with state 0 defined as initial, state 1 as cured and
alive, and state 2 as absorbing death. According to the study protocol, all patients start in state 0, which
is randomization to treatment, immediately after infection. The time scale of interest is “time since
randomization” in days. The outcome most relevant for patients is “being cured and alive” (state 1);
however, all patients, whether cured or not, are permanently at risk for death (state 2) during the entire
follow-up. If a patient is still alive at the end of follow-up, (s)he is right-censored. Note that we
summarize the competing events “death from the condition treated” and “death from any cause” that
can be analyzed separately if information is available; such a separation does not influence the present
outcome of interest but may be interesting for a broader treatment comparison. The arrows in Fig. 1
illustrate the possible transitions within our multistate model determined by the so-called “transition
hazards.” They can be interpreted as momentary forces that pull a subject out of one state into another.
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However, a hazard-based analysis applying, for instance, the well-known Cox proportional hazards
model does not allow direct statements regarding the probability of interest because the latter involves
all hazards. Instead, the Aalen-Johansen estimator (9) is employed for nonparametric estimation of the
probability of interest, which generalizes the well-known Kaplan-Meier estimator to multistate settings.
Note that in the absence of right-censoring, the Aalen-Johansen estimator is identical to the relative
proportion of patients being in a certain state at time t.

Assessing noninferiority over the entire follow-up period via confidence bands. The target aim
of our analysis is to establish noninferiority for the difference in probabilities of being cured and alive for
patients of two treatment groups, A and B, on a relevant time interval of interest. In practice, the
maximum of this interval can be, e.g., the largest observed cure or death time. Pointwise 95% confidence
intervals can be constructed for the difference of these probabilities. Similar to risk differences, we
consider the difference of the treatment-specific Aalen-Johansen estimates, P̂(cured and alive at t�treat-
ment group) function (PCAD, which stands for the “probability of being cured and alive difference”),
calculated as follows: PCAD(t) � P̂(cured and alive at t�A) � P̂(cured and alive at t�B), in the comparison
of treatments A and B.

But assessing noninferiority only pointwise separately for each time point t does not have an overall
5% significance level due to the problem of multiple testing (34). Instead, our aim is to construct a
so-called (one-sided) confidence band over the time interval of interest. A confidence band is a region
in which the entire true curve (here defined as the difference in probabilities over time) falls within a
probability of 95%. Statistical inference is commonly based on approximate normality of the estimators.
For the Aalen-Johansen estimator, this enables the construction of 95% confidence intervals via the usual
“�1.96 � standard error” rule. However, a generalization to confidence bands requires some additional
effort because analytical solutions for the calculation of such bands are available only for the standard
survival setting and not for more complex multistate models as in the present data situation. As a
solution, we suggest the use of a convenient and computationally attractive resampling procedure
known as “wild bootstrap,” which was originally established for competing risks settings (35, 36).

The idea is to introduce computer-generated standard normal variates that are plugged into a
transformation of the Aalen-Johansen estimator. Repeating this approach, say 1,000 times, allows
deriving a quantile q. The one-sided 95% confidence band for the difference in probabilities is then given
by its lower boundary, PCAD(t) � q.

Adapting the principles of confidence interval inclusion as discussed in reference 37 to simul-
taneous confidence bands, treatment A can be deemed noninferior to B if the 95% confidence band,
i.e., PCAD(t) � q, lies above the protocol-defined noninferiority margin on the entire time interval of
interest. This approach corresponds to a formal statistical noninferiority test at the 5% significance level.

The practical construction of the quantile q and an exemplary implementation of the procedure in
the statistical software R (38) are given in the Supplemental text. Fast computation of the Aalen-Johansen
estimators is provided by the etm function (39).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.01691-17.

SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.

ACKNOWLEDGMENTS
We thank Marc Engelhardt from Basilea Pharmaceutica International Ltd. for pro-

viding the data from the ceftobiprole trial and appreciate the help of Frangiscos Sifakis
for reviewing the manuscript prior to submission.

Harriet Sommer was supported by the Innovative Medicines Initiative Joint Under-
taking under grant agreement no. 115523 COMBACTE-NET and 115737-2 COMBACTE-
MAGNET, resources of which are composed of financial contributions from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies.
Tobias Bluhmki was supported by the Innovative Medicines Initiative Joint Undertaking
under grant agreement n [115737-2 – COMBACTE-MAGNET], resources of which are
composed of financial contributions from the European Union’s Seventh Framework
Programme (FP7/2007-2013) and EFPIA companies. Jan Beyersmann was partially
supported by DFG grant BE 4500/1-2.

We declare that we have no conflicts of interest relevant to this article.

REFERENCES
1. Arthur L, Kizor R, Selim A, van Driel ML, Seoane L. 2016. Antibiotics for

ventilator-associated pneumonia. The Cochrane Library, John Wiley and
Sons, Hoboken, NJ.

2. Timsit JF, de Kraker MEA, Sommer H, Weiss E, Bettiol E, Wolkewitz M,
Wilson D, Harbarth S. 2017. Appropriate endpoints for evaluation of

new antibiotic therapies for severe infections: a white paper from the
COMBACTE network. Intensive Care Med 43:1002–1012. https://doi.org/
10.1007/s00134-017-4802-4.

3. Harhay M, Wagner J, Ratcliffe S, Bronheim RS, Gopal A, Green S, Cooney
E, Mikkelsen ME, Kerlin MP, Small DS, Halpern SD. 2014. Outcomes and

Sommer et al. Antimicrobial Agents and Chemotherapy

January 2018 Volume 62 Issue 1 e01691-17 aac.asm.org 6

https://doi.org/10.1128/AAC.01691-17
https://doi.org/10.1128/AAC.01691-17
https://doi.org/10.1007/s00134-017-4802-4
https://doi.org/10.1007/s00134-017-4802-4
http://aac.asm.org


statistical power in adult critical care randomized trials. Am J Resp Crit
Care 189:1469 –1478. https://doi.org/10.1164/rccm.201401-0056CP.

4. Weiss E, Essaied W, Adrie C, Zahar JR, Timsit JF. 2017. Treatment of
severe hospital-acquired and ventilator-associated pneumonia: a sys-
tematic review of inclusion and judgment criteria used in randomized
controlled trials. Crit Care 21:162. https://doi.org/10.1186/s13054-017
-1755-5.

5. European Medicines Agency. 2013. Addendum to the guideline on the
evaluation of medicinal products indicated for treatment of bacterial
infections. http://www.ema.europa.eu/docs/en_GB/document_library/
Scientific_guideline/2013/11/WC500153953.pdf. Accessed 15 August
2017.

6. Food and Drug Administration. 2014. Guidance for industry: hospital-
acquired bacterial pneumonia and ventilator-associated bacterial
pneumonia: developing drugs for treatment. http://www.fda.gov
/downloads/drugs/guidancecomplianceregulatoryinformation
/guidances/ucm234907.pdf. Accessed 15 August 2017.

7. Wolkewitz M, Cooper B, Bonten M, Barnett AG, Schumacher M. 2014.
Interpreting and comparing risks in the presence of competing events.
Br Med J 349:g5060. https://doi.org/10.1136/bmj.g5060.

8. Doshi P. 2015. Speeding new antibiotics to market: a fake fix? Br Med J
350:h1453. https://doi.org/10.1136/bmj.h1453.

9. Aalen O, Borgan Ø, Gjessing H. 2008. Survival and event history
analysis: a process point of view. Springer Science & Business Media,
New York, NY.

10. Beyersmann J, Allignol A, Schumacher M. 2011. Competing risks and
multistate models with R. Springer Science & Business Media, New
York, NY.

11. Wolkewitz M, von Cube M, Schumacher M. 2017. Multistate modeling to
analyze nosocomial infection data: an introduction and demonstration.
Infect Control Hosp Epidemiol 38:953–959. https://doi.org/10.1017/ice
.2017.107.

12. Munoz-Price L, Frencken J, Tarima S, Bonten M. 2016. Handling time
dependent variables: antibiotics and antibiotic resistance. Clin Infect Dis
62:1558 –1563. https://doi.org/10.1093/cid/ciw191.

13. Harbarth S. 2013. What can we learn from each other in infection
control? Experience in Europe compared with the USA. J Hosp Infect
83:173–184. https://doi.org/10.1016/j.jhin.2012.12.003.

14. Schumacher M, Allignol A, Beyersmann J, Binder N, Wolkewitz M. 2013.
Hospital-acquired infections—appropriate statistical treatment is ur-
gently needed. Int J Epidemiol 42:1502–1508. https://doi.org/10.1093/
ije/dyt111.

15. De Angelis G, Allignol A, Murthy A, Wolkewitz M, Beyersmann J, Safran
E, Schrenzel J, Pittet D, Harbarth S. 2011. Multistate modelling to esti-
mate the excess length of stay associated with meticillin-resistant Staph-
ylococcus aureus colonisation and infection in surgical patients. J Hosp
Infect 78:86 –91. https://doi.org/10.1016/j.jhin.2011.02.003.

16. de Kraker MEA, Wolkewitz M, Davey PG, Grundmann H. 2011. Clinical
impact of antimicrobial resistance in European hospitals: excess mortal-
ity and length of hospital stay related to methicillin-resistant Staphylo-
coccus aureus bloodstream infections. Antimicrob Agents Chemother
55:1598 –1605. https://doi.org/10.1128/AAC.01157-10.

17. Beyersmann J, Gastmeier P, Grundmann H, Bärwolff S, Geffers C, Behnke
M, Rüden H, Schumacher M. 2006. Use of multistate models to assess
prolongation of intensive care unit stay due to nosocomial infection.
Infect Control Hosp Epidemiol 27:493– 499. https://doi.org/10.1086/
503375.

18. Samore M, Harbarth S. 2004. A methodologically focused review of the
literature in hospital epidemiology and infection control, p 1645–1657.
In Mayhall CG (ed), Infection control and hospital epidemiology, 3rd ed.
Lippincott, Williams and Wilkins, Philadelphia, PA.

19. Sommer H, Wolkewitz M, Schumacher M. 2017. The time-dependent
cure-death model investigating two equally important endpoints simul-
taneously in trials treating high-risk patients with resistant pathogens.
Pharm Stat 16:267–279. https://doi.org/10.1002/pst.1809.

20. Klein P, Shu Y. 2002. Multi-state models for bone marrow transplantation
studies. Stat Methods Med Res 11:117–139. https://doi.org/10.1191/
0962280202sm277ra.

21. Klein JP, Keiding N, Shu Y, Szydlo RM, Goldman JM. 2000. Summary
curves for patients transplanted for chronic myeloid leukaemia salvaged
by a donor lymphocyte infusion: the current leukaemia-free survival
curve. Br J Haematol 109:148 –152. https://doi.org/10.1046/j.1365-2141
.2000.01982.x.

22. Eefting M, de Wreede LC, Halkes CJM, von dem Borne PA, Kersting S,
Marijt EWA, Veelken H, Putter H, Schetelig J, Falkenburg JHF. 2016.
Multi-state analysis illustrates treatment success after stem cell trans-
plantation for acute myeloid leukemia followed by donor lymphocyte
infusion. Haematology 101:506 –514. https://doi.org/10.3324/haematol
.2015.136846.

23. Fay MP, Follmann D. 2016. Non-inferiority tests for anti-infective drugs
using control group quantiles. Clin Trials 13:632– 640. https://doi.org/10
.1177/1740774516654861.

24. Powers J, Howard K, Saretsky T, Clifford S, Hoffmann S, Llorens L, Talbot
G. 2016. Patient-reported outcome assessments as endpoints in studies
in infectious diseases. Clin Infect Dis 63:S52–S56. https://doi.org/10
.1093/cid/ciw317.

25. Muscedere J, Day A, Heyland D. 2010. Mortality, attributable mortality,
and clinical events as end points for clinical trials of ventilator-associated
pneumonia and hospital-acquired pneumonia. Clin Infect Dis 51:
S120 –S125. https://doi.org/10.1086/653060.

26. Awad S, Rodriguez A, Chuang Y, Marjanek Z, Pareigis AJ, Reis G,
Scheeren TWL, Sánchez AS, Zhou X, Saulay M, Engelhardt M. 2014. A
phase 3 randomized double-blind comparison of ceftobiprole medocaril
versus ceftazidime plus linezolid for the treatment of hospital-acquired
pneumonia. Clin Infect Dis 59:51– 61. https://doi.org/10.1093/cid/ciu219.

27. Sommer H, Timsit JF, Wolkewitz M. 2017. Bezlotoxumab and recurrent
Clostridium difficile infection. N Engl J Med 376:1593–1596. https://doi
.org/10.1056/NEJMc1702531.

28. Bluhmki T, Bramlage P, Volk M, Kaltheuner M, Danne T, Rathmann W,
Beyersmann J. 2017. Time-to-event methodology improved statistical
evaluation in register-based health services research. J Clin Epidemiol
82:103–111. https://doi.org/10.1016/j.jclinepi.2016.11.001.

29. Datta S, Satten GA. 2001. Validity of the Aalen-Johansen estimators of
stage occupation probabilities and Nelson-Aalen estimators of inte-
grated transition hazards for non-Markov model. Stat Probabil Lett
55:403– 411. https://doi.org/10.1016/S0167-7152(01)00155-9.

30. Schoenfeld D, Bernard G. 2002. Statistical evaluation of ventilator-free
days as an efficacy measure in clinical trials of treatments for acute
respiratory distress syndrome. Crit Care Med 30:1772–1777. https://doi
.org/10.1097/00003246-200208000-00016.

31. Schmoor C, Schumacher M, Finke J, Beyersmann J. 2013. Competing
risks and multistate models. Clin Cancer Res 19:12–21. https://doi.org/
10.1158/1078-0432.CCR-12-1619.

32. Allignol A, Schumacher M, Beyersmann J. 2011. Estimating summary func-
tionals in multistate models with an application to hospital infec-
tion data. Comp Stat 26:181–197. https://doi.org/10.1007/s00180-010
-0200-x.

33. Rizopoulos D. 2012. Joint models for longitudinal and time-to-event
data: with applications in R. CRC Press Taylor & Francis Group, Boca
Raton, FL.

34. Dmitrienko A, Tamhane A, Bretz F. 2009. Multiple testing problems in
pharmaceutical statistics. Chapman and Hall/CRC, Boca Raton, FL.

35. Lin D. 1997. Non-parametric inference for cumulative incidence func-
tions in competing risks studies. Stat Med 16:901–910. https://doi.org/
10.1002/(SICI)1097-0258(19970430)16:8�901::AID-SIM543�3.0.CO;2-M.

36. Beyersmann J, Di Termini S, Pauly M. 2013. Weak convergence of the
wild bootstrap for the Aalen-Johansen estimator of the cumulative
incidence function of a competing risk. Scand J Stat 40:387– 402. https://
doi.org/10.1111/j.1467-9469.2012.00817.x.

37. Wellek S. 2010. Testing statistical hypotheses of equivalence and non-
inferiority, 2nd ed. Chapman & Hall/CRC, Boca Raton, FL.

38. R Core Team. 2016. R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

39. Allignol A, Schumacher M, Beyersmann J. 2011. Empirical transition
matrix of multi-state models: the etm package. J Stat Soft 38:1–15.
https://doi.org/10.18637/jss.v038.i04.

Noninferiority Assessment Using a Multistate Model Antimicrobial Agents and Chemotherapy

January 2018 Volume 62 Issue 1 e01691-17 aac.asm.org 7

https://doi.org/10.1164/rccm.201401-0056CP
https://doi.org/10.1186/s13054-017-1755-5
https://doi.org/10.1186/s13054-017-1755-5
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/11/WC500153953.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/11/WC500153953.pdf
http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm234907.pdf
http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm234907.pdf
http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm234907.pdf
https://doi.org/10.1136/bmj.g5060
https://doi.org/10.1136/bmj.h1453
https://doi.org/10.1017/ice.2017.107
https://doi.org/10.1017/ice.2017.107
https://doi.org/10.1093/cid/ciw191
https://doi.org/10.1016/j.jhin.2012.12.003
https://doi.org/10.1093/ije/dyt111
https://doi.org/10.1093/ije/dyt111
https://doi.org/10.1016/j.jhin.2011.02.003
https://doi.org/10.1128/AAC.01157-10
https://doi.org/10.1086/503375
https://doi.org/10.1086/503375
https://doi.org/10.1002/pst.1809
https://doi.org/10.1191/0962280202sm277ra
https://doi.org/10.1191/0962280202sm277ra
https://doi.org/10.1046/j.1365-2141.2000.01982.x
https://doi.org/10.1046/j.1365-2141.2000.01982.x
https://doi.org/10.3324/haematol.2015.136846
https://doi.org/10.3324/haematol.2015.136846
https://doi.org/10.1177/1740774516654861
https://doi.org/10.1177/1740774516654861
https://doi.org/10.1093/cid/ciw317
https://doi.org/10.1093/cid/ciw317
https://doi.org/10.1086/653060
https://doi.org/10.1093/cid/ciu219
https://doi.org/10.1056/NEJMc1702531
https://doi.org/10.1056/NEJMc1702531
https://doi.org/10.1016/j.jclinepi.2016.11.001
https://doi.org/10.1016/S0167-7152(01)00155-9
https://doi.org/10.1097/00003246-200208000-00016
https://doi.org/10.1097/00003246-200208000-00016
https://doi.org/10.1158/1078-0432.CCR-12-1619
https://doi.org/10.1158/1078-0432.CCR-12-1619
https://doi.org/10.1007/s00180-010-0200-x
https://doi.org/10.1007/s00180-010-0200-x
https://doi.org/10.1002/(SICI)1097-0258(19970430)16:8%3C901::AID-SIM543%3E3.0.CO;2-M
https://doi.org/10.1002/(SICI)1097-0258(19970430)16:8%3C901::AID-SIM543%3E3.0.CO;2-M
https://doi.org/10.1111/j.1467-9469.2012.00817.x
https://doi.org/10.1111/j.1467-9469.2012.00817.x
https://doi.org/10.18637/jss.v038.i04
http://aac.asm.org

	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Example study data. 
	The cure-death model. 
	Assessing noninferiority over the entire follow-up period via confidence bands. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

