

Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing *Pseudomonas aeruginosa* and Associated Resistance Mechanisms

Yu Mi Wi,^{a,b} Kerryl E. Greenwood-Quaintance,^a Audrey N. Schuetz,^a Kwan Soo Ko,^c Kyong Ran Peck,^d Jae-Hoon Song,^d ^(D) Robin Patel^{a,e}

^aDivision of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

^bDivision of Infectious Diseases, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University, Changwon, South Korea

Antimicrobial Agents

MICROBIOLOGY and Chemotherapy®

AMERICAN SOCIETY FOR

^cDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea

^dDivision of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

eDivision of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA

ABSTRACT Although carbapenems are effective for treating serious multidrug-resistant Pseudomonas aeruginosa infections, carbapenem-resistant P. aeruginosa (CRPA) is now being reported worldwide. Ceftolozane-tazobactam (C/T) demonstrates activity against many multidrug-resistant isolates. We evaluated the activity of C/T and compared its activity to that of ceftazidime-avibactam (C/A) using a well-characterized collection of non-carbapenemase-producing CRPA isolates. Forty-two non-carbapenemaseproducing CRPA isolates from a previous study (J. Y. Lee and K. S. Ko, Int J Antimicrob Agents 40:168-172, 2012, https://doi.org/10.1016/j.ijantimicag.2012.04.004) were included. All had been previously shown to be negative for *bla*_{IMP}, *bla*_{VIM}, *bla*_{SPM}, *bla*_{GIM}, bla_{SIM}, and bla_{KPC} by PCR. In the prior study, expression of oprD, ampC, and several efflux pump genes had been defined by quantitative reverse transcription-PCR. Here, antimicrobial susceptibility was determined by broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Time-kill curve assays were performed using three C/T- and C/A-susceptible CRPA isolates. Among 42 noncarbapenemase-producing CRPA isolates, overall susceptibility to C/T was 95.2%, compared to 71.4%, 42.9%, 23.8%, 21.4%, and 2.4% for C/A, ceftazidime, piperacillintazobactam, cefepime, and meropenem, respectively. The C/T resistance rate was significantly lower than that of C/A among isolates showing decreased oprD and increased mexB expression (5.1% versus 25.6%, P = 0.025, and 4.3% versus 34.8%, P =0.022, respectively). In time-kill curve studies, C/T was less bactericidal than C/A against an isolate with decreased oprD and increased ampC expression. C/T was active against 95.2% of non-carbapenemase-producing CRPA clinical isolates. No apparent correlation of C/T MIC values with specific mutation-driven resistance mechanisms was noted.

KEYWORDS *Pseudomonas aeruginosa*, carbapenem resistant, ceftolozane-tazobactam

A lthough carbapenems remain effective in treating serious multidrug-resistant (MDR) *Pseudomonas aeruginosa* infections, carbapenem-resistant *P. aeruginosa* (CRPA) has emerged and is being reported as a nosocomial pathogen worldwide and particularly in debilitated or immunocompromised patients (1, 2). Infections caused by CRPA are of concern in many hospitals since they have been shown to reduce the

Received 20 September 2017 Returned for modification 11 October 2017 Accepted 2 November 2017

Accepted manuscript posted online 13 November 2017

Citation Wi YM, Greenwood-Quaintance KE, Schuetz AN, Ko KS, Peck KR, Song J-H, Patel R. 2018. Activity of ceftolozane-tazobactam against carbapenem-resistant, noncarbapenemase-producing *Pseudomonas aeruginosa* and associated resistance mechanisms. Antimicrob Agents Chemother 62:e01970-17. https://doi.org/10.1128/AAC .01970-17.

Copyright © 2017 American Society for Microbiology. All Rights Reserved. Address correspondence to Robin Patel, patel.robin@mayo.edu.

	MIC (m	g/liter)		No. (%) of isolates with result $(n = 42)$:			
Antimicrobial agent	MIC ₅₀	MIC ₉₀	Range	S	I	R	
Imipenem	16	32	8 to 32	0 (0)	0 (0)	42 (100)	
Meropenem	16	32	2 to >64	1 (2.4)	9 (21.4)	32 (76.2)	
Piperacillin-tazobactam	128/4	>256/4	4/4 to >256/4	10 (23.8)	3 (7.1)	29 (69.0)	
Ceftolozane-tazobactam	2/4	4/4	1/4 to 32/4	40 (95.2)	0 (0)	2 (4.8)	
Ceftazidime-avibactam	8/4	16/4	2/4 to 32/4	30 (71.4)	NA	12 (28.6)	
Cefepime	32	>64	2 to >64	9 (21.4)	8 (19.0)	25 (59.5)	
Ceftazidime	16	64	2 to >64	18 (42.9)	3 (7.1)	21 (50.0)	
Ciprofloxacin	2	64	\leq 0.06 to $>$ 64	14 (33.3)	8 (19.0)	20 (47.6)	
Amikacin	16	>128	2 to >128	25 (59.5)	4 (9.5)	13 (31.0)	
Polymyxin B	1	2	0.5 to 2	42 (100)	0 (0)	0 (0)	
Colistin	2	2	0.5 to 2	42 (100)	NA	0 (0)	

TABLE 1 Antimicrobial activities tested against non-carbapenemase-producing CRPA isolates^a

^aAbbreviations: CRPA, carbapenem-resistant *P. aeruginosa*; S, susceptible; I, intermediate; R, resistant; NA, not applicable.

likelihood of appropriate initial antimicrobial therapy and are associated with significant mortality (3).

While the production of carbapenemases, mainly Ambler class B metallo- β -lactamases (MBLs), is noteworthy in *P. aeruginosa* as a mechanism of carbapenem resistance (4), the presence of non-carbapenemase-mediated carbapenem resistance is far more common (5–7). Loss of outer membrane porin D (OprD) function in conjunction with another mechanism, such as overexpression of *ampC* or overexpression of efflux pumps, is the major determinant of resistance to carbapenems (5–7). Chromosomally encoded AmpC β -lactamase together with the efflux pump MexAB-OprM operon contributes to resistance of *P. aeruginosa* to many β -lactam antibiotics. Nevertheless, isolates with reduced susceptibility to carbapenems because of inactivation of *oprD* in conjunction with other mechanism, such as overexpression of *ampC* or overexpression of efflux pumps, sometimes show susceptibility to other β -lactams besides carbapenems (8–10).

Ceftolozane-tazobactam (C/T) is a novel antibiotic with broad-spectrum activity against Gram-negative bacteria, including MDR *P. aeruginosa*. Ceftolozane is an oxyimino-aminothiazolyl cephalosporin that has stability against chromosomal AmpC β -lactamases, overexpressed MexAB-OprM efflux pumps, and deleted OprD porins (11). Ceftolozane's affinity for the penicillin-binding proteins of *P. aeruginosa* accounts for its activity against this organism (12). Although tazobactam does not play a critical role in enhancing the activity of ceftolozane against *P. aeruginosa*, it extends the activity of ceftolozane against *P. aeruginosa*, it extends the activity of ceftolozane alone against extended-spectrum- β -lactamase-producing *Enterobacteriaceae* (12). However, C/T is not active against *Klebsiella pneumoniae* carbapenemase (KPC) or metallo- β -lactamases (13, 14). Therefore, C/T demonstrates activity against many MDR isolates of *P. aeruginosa*, including carbapenem-resistant strains that do not produce a carbapenemase (14).

Here, we evaluated the activity of C/T and compared its activity to that of ceftazidime-avibactam (C/A) in non-carbapenemase-producing CRPA clinical isolates (6). In addition, we assessed strains for underlying C/T and C/A resistance mechanisms.

RESULTS

Antimicrobial susceptibility of C/T and C/A against *P. aeruginosa* and its correlation with resistance mechanisms. Among 42 non-carbapenemase-producing CRPA isolates, overall susceptibility to C/T was 95.2%, compared to 71.4%, 42.9%, 23.8%, 21.4%, and 2.4% for C/A, ceftazidime, piperacillin-tazobactam, cefepime, and meropenem, respectively (Table 1). Only two isolates showed resistance to C/T.

Of 42 non-carbapenemase-producing CRPA isolates, 39 (92.9%) showed decreased *oprD* expression (\leq 30%) compared with that of PAO1 (Table 2). Strains with decreased *oprD* expression displayed median C/T and C/A MIC values of 2 and 8 mg/liter, respectively. The resistance rate for C/T was significantly lower than that for C/A among

TABLE 2 MIC range and resistance rates for ceftolozane-tazobactam and ceftazidime-avibactam according to results for expression of
oprD, efflux pumps, and chromosomal ampC among non-carbapenemase-producing CRPA clinical isolates

		MIC range (med	ian) (mg/liter)	% resistance		
Resistance mechanism	No. of isolates	Ceftolozane- tazobactam	Ceftazidime- avibactam	Ceftolozane- tazobactam	Ceftazidime- avibactam	
Decreased oprD expression						
Positive (\leq 30% compared with PAO1) ^a	39	1-32 (2)	2-32 (8)	5.1	25.6	
Negative (>30% compared with PAO1)	3	2–4 (2)	8-16 (16)	0	66.7	
Overexpressed mexB						
Positive (\geq 3-fold compared with PAO1) ^a	23	1-32 (2)	2-32 (8)	4.3	34.8	
Negative (<2-fold compared with PAO1)	12	1–16 (2)	2–16 (4)	8.3	25.0	
Overexpressed mexD						
Positive (\geq 10-fold compared with PAO1)	6	1-4 (2)	2-8 (4)	0	0	
Negative (<5-fold compared with PAO1)	35	1–32 (2)	2–32 (8)	5.7	34.3	
Overexpressed mexF						
Positive (\geq 10-fold compared with PAO1)	5	1-4 (2)	2-16 (8)	0	40	
Negative (<5-fold compared with PAO1)	29	1–32 (2)	2–32 (8)	6.9	24.1	
Overexpressed ampC						
Positive (\geq 10-fold compared with PAO1)	17	1-32 (4)	2-16 (8)	5.9	23.5	
Negative (<5-fold compared with PAO1)	25	1–16 (2)	2-32 (4)	4.0	32.0	

 $^{a}P < 0.05$ in comparison of percent resistance to ceftolozane-tazobactam with that to ceftazidime-avibactam.

isolates showing decreased *oprD* expression (5.1% versus 25.6%, P = 0.025). Among the isolates analyzed, 23 (54.8%) had elevated expression of *mexB*. Resistance to C/T was significantly lower than that to C/A among isolates showing elevated *mexB* expression (4.3% versus 34.8%, P = 0.022). Elevated expression of *mexD* was noted among 6 (14.3%) of the isolates. All isolates showing elevated expression of *mexD* were susceptible to both C/T and C/A. Overall, 17 (40.5%) isolates were considered to have a derepressed chromosomal *ampC*. The resistance rates for C/T and C/A among isolates showing derepressed chromosomal *ampC* were 5.9% and 23.5%, respectively, a statistically nonsignificant difference.

The resistance mechanisms described above were observed alone (15 isolates) or in combinations of two to four mechanisms in the isolates tested (Table 3). Overall, 10 resistance mechanisms or combinations thereof were observed, with decreased *oprD* expression alone being most prevalent (13 strains), followed by a combination of decreased expression of *oprD* and overexpression of *mexB* (9 isolates). Resistance to C/T was significantly lower than that to C/A among isolates showing decreased *oprD* and increased *mexB* expression (0% versus 55.6%, P = 0.005).

TABLE 3 MIC range and resistance rates for ceftolozane-tazobactam and ceftazidime-avibactam according to results for resistance
mechanisms among non-carbapenemase-producing CRPA clinical isolates

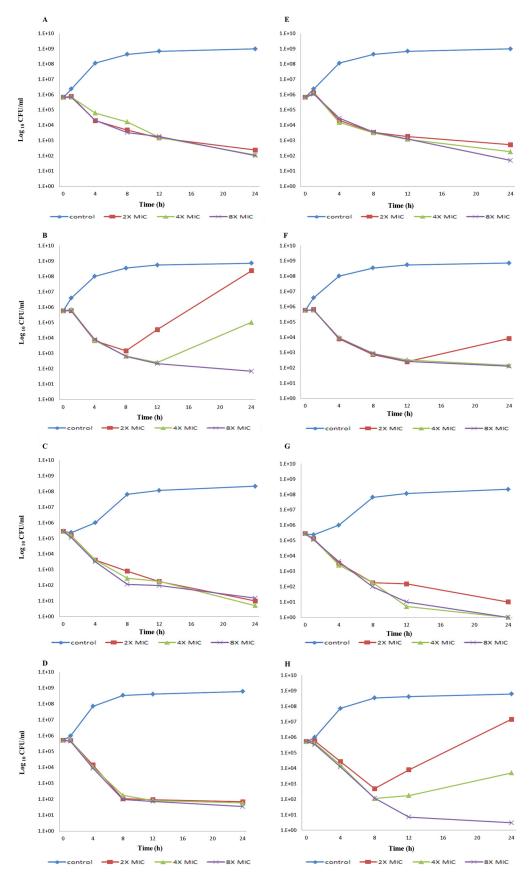
		MIC range (me (mg/liter)	edian)	% resistance	
Resistance mechanism	No. of isolates	Ceftolozane- tazobactam	Ceftazidime- avibactam	Ceftolozane- tazobactam	Ceftazidime- avibactam
Decreased oprD expression	13	1–16 (2)	2–16 (4)	7.7	15.4
Decreased oprD and increased mexB expression ^a	9	1-4 (2)	2–32 (16)	0	55.6
Decreased oprD and increased mexY expression	1	1	2	0	0
Decreased oprD and increased ampC expression		1-4 (2)	4-8 (4)	0	0
Decreased oprD and increased mexB and ampC expression	4	2-32 (4)	8–16 (16)	25.0	50.0
Decreased oprD and increased mexY and ampC expression	1	2	16	0	100
Decreased oprD and increased mexB, mexD, and ampC expression	6	1-4 (2)	2-8 (4)	0	0
Decreased oprD and increased mexB, mexY, and ampC expression	2	2	8	0	0
Increased mexB expression	2	2	8–16	0	50
Increased mexY and ampC expression	1	4	16	0	100

 $^{a}P < 0.05$ in comparison of percent resistance to ceftolozane-tazobactam with that to ceftazidime-avibactam.

Isolate		MIC (MIC (mg/liter)							Expression of gene ^a		
no.	ST	IMP	MEM	C/T	C/A	FEP	CAZ	P/T	oprD	mexB	ampC	
42	277	32	8	1/4	4/4	8	8	8/4	0.0618	0.7769	61.3534	
91	641	16	4	4/4	4/4	32	4	128/4	0.0001	1.2536	0.2649	
186	233	16	16	2/4	8/4	8	8	16/4	0.0015	19.6462	0.4798	

TABLE 4 Antimicrobial resistance and genotype of three non-carbapenemase-producing CRPA isolates tested in a time-kill assay^b

^eValues in bold indicate a significant overexpression (or underexpression for *oprD*) of the corresponding gene according to the defined thresholds relative to PAO1 (see Table 2).


^bAbbreviations: ST, sequence type; IMP, imipenem; MEM, meropenem; C/T, ceftolozane-tazobactam; C/A, ceftazidime-avibactam; FEP, cefepime; CAZ, ceftazidime; P/T, piperacillin-tazobactam.

Killing effects of C/T and C/A on CRPA clinical isolates. Three non-carbapenemaseproducing CRPA clinical isolates susceptible to both C/T and C/A (genotypes ST277, ST641, and ST233) were selected for a time-kill assay using C/T and C/A (Table 4). Figure 1 shows the killing curves at C/T or C/A concentrations of 2 times, 4 times, and 8 times the MIC. Both C/T and C/A caused decreases in the number of CFU per milliliter over the 1- to 8-h time period for all strains at all multiples of MICs tested. The onset of bacterial killing showed a lag time of approximately 1 h in all strains. PAO1 had at least a 3-log₁₀ decrease in the number of CFU per milliliter with both C/T and C/A at all MICs at 24 h (Fig. 1A and E). Both C/T and C/A were bactericidal after 8 h when tested at 2 times, 4 times, and 8 times the MIC against an isolate with downregulated oprD (Fig. 1C and G). C/T was less bactericidal against an isolate with downregulated oprD and overexpressed ampC (Fig. 1B and F). At the 8-h time point, all concentrations of C/T caused a $<3-\log_{10}$ decrease in CFU per milliliter. In addition, regrowth was observed at 12 h when tested at 2 times the MIC and at 24 h when tested at 4 times the MIC against this isolate (Fig. 1B and F). On the other hand, C/A was bactericidal against an isolate with downregulated oprD and overexpressed mexB at 8 h at all MICs tested (Fig. 1D and H). However, regrowth was observed at the 12-h time point when tested at 2 times and 4 times the MIC (Fig. 1D and H).

DISCUSSION

Our C/T susceptibility data demonstrate that it is an active agent against noncarbapenemase-producing CRPA. In comparison to C/A MICs, C/T MICs were lower. Our study also demonstrates that decreased *oprD* transcription and increased transcription of efflux pump genes or *ampC* do not fully explain the correlation of C/T MIC values with specific mutation-driven resistance mechanisms. However, C/T was less bactericidal against an isolate having decreased *oprD* and increased *ampC* expression than against isolates having other resistance mechanisms, and C/A showed regrowth at the 12-h time point when tested at 2 times and 4 times the MIC against an isolate with decreased *oprD* and increased *mexB* expression in time-kill studies.

The increase in carbapenem resistance among *P. aeruginosa* clinical isolates is worrisome, because there has been little progress in the development of new antimicrobial agents targeting this organism (4, 15). Delaying the initiation of appropriate antimicrobial therapy is well established as being associated with increased morbidity and mortality in patients with severe *P. aeruginosa* infections (16, 17). In this setting, colistin has been recently deployed as a last-resort treatment option (18). However, concerns about nephrotoxicity, a well-known adverse effect of colistin, and challenging pharmacokinetics have led to limited use of this drug (19). C/T has shown potent *in vitro* activity against *Pseudomonas* species (20, 21). Previous studies showed C/T activity against 86% to 95% of clinical *P. aeruginosa* isolates, and when specifically evaluating more-resistant strains, 60 to 80% of ceftazidime-resistant and meropenem-resistant pseudomonal isolates displayed MICs to C/T of \leq 8 mg/liter (22, 23). Consistent with this, our study showed 40 isolates (95.2%) to be susceptible to C/T among 42 non-carbapenemase-producing CRPA clinical isolates collected before the clinical availability of ceftolozane. All isolates were colistin susceptible,

FIG 1 Time-kill curves of carbapenem-resistant ceftolozane-tazobactam-susceptible and ceftazidime-avibactamsusceptible *P. aeruginosa* clinical isolates exposed to ceftolozane-tazobactam (A, B, C, and D) and ceftazidime-avibactam (Continued on next page)

79.4% were C/A susceptible, 59.5% were amikacin susceptible, and ${<}50\%$ were susceptible to the remaining antibiotics tested.

Previous studies investigated the possible molecular mechanisms of P. aeruginosa resistance to C/T and C/A (12, 24–27). High-level resistance to C/T occurred only in a strain with multiple mutations leading to overexpression and structural modifications of AmpC (12). AmpC overexpression was suggested to contribute to resistance of P. aeruginosa to C/T, but underlying resistance mechanisms remain poorly defined. In the current study, two isolates showed resistance to C/T. The first showed decreased oprD expression, and the second showed decreased oprD expression combined with increased *ampC* and *mexB* expression. However, due to the apparent limited correlation of C/T MIC values with specific mutation-driven resistance mechanisms, we are unable to explain resistance mechanisms for C/T with decreased oprD transcription and increased transcription of efflux genes or of the ampC gene. Parenthetically, there was a correlation between MICs and resistance mechanism in 15 isolates with a metallo- β lactamase (13 with bla_{IMP-6} and 2 with bla_{VIM-2}), which showed MICs of \geq 128/4 mg/liter for both C/T and C/A (data not shown). Intriguingly, nine isolates with decreased oprD expression combined with increased mexB expression did not display resistance to C/T, in contrast to the situation with C/A. Ceftolozane is known to not be affected by overexpressed MexAB-OprM because it is not a substrate of this pump, nor is it affected by deletion of OprD porins, because it does not enter bacterial cells through OprD (13). Further study will be needed to understand the drivers of resistance to C/T to support efforts for preserving the potency of this last-resort antibiotic.

Our study also showed antimicrobial effects of C/T and C/A against non-carbapenemaseproducing CRPA clinical isolates using time-kill assays. C/T produced a decrease in the number of CFU per milliliter at 8 h for an isolate having decreased oprD and increased ampC expression; however, this combination was not bactericidal against this isolate, in contrast to C/A, which showed a bactericidal effect without regrowth. An important potential use of C/A is in the treatment of P. aeruginosa infections, as this drug has been shown to have potent inhibitory activity against the class C β -lactamase of *P. aerugi*nosa (28). In addition, avibactam binds covalently and reversibly to β -lactamases (29). This reversibility is a unique feature that allows avibactam to undergo recyclization to inactivate another β -lactamase. We are uncertain of the clinical significance of regrowth after the 8-h time point, because both C/T and C/A clinical dosing regimens are every 8 h. Similar observations of regrowth in time-kill studies have been made with other commercially available β -lactam- β -lactamase-inhibitor combinations, such as piperacillintazobactam (30, 31). Despite this phenomenon, piperacillin-tazobactam has been in successful clinical use for many years, suggesting that regrowth in time-kill studies for β -lactam- β -lactamase-inhibitor agents might be an *in vitro* phenomenon that does not necessarily translate to clinical activity. With regard to lag time of bacterial killing, both C/T and C/A showed a lag in bacterial killing for all three isolates studied. β -Lactams bind to penicillin-binding proteins, stimulating an autolysin effect; turnover of the autolysin effect may result in a lag in killing (32, 33).

This study has some limitations. First, although we investigated the main resistance mechanisms of *P. aeruginosa* causing carbapenem resistance, we did not interrogate all resistance mechanisms. Although uncommon, class A extended-spectrum β -lactamases, such as TEM, SHV, CTX-M, PER, VEB, GES, and IBC families, have been detected in *P. aeruginosa*. Extended-spectrum β -lactamases from the class D OXA-type enzymes have also been encountered in *P. aeruginosa* (34). Second, even though these isolates were collected from eight South Korean hospitals, the sample size is too small to determine statistical significance. Therefore, further study will be needed to investigate

FIG 1 Legend (Continued)

(E, F, G, and H). (A and E) PAO1. (B and F) An isolate with downregulated *oprD* and upregulated *ampC* (isolate 42). (C and G) An isolate with downregulated *oprD* (isolate 91). (D and H) An isolate with downregulated *oprD* and upregulated *mexB* (isolate 186). The lower limit of detection for this assay was 1 CFU/ml.

the correlation of C/T MIC values with specific resistance mechanisms using a large number of non-carbapenemase-producing CRPA isolates.

In conclusion, C/T showed excellent activity against non-carbapenemase-producing CRPA clinical isolates. We were unable to fully correlate C/T MIC values with specific mutation-driven resistance mechanisms.

MATERIALS AND METHODS

Bacterial isolates. A total of 213 *P. aeruginosa* isolates (bacteremia, n = 101; urinary tract infection, n = 112) from eight South Korean hospitals assessed in a previous study (6) were considered for inclusion. Among 213 P. aeruginosa isolates, a total of 57 isolates (26.8%) resistant to imipenem and/or meropenem were determined to be resistant to carbapenems. Among the 57 CRPA isolates, 15 isolates were metallo- β -lactamase producers (13 bla_{IMP-6} and 2 bla_{VIM-2}). Pathogens harboring carbapenemases, such as KPCs and metallo- β -lactamases, are known to be resistant to C/T (14), and these 15 isolates were not further studied in detail. Therefore, 42 non-carbapenemase-producing CRPA isolates, 14 of which were isolated from blood, 28 of which were isolated from urine, and all of which were negative for bla_{IMP}, bla_{VIM} , bla_{SPM} , bla_{SIM} , bla_{SIM} , and bla_{KPC} , were studied. These 42 isolates were evaluated for the presence of cryptic carbapenemases using the Carba NP test, as previously described (35, 36); they were all phenotypically negative for carbapenemase activity. Multilocus sequence typing (MLST) revealed 26 sequence types (STs). The expression of oprD, ampC, and several efflux pump genes had been previously defined by quantitative reverse transcription-PCR to define mechanisms conferring carbapenem resistance. Reduced oprD expression was considered relevant when it was \leq 30% compared with that of P. aeruginosa PAO1. Strains were considered positive for ampC, mexD, mexF, or mexY overexpression when the corresponding mRNA level was at least 10-fold higher than that of PAO1, negative if it was lower than 5-fold, and borderline if it was between 5- and 10-fold. Strains were considered positive for mexB overexpression when the corresponding mRNA level was at least 3-fold higher than that of PAO1, negative if it was lower than 2-fold, and borderline if it was between 2- and 3-fold, according to previously defined criteria (37). All but three exhibited a relevant decrease in oprD expression compared to the reference strain. Twenty-nine overexpressed efflux pumps (primarily mexB but also mexD, mexY, and mexF) or ampC.

Antimicrobial susceptibility testing. In our previous work (6), susceptibility to 10 antimicrobial agents including imipenem, meropenem, piperacillin-tazobactam, cefepime, ceftazidime, tetracycline, ciprofloxacin, amikacin, polymyxin B, and colistin had been determined. In the current study, antimicrobial susceptibility to C/T and C/A was tested by broth microdilution according to the CLSI guidelines (38). Interpretation of susceptibility for all antimicrobial agents except C/A was done according to CLSI breakpoints (36). For C/A, the FDA susceptibility breakpoint (\leq 8/4 mg/liter) was applied. *Escherichia coli* ATCC 25922 and *P. aeruginosa* ATCC 27853 served as quality control strains. All quality control results were within CLSI-specified ranges.

Correlation of C/T or C/A activity with mechanisms of resistance. The relationship between C/T or C/A activity and overexpression of efflux pumps or *ampC* and decreased *oprD* expression was also investigated.

In vitro time-kill studies. Three CRPA isolates having different resistance mechanisms and PAO1 were selected for time-kill assays. Time-kill studies were performed according to a previously published study with some modifications (15). Briefly, freshly prepared colonies collected from the surface of an overnight agar culture were suspended in cation-adjusted Mueller-Hinton broth (CAMHB) and incubated for 1 to 2 h. Cultures were then diluted to a 0.5 McFarland standard (approximately 1.5×10^8 CFU/ml). An appropriate amount of bacteria was diluted in CAMHB to achieve a concentration of 5×10^5 CFU/ml in a final volume of 10 ml of CAMHB. Then, ceftolozane and ceftazidime were added to the prepared bacterial suspensions, so that the final drug concentration was 2 times, 4 times, or 8 times the MIC of ceftolozane and ceftazidime; tazobactam and avibactam were added to a final concentration of 4 mg/liter. A growth control with no antibiotic was also included. Tubes were incubated in a 37° C room air incubator with shaking (180 rpm); viability counts were performed at 0 h, 1 h, 4 h, 8 h, 12 h, and 24 h by removing 100 μ L. A $\geq 3-\log_{10}$ decrease in the number of CFU per milliliter was considered evidence of bactericidal activity.

Statistical analysis. Categorical variables were compared using Fisher's exact test. All tests were 2 sided, and *P* values less than 0.05 were considered statistically significant. Statistical analysis was performed using PASW Statistics for Windows v.18.0 (SPSS Inc., Chicago, IL).

ACKNOWLEDGMENTS

This study was generously supported by Merck & Co., Inc.

All *P. aeruginosa* isolates used in this study were obtained from the Asian Bacterial Bank (ABB) of the Asia-Pacific Foundation for Infectious Diseases (APFID) (Seoul, Republic of Korea). We thank Angela P. Strasburg for performing the Carba NP test.

REFERENCES

- Bodey GP, Jadeja L, Elting L. 1985. *Pseudomonas* bacteremia. Retrospective analysis of 410 episodes. Arch Intern Med 145:1621–1629. https:// doi.org/10.1001/archinte.1985.00360090089015.
- Poole K. 2011. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65. https://doi.org/10.3389/fmicb.2011.00065.
- 3. Giamarellou H. 2002. Prescribing guidelines for severe Pseudomonas infec-

tions. J Antimicrob Chemother 49:229–233. https://doi.org/10.1093/jac/49 .2.229.

- Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. 2017. Emergence of colistin resistance in *Pseudomonas aeruginosa* ST235 clone in South Korea. Int J Antimicrob Agents 49:767–769. https://doi .org/10.1016/j.ijantimicag.2017.01.023.
- Ochs MM, McCusker MP, Bains M, Hancock RE. 1999. Negative regulation of the *Pseudomonas aeruginosa* outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 43:1085–1090.
- Lee JY, Ko KS. 2012. OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-beta-lactamases in carbapenemresistant *Pseudomonas aeruginosa* isolates from South Korea. Int J Antimicrob Agents 40:168–172. https://doi.org/10.1016/j.ijantimicag.2012 .04.004.
- Livermore DM. 1992. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 36:2046–2048. https://doi.org/10.1128/ AAC.36.9.2046.
- Zeng ZR, Wang WP, Huang M, Shi LN, Wang Y, Shao HF. 2014. Mechanisms of carbapenem resistance in cephalosporin-susceptible *Pseudomonas aeruginosa* in China. Diagn Microbiol Infect Dis 78:268–270. https://doi.org/10.1016/j.diagmicrobio.2013.11.014.
- Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martinez JL. 2010. Genetic determinants involved in the susceptibility of *Pseudomonas aeruginosa* to beta-lactam antibiotics. Antimicrob Agents Chemother 54:4159–4167. https://doi.org/10.1128/AAC.00257-10.
- Bubonja-Sonje M, Matovina M, Skrobonja I, Bedenic B, Abram M. 2015. Mechanisms of carbapenem resistance in multidrug-resistant clinical isolates of *Pseudomonas aeruginosa* from a Croatian hospital. Microb Drug Resist 21:261–269. https://doi.org/10.1089/mdr.2014.0172.
- Livermore DM, Mushtaq S, Ge Y, Warner M. 2009. Activity of cephalosporin CXA-101 (FR264205) against *Pseudomonas aeruginosa* and *Burkholderia cepacia* group strains and isolates. Int J Antimicrob Agents 34:402–406. https://doi.org/10.1016/j.ijantimicag.2009.03.021.
- Zhanel GG, Chung P, Adam H, Zelenitsky S, Denisuik A, Schweizer F, Lagace-Wiens PR, Rubinstein E, Gin AS, Walkty A, Hoban DJ, Lynch JP, III, Karlowsky JA. 2014. Ceftolozane/tazobactam: a novel cephalosporin/ beta-lactamase inhibitor combination with activity against multidrugresistant gram-negative bacilli. Drugs 74:31–51. https://doi.org/10.1007/ s40265-013-0168-2.
- van Duin D, Bonomo RA. 2016. Ceftazidime/avibactam and ceftolozane/ tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis 63:234–241. https://doi.org/10.1093/cid/ ciw243.
- Wright H, Bonomo RA, Paterson DL. 2017. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect 23:704–712. https://doi.org/10.1016/j.cmi .2017.09.001.
- Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. 2017. Antimicrobial effects of beta-lactams on imipenem-resistant ceftazidime-susceptible *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 61:e00054-17. https://doi.org/10.1128/AAC.00054-17.
- Morata L, Cobos-Trigueros N, Martinez JA, Soriano A, Almela M, Marco F, Sterzik H, Nunez R, Hernandez C, Mensa J. 2012. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of *Pseudomonas aeruginosa* bacteremia. Antimicrob Agents Chemother 56:4833–4837. https://doi.org/10.1128/AAC.00750-12.
- Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. 2005. *Pseudomonas aeruginosa* bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 49:1306–1311. https://doi.org/10.1128/AAC.49.4.1306-1311.2005.
- Rafailidis PI, Falagas ME. 2014. Options for treating carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis 27:479–483. https://doi.org/10 .1097/QCO.00000000000109.
- Choi IS, Lee YJ, Wi YM, Kwan BS, Jung KH, Hong WP, Kim JM. 2016. Predictors of mortality in patients with extensively drug-resistant *Acinetobacter baumannii* pneumonia receiving colistin therapy. Int J Antimicrob Agents 48:175–180. https://doi.org/10.1016/j.ijantimicag.2016.05.011.
- Walkty A, Karlowsky JA, Adam H, Baxter M, Lagace-Wiens P, Hoban DJ, Zhanel GG. 2013. In vitro activity of ceftolozane-tazobactam against *Pseudomonas aeruginosa* isolates obtained from patients in Canadian hospitals in the CANWARD study, 2007 to 2012. Antimicrob Agents Chemother 57:5707–5709. https://doi.org/10.1128/AAC.01404-13.

- Sader HS, Farrell DJ, Flamm RK, Jones RN. 2014. Ceftolozane/tazobactam activity tested against aerobic Gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012). J Infect 69:266–277. https://doi.org/10.1016/j.jinf .2014.04.004.
- Farrell DJ, Sader HS, Flamm RK, Jones RN. 2014. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 43:533–539. https://doi.org/10.1016/j.ijantimicag .2014.01.032.
- Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, Tuohy M, Hall G, Bonomo RA. 2015. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 59:1020–1029. https://doi.org/10.1128/ AAC.04238-14.
- Cabot G, Bruchmann S, Mulet X, Zamorano L, Moya B, Juan C, Haussler S, Oliver A. 2014. *Pseudomonas aeruginosa* ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother 58:3091–3099. https://doi.org/10.1128/AAC.02462-13.
- Berrazeg M, Jeannot K, Ntsogo Enguene VY, Broutin I, Loeffert S, Fournier D, Plesiat P. 2015. Mutations in beta-lactamase AmpC increase resistance of *Pseudomonas aeruginosa* isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother 59:6248–6255. https://doi.org/10 .1128/AAC.00825-15.
- Castanheira M, Mills JC, Farrell DJ, Jones RN. 2014. Mutation-driven beta-lactam resistance mechanisms among contemporary ceftazidimenonsusceptible *Pseudomonas aeruginosa* isolates from U.S. hospitals. Antimicrob Agents Chemother 58:6844–6850. https://doi.org/10.1128/ AAC.03681-14.
- Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Durand-Reville TF, Lahiri S, Thresher J, Livchak S, Gao N, Palmer T, Walkup GK, Fisher SL. 2013. Kinetics of avibactam inhibition against class A, C, and D betalactamases. J Biol Chem 288:27960–27971. https://doi.org/10.1074/jbc .M113.485979.
- Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL. 2012. Avibactam is a covalent, reversible, non-beta-lactam betalactamase inhibitor. Proc Natl Acad Sci U S A 109:11663–11668. https:// doi.org/10.1073/pnas.1205073109.
- Burgess DS, Hall RG, II. 2004. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing *Klebsiella pneumoniae*. Diagn Microbiol Infect Dis 49:41–46. https://doi.org/10.1016/j.diagmicrobio.2003.11.007.
- Robin F, Krebs M, Delmas J, Gibold L, Mirande C, Bonnet R. 2011. In vitro efficiency of the piperacillin/tazobactam combination against inhibitorresistant TEM- and complex mutant TEM-producing clinical strains of *Escherichia coli*. J Antimicrob Chemother 66:1052–1056. https://doi.org/ 10.1093/jac/dkr045.
- Livermore DM. 1987. Radiolabelling of penicillin-binding proteins (PBPs) in intact *Pseudomonas aeruginosa* cells: consequences of beta-lactamase activity by PBP-5. J Antimicrob Chemother 19:733–742. https://doi.org/ 10.1093/jac/19.6.733.
- Hayes MV, Orr DC. 1983. Mode of action of ceftazidime: affinity for the penicillin-binding proteins of *Escherichia coli* K12, *Pseudomonas aeruginosa* and *Staphylococcus aureus*. J Antimicrob Chemother 12:119–126. https://doi.org/10.1093/jac/12.2.119.
- Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant *Pseudomonas aeruginosa*: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. https://doi.org/10.1128/CMR.00040-09.
- Vasoo S, Cunningham SA, Kohner PC, Simner PJ, Mandrekar JN, Lolans K, Hayden MK, Patel R. 2013. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol 51:3097–3101. https://doi.org/10.1128/JCM.00965-13.
- Clinical and Laboratory Standards Institute. 2017. Performance standards for antimicrobial susceptibility testing: 27th informational supplement.

CLSI document M100-S27. Clinical and Laboratory Standards Institute, Wayne, PA.

37. Cabot G, Ocampo-Sosa AA, Tubau F, Macia MD, Rodriguez C, Moya B, Zamorano L, Suarez C, Pena C, Martinez-Martinez L, Oliver A. 2011. Overexpression of AmpC and efflux pumps in *Pseudomonas aeruginosa* isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob Agents Chemother 55:1906–1911. https://doi.org/10.1128/AAC.01645-10.

 Clinical and Laboratory Standards Institute. 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—10th ed. CLSI document M07-A10. Clinical and Laboratory Standards Institute, Wayne, PA.