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An integrated computational and experimental
study uncovers FUT9 as a metabolic driver of
colorectal cancer
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Abstract

Metabolic alterations play an important role in cancer and yet,
few metabolic cancer driver genes are known. Here we perform a
combined genomic and metabolic modeling analysis searching for
metabolic drivers of colorectal cancer. Our analysis predicts FUT9,
which catalyzes the biosynthesis of Ley glycolipids, as a driver of
advanced-stage colon cancer. Experimental testing reveals FUT9’s
complex dual role; while its knockdown enhances proliferation and
migration in monolayers, it suppresses colon cancer cells expan-
sion in tumorspheres and inhibits tumor development in a mouse
xenograft models. These results suggest that FUT9’s inhibition may
attenuate tumor-initiating cells (TICs) that are known to dominate
tumorspheres and early tumor growth, but promote bulk tumor
cells. In agreement, we find that FUT9 silencing decreases the
expression of the colorectal cancer TIC marker CD44 and the level
of the OCT4 transcription factor, which is known to support cancer
stemness. Beyond its current application, this work presents a
novel genomic and metabolic modeling computational approach
that can facilitate the systematic discovery of metabolic driver
genes in other types of cancer.
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Introduction

The initiation and development of cancer is known to be associated

with major metabolic alterations (Hanahan & Weinberg, 2011; Ward

& Thompson, 2012), leading to the recognition of transformed meta-

bolism as one of the cancer hallmarks (Hanahan & Weinberg,

2011). Several metabolic abnormalities are quite general, including

a shift in glucose metabolism from oxidative phosphorylation to

aerobic glycolysis termed the Warburg effect, which is accompanied

by lactate production and increased glucose uptake (Hsu & Sabatini,

2008). Other metabolic alterations are more tumor specific; different

tumors differ in their dependence on glutamine (Son et al, 2013),

serine (Possemato et al, 2011), or TCA cycle function (Selak et al,

2005; Dang et al, 2010). Yet, only few metabolic genes are presently

known to be directly implicated in tumorigenesis. Those include

mutations/loss of the genes encoding succinate dehydrogenase

(SDH) complex subunits, which may cause paraganglioma (Frezza

et al, 2011), the inactivation and loss of fumarate hydratase (FH),

playing a casual role in hereditary leiomyomatosis and renal cell

cancer (HLRCC) (Kiuru et al, 2002), and mutations in IDH1 and

IDH2, which can lead to low-grade gliomas and acute myeloid

leukemia (AML) (Parsons et al, 2008; Dang et al, 2009; Mardis et al,

2009; Sciacovelli et al, 2016; Sykes et al, 2016). Overall, there is still

much more to learn about the causal role of metabolic genes in

cancer.

Here we take a genome-wide computational approach to identify

metabolic genes that may cause a tumorigenic transformation. We

focus on colorectal cancer, which is initiated by a polyp that grows

from the mucosa and becomes cancerous at some point. To this end,

we performed a two-step computational analysis, which is based first

on a molecular analysis of patient tumors followed by a genome-scale
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metabolic modeling (GSMM) analysis in the second step. A genome-

scale metabolic model (GSMM) is a computer program built around a

set of reactions that comprise a metabolic network, accompanied by

a mapping of genes and proteins to the reactions they catalyze within

the network (Orth et al, 2010). GSMM of human metabolism has

become feasible in recent years thanks to the publication of the first

full-fledged genome-scale human metabolic models [Recon1 (Duarte

et al, 2007; Ma et al, 2007)]. In addition to a network of more than

3000 metabolic reactions, Recon1 contains Boolean mappings of

approximately 1,500 metabolic genes through their encoded enzymes

to these reactions, sub-cellular compartmentalization of processes

and pathways, and manually curated reaction stoichiometry and

membrane transporters. A key critical merit of GSMM modeling is

that it does not require the explication of detailed enzymatic kinetic

information (which is yet unknown on a network scale) as it

describes the metabolic state of cells at steady state. GSMM enables

the integration of omics data collected at specific conditions to

provide a genome-wide view of their corresponding metabolism, that

is, the prediction of the likely metabolic fluxes across the network,

including uptake and secretion rates, cell proliferation, and more.

GSMMs can also be used to predict the phenotypic effects of genetic

and environmental perturbations on the cell’s flux distribution and

viability. Such modeling studies have been employed in recent years

to describe human metabolism (Duarte et al, 2007) in general and in

cancer (Folger et al, 2011; Agren et al, 2012, 2014; Nam et al, 2014;

Yizhak et al, 2014).

Our analysis identifies the FUT9 gene, encoding alpha-(1,3)-fuco-

syltransferase, as the top predicted metabolic tumor suppressor in

colorectal cancer. Our subsequent experimental study of FUT9 func-

tion indicates that it plays a more complex, dual role in this malig-

nancy; its expression in TICs favors tumor initiation, while

subsequent colorectal cancer progression via the mass of colon

cancer bulk tumors is supported by its downregulation.

Results

An integrated genomic modeling analysis predicts a causal
complex role of FUT9 in driving colon cancer

We developed a two-step computational approach to predict meta-

bolic tumor suppressors, that is, genes whose downregulation

promotes cancer. Applied to study colon cancer, the first step

employs a straightforward genomic analysis of the Cancer Genome

Atlas (TCGA) database (Beroukhim et al, 2010; Barretina et al,

2012) to identify metabolic genes that are downregulated in colorec-

tal cancer (Fig 1A). Subsequently, we performed a novel metabolic

modeling analysis to identify, among the genes identified as associ-

ated with tumorigenesis in the first step, those whose downregula-

tion is indeed most likely to result in the metabolic alterations

observed in colorectal tumors and thus are more likely to play an

actual causal role in the transformation of normal to cancerous

tissues (Fig 1B). A detailed overview of each step follows.

Genomic identification of 34 candidate metabolic tumor suppressor

genes in colorectal cancer

This step consists of three sub-steps that are applied sequentially,

analyzing gene expression, copy number (CN), and survival data

from 272 colorectal cancer samples and 42 matching healthy colon

tissues samples in the TCGA (Beroukhim et al, 2010; Barretina et al,

2012): (i) First, analyzing the transcriptomic data of these samples,

we identified 4593 genes that are significantly downregulated in

colon cancer (one-sided Wilcoxon rank-sum test with multiple

hypothesis correction (a = 0.001), Table EV1). (ii) Second, 328 of

these downregulated genes have significantly lower copy number in

the tumors compared to the healthy samples (Q-values < 0.25,

Table EV2). (iii) Finally, a Kaplan–Meier survival analysis further

narrowed down this list to 177 candidate tumor suppressors whose

downregulation is negatively correlated with patient survival (and

thus, likely to enhance tumor progression; see Materials and Meth-

ods, Fig 1A and Table EV3). Reassuringly, the resulting list includes

several known colon tumor suppressors such as APC (Fearnhead

et al, 2001; Aoki & Taketo, 2007), TCF7L2 (Hazra et al, 2008;

Slattery et al, 2008), MCC (Kinzler et al, 1991), PTEN (Nassif et al,

2004; Song et al, 2012), and SMAD4 (Miyaki et al, 1999; Alazzouzi

et al, 2005). It also includes 34 metabolic genes that are present in

the human metabolic model (Table EV4), and which we further

studied in the next modeling step.

A GSMM analysis points to FUT9 as the top predicted metabolic tumor

suppressor gene in colorectal cancer

To predict metabolic genes whose downregulation may play a

causal role in colorectal cancer, we utilized a GSMM analysis

approach termed the Metabolic Transformation Algorithm (MTA)

(Yizhak et al, 2013). This algorithm was previously developed and

used to successfully identify life-extending metabolic genes in yeast

(Yizhak et al, 2013) and is employed here for the first time to search

for metabolic tumor suppressors in cancer. MTA is a generic algo-

rithm that aims to identify metabolic gene knockouts that are

capable of driving a transformation from a given metabolic state to

another, defined target state. The inputs to MTA are the pertaining

transcriptomic measurements of these two given and targets states.

Its output is a ranked list of metabolic genes whose inactivation has

the potential to induce the transformation from the given to the

target states (Materials and Methods) (Yizhak et al, 2013). In our

case, the given metabolic state is the healthy, non-malignant state,

and the target state is the cancerous one, and correspondingly, the

inputs to the algorithm are a set of gene expression data from

matched healthy and tumor colon samples.

While the original publication of MTA has mainly focused on its

testing and validation in a known collection of gene knockouts in

microorganisms, it already showed that MTA correctly identifies

fumarate hydratase as a gene whose knockdown may cause the

metabolic transformations observed in HLRCC (Kiuru et al, 2002;

King et al, 2006). We now tested and validated that MTA success-

fully identifies the knockdown of succinate dehydrogenase (SDH) as

a likely cause of the metabolic alterations observed in hereditary

paraganglioma (Frezza et al, 2011). To further test the ability of

MTA to identify the genes that were knocked down in mammalian

screens from the pertaining transcriptomic data, we further mined

the literature to assemble a collection of 19 datasets of metabolic

genes for which we found mouse or human gene expression data

before and after the knockdown of each of these genes (Appendix,

Table EV5). For each of these knockdowns, we gave MTA these

transcriptomic data as inputs and applied it to predict the most

likely genes whose knockdowns may account for the transcriptomic
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changes observed in these experiments. MTA correctly predicted the

experimentally knocked down genes in 13 of the 19 cases studied in

the top 20% of the predictions (binomial P-value = 5.8266e-06, and

its performance remains robust at multiple threshold setting,

Appendix), validating MTA’s predictive ability in mammalian

tissues (Table EV5).

We then turned to apply MTA to identify metabolic genes that,

when downregulated, can transform a healthy tissue to a cancerous

one. We analyzed three independent transcriptomic datasets includ-

ing 27 paired healthy/tumor samples from TCGA, 17 paired healthy/

tumor samples from Khamas et al(Khamas et al, 2012), and 32

paired healthy/adenoma samples from Sabates-Bellver et al (2007).

In the first step, we ran an MTA analysis on each pair of matched

healthy and tumor gene expression samples, yielding a ranked list of

genes according to their oncogenic transformation scores (OTS)

(Materials and Methods). OTS scores denote the likelihood that a

gene knockout in the healthy cells can transform their metabolic

state to a cancerous one. Following that, in a second step, an aggre-

gate OTS was assigned to each metabolic gene by considering its

scores across all samples and then, in a third step we aggregated the

OTS scores of each gene across all three datasets analyzed. We addi-

tionally analyzed colon polyp data from Sabates-Bellver et al (2007),

which includes 32 matched healthy and polyp samples. These data

enabled us to perform two complementary MTA analyses, one

predicting metabolic genes whose knockdown may cause the trans-

formation to the polyp state, and one predicting metabolic genes
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Figure 1. Two-step pipeline for predicting metabolic tumor suppressors.

A Genomic analysis of three types of data yields an initial list of potential tumor suppressors.
B GSMM-based approach of the potential tumor suppressors identifies metabolic genes whose knockdown may play a causal role in tumorigenesis.
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whose inactivation may cause a further malignant transformation

into colon cancer (Materials and Methods, Table EV4).

The distribution of the resulting OTS scores of the 34 metabolic

genes examined via these MTA analyses is presented in Table 1.

While all 34 genes present genomic patterns that associate them

with a tumorigenic state (using expression, copy number, and

survival data), only few are predicted by MTA to causally transform

the metabolic healthy state to that of a cancerous one. As evident,

only the knockdown of PTEN and FUT9 is predicted to transform

the metabolic state of healthy cells as well as that of adenoma cells

to that of colorectal tumors with high OTS scores (Materials and

Methods). FUT9 is the most highly scored gene and is also strongly

supported by the earlier genomic analysis: Its expression is strongly

downregulated in colon cancer (Rank-sum P-value = 1e-22, Fig 2A),

it is significantly deleted in colon cancer while not in other cancer

types (Q-value = 0.0356, Fig 2B), its low expression is associated

with poor survival in colon cancer (Kaplan–Meier (KM)

ΔAUC = �0.1206, Fig 2C) (Table 1) [The resulting KM log-rank

Table 1. 34 candidate metabolic tumor suppressor genes in colorectal cancer.

Gene
Σ healthy ? cancer
OTS score

Healthy ? adenoma
OTS score

Adenoma ? cancer
OTS score

Differential
expression P-value CN Q-value KM DAUC

FUT9 8.54 3.02 2.99 5.06E-24 0.0356 �0.120669976

AKR7A2 6.91 4.55 0.06 2.15E-14 3.46E-05 �0.198482955

CAT 5.78 0 0 5.76E-19 0.215 �0.124211074

PTEN 4.91 0.09 2.67 2.08E-19 0.00494 �0.009581467

PIK3CD 4.3 0 0.2 1.79E-11 0.00205 �0.048812134

FUCA1 4.07 0 0 1.27E-23 3.46E-05 �0.114652506

PLCE1 3.47 1.3 0 3.33E-23 0.0458 �0.104694133

STS 2.86 0 0.1 1.49E-08 0.0136 �0.080255382

SDHB 2.81 2.4 0 3.72E-16 3.46E-05 �0.106186688

MAN1C1 2.6 0 0.2 9.61E-12 3.78E-05 �0.023167238

MTHFR 2.14 0.21 0 2.06E-14 0.00205 �0.162335156

PIGN 2.1 0 0 1.41E-09 0.187 �0.029340173

FH 2.03 1.73 1.2 3.27E-11 1.24E-68 �0.033206093

PLA2G2D 1.66 0.9 0 3.48E-09 0.000147 �0.010922122

SLC18A2 1.48 0 0.73 3.27E-15 0.19 �0.095652366

LIPC 1.22 0.9 0 1.26E-19 0.215 �0.005134395

CYP2C18 1.2 1.64 0 1.43E-12 0.09 �0.048710276

HMGCL 1.2 1.09 0 1.40E-20 3.46E-05 �0.118954367

ACADS 1.11 2.4 0.12 2.73E-24 0.102 �0.065005732

PANK4 1.02 2.11 1.2 8.29E-13 0.0341 �0.044198756

COX6B2 0.82 0.76 0.1 1.88E-11 0.0397 �0.024199841

PDE4D 0.8 2 0 1.01E-17 0.00629 �0.076789143

ECHS1 0.71 1.2 0 5.59E-12 0.172 �0.054802279

INPP5A 0.32 3 0 2.59E-22 0.0599 �0.031649119

ITPKA 0.2 1.01 0.8 2.28E-18 0.172 �0.077477859

SLC25A4 0.2 0.2 0 4.23E-12 0.00872 �0.227357666

HS3ST5 0.11 0 0 1.28E-09 0.0676 �0.03426555

FECH 0 1.53 0 4.80E-17 0.227 �0.102888235

ME2 0 1.88 0 6.93E-17 0.0273 �0.083078298

NADK 0 0.96 0.01 2.27E-14 0.0815 �0.172031059

NDUFB8 0 1.5 0 2.10E-11 0.234 �0.023126419

NMNAT1 0 0.98 0 8.38E-19 0.0062 �0.124354125

PAFAH2 0 0.1 0 3.67E-21 3.47E-05 �0.021012791

PC 0 2.76 0 1.44E-16 0.0341 �0.214743894

For each metabolic predicted tumor suppressor, the table displays: (i) the OTS scores for the three transformations, and genomic properties (ii) differential
expression P-value, (iii) copy number (CN) deletion Q-value (P-value that has been adjusted for the false discovery rate), and (iv) Kaplan–Meier survival DAUC.
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Figure 2. Tumorigenic attributes of FUT9.

A A boxplot describing the expression of FUT9 in tumor vs. healthy colon tissues.
B Q-value for CN of FUT9 in 12 different cancer types, the dashed line represents a significance threshold of 0.25.
C Kaplan–Meier survival curve for FUT9 expression (top and bottom 0.5 quartiles).
D The TCA cycle and its associated enzymes that are increased in stage 4 colorectal cancer (red), predicted to increase following FUT9 KD (yellow) and increase

following FUT9 KD experimentally (green).
E Boxplot showing the distribution of biomass production, glucose consumption, lactate production, and oxygen consumption in adenoma state when FUT9 is knocked

down (KD) and overexpressed (OE).
F Boxplot showing the distribution of biomass production, glucose consumption, lactate production, and oxygen consumption in cancer state when FUT9 is knocked

down (KD) and overexpressed (OE).
G Boxplots sowing the MOMA scores obtained by the knockdown of FUT9 in stages 1–4.
H Upper panel: Colorectal adenoma–carcinoma sequence. Middle panel: the emerging role of FUT9 in colorectal tumor progression. Lower panel: Correlation heat map

of FUT9 copy number (CN) and early- and late-stage prognostic markers of colorectal cancer.

Data information: (A, E–G) On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The P-values are for one-sided Wilcoxon rank-sum test.
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P-value is 0.1942, likely due to the small sample size of patients

expressing FUT9 (only ~15% of patients.)]. Interestingly though,

while MTA highly scores FUT9 for all three transformations, FUT9

is not significantly downregulated at early-stage colon adenomas

using paired gene expression of healthy/adenoma samples from

Sabates-Bellver et al (2007) (Paired Student’s t-test, P-value = 0.47,

Appendix Fig S1). This suggests that its inactivation may play a

significant role only at later stages of colon cancer progression.

Bearing this observation in mind, we set to study the role of FUT9

further, first computationally and then experimentally.

GSMM analysis of the metabolic implications of

FUT9 inactivation

FUT9 belongs to the glycosyltransferase family and catalyzes the

last step in the biosynthesis of Ley glycolipids in the carbohydrate

antigen Lex (Nishihara et al, 2003; Gouveia et al, 2012). This reac-

tion takes place in the Golgi compartment, and the product is

transported to the cytosol and secreted out from the cell (Duarte

et al, 2007). The Ley glycolipid was previously reported to inhibit

the procoagulant activity and metastasis of human adenocarcinoma

(Nudelman et al, 1986; Suzuki et al, 1997; Inufusa et al, 2001).

The loss of FUT9 in the metabolic model prevents Ley glycolipid

formation and secretion. To chart the network-wide metabolic

alterations induced by FUT9 inactivation, we performed a Mini-

mization Of Metabolic Adjustment (MOMA) (Segrè et al, 2002)

analysis to predict the metabolic state after FUT9 KD in late-stage

colorectal cancers, simulated by the Gene Inactivity Moderated by

Metabolism and Expression (GIMME) algorithm (Becker & Palsson,

2008) (Materials and Methods). This pinpoints reactions whose

flux is predicted to be most afflicted by FUT9 inactivation in

advanced-stage cancer. We found that the loss of FUT9 in late-

stage colorectal cancers is predicted to cause an increase in the

flux of 25 reactions, and a decrease in the flux of six reactions

(Table EV6). The flux is predicted to increase in reactions associ-

ated with glucose metabolism, and particularly TCA cycle (hyper-

geometric P-value = 1.3676e-09, Fig 2D, Table EV6). We find that

the expression of metabolic genes associated with reactions

predicted to increase following FUT9 loss is significantly upregu-

lated in stage 4 vs. stage 3 colon tumors when compared by their

expression in TCGA data (hyper-geometric P-value = 0.0046,

Table EV6). Experimental evaluation of these predictions using the

Human Glucose Metabolism, RT² ProfilerTM PCR Array revealed a

good correlation with our computational prediction (Fig 2D). In

particular, 12 genes, including FH and SDHD, proved to be upregu-

lated in FUT9-silenced cells as expected from our computational

analyses (Appendix Fig S2).

To evaluate the effect of FUT9 knockdown (KD) and overexpres-

sion (OE) on biomass production, glucose consumption, lactate

production, and oxygen consumption in the benign colon adenoma

state, we (i) simulated the wild-type metabolic state associated with

colon adenoma. This was done by incorporating adenoma gene

expression data from Sabates-Bellver et al (2007) using the GIMME

algorithm. (ii) We then sampled 100 flux distributions in the result-

ing predicted adenoma wild-type state. In each such sample, we

applied the MOMA (Segrè et al, 2002) algorithm to predict the meta-

bolic state after FUT9 KD and OE in adenoma, summing up the

results overall 100 samples (Materials and Methods). We find that

the biomass production predicted is significantly higher under FUT9

OE than its KD, as well as lactate secretion rate (Wilcoxon rank-sum

P-value = 0.0081 and 0.0173, respectively, Fig 2E). While oxygen

consumption rate is significantly higher under FUT9 KD (Wilcoxon

rank-sum P-value = 6.79e-8, Fig 2E). These predictions imply that

FUT9 activity is required for supporting cancer proliferation in the

adenoma state, which are consistent with the genomic findings we

reported above that, while FUT9 expression is strongly downregu-

lated in colon cancer, it is not significantly downregulated at early-

stage colon adenomas.

We next evaluated the metabolic effects of FUT KD and OE in the

colon tumor state. To this end, we performed a similar analysis as

described above for adenoma, while first inferring the likely meta-

bolic state of colon tumors (Materials and Methods). Strikingly, we

find that the predicted biomass production in the cancerous state is

significantly higher under FUT9 KD than its OE (Wilcoxon rank-sum

P-value = 0.0245, Fig 2F) and that lactate production rate is also

increased under FUT9 KD (Wilcoxon rank-sum P-value = 0.0859,

Fig 2F), opposite to the observed in simulated colon adenoma state.

These predictions imply that the loss of FUT9, while hampering the

growth of adenomas, is required for the proliferation of colon

▸Figure 3. Knockdown of FUT9 expression increases aggressiveness of colon cancer cells.

A HCT116 and DLD1 control and FUT9 knockdown cells were seeded evenly in 96-well plates, and the number of viable cells after 72 h was analyzed using Resazurin
absorbance reading. The graph represents the mean � s.e. from three independent replicates normalized to the control cells. Six wells per replicate were analyzed.

B The same cells from (A) were seeded in soft agar and cultured for 28 days. The number of colonies formed was quantified relative to the control cells. The
mean � s.e. from two independent replicates are represented.

C The fold change in gene expression for the FUT9 knockdown and FUT9-overexpressing cells were analyzed using RT–qPCR. The graphs represent the mean � s.e.
fold change from three independent replicates.

D, E HCT116 and DLD1 FUT9 knockdown (D) or FUT9-overexpressing (E) cells were seeded at very low densities in a 24-well dish and cultured for 10 days. The number
of colonies formed in each well was counted. The graph represents the mean � s.e. of two independent replicates. Three wells were analyzed per replicate.
Representative images of one well for each condition are shown.

F HCT116 control and FUT9 knockdown cells were each seeded to form a confluent monolayer. A scratch was made in each monolayer and the width of the scratch
monitored by imaging the same areas of each scratch (2 per scratch) at the time of scratching (0 h) and 24, 48, and 72 h later. The graph depicts the mean � s.d.
of two independent experiments and represents the percentage of scratch open at each time point relative to the 0-h point. For optimal presentation, individual
scratch images are shown at different brightness and contrast settings. Scale bar: 400 lM.

G The wound-healing assay was performed with HCT116 control and FUT9-overexpressing cells and analyzed as in (F). The graph summarizes the mean � s.d. of
two independent experiments and represents a percentage of scratch open at each time point relative to the 0-h point. For optimal presentation, individual
scratch images are shown at different brightness and contrast settings. Scale bar: 400 lM.

Data information: *P < 0.05, Student’s t-test.

Molecular Systems Biology 13: 956 | 2017 ª 2017 The Authors

Molecular Systems Biology FUT9 is a metabolic driver of colorectal cancer Noam Auslander et al

6



A B

Time after scratch  
0 h 24 h 48 h 72 h 

C
on

tro
l 

Fu
t9

 
kn

oc
kd

ow
n 

F

Time after scratch  

Co
nt

ro
l 

Fu
t9

 
ov

er
ex

pr
es

sio
n 

0 h 24 h 48 h 

G

72 h 

HCT116 DLD1 

C
on

tro
l 

Fu
t9

 
kn

oc
kd

ow
n 

D
HCT116 DLD1 

C
on

tro
l 

FU
T9

 
ov

er
ex

pr
es

si
on

 

E

0

0.5

1

1.5

2

2.5

3

N
u

m
b

e
r o

f v
ia

b
le

 c
e

lls
re

la
tiv

e
 to

 c
o

n
tr

o
l FUT9 knockdown 1

FUT9 knockdown 2
*

*

*

*

0

0.5

1

1.5

2

2.5

3

HCT116 DLD1

N
um

be
r o

f c
o l

on
i e

s  
f o

rm
e d

 
re

la
tiv

e 
to

 c
o n

tro
l

Control
FUT9 knockdown 1
FUT9 knockdown 2

*
*

*

*

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
o

ld
 c

h
a

n
g

e
 in

 g
e

n
e

 
e

xp
re

s
s

io
n

Control
FUT9 knockdown 1
FUT9 knockdown 2

0

2

4

6

8

10

12

14

16

18
Control
FUT9 overexpression

0

0.5

1

1.5

2

2.5

3

3.5

4

HCT116 DLD1

N
u

m
b

e
r o

f c
o

lo
n

ie
s

 fo
rm

e
d

 
re

la
tiv

e
 to

 c
o

n
tr

o
l

Control
FUT9 knockdown 1
FUT9 knockdown 2*

*

*

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

HCT116 DLD1

N
u

m
b

e
r o

f c
o

lo
n

ie
s

 fo
r m

e
d

 
re

la
t iv

e
 to

 c
o

n
tr

o
l

Control

FUT9 overexpression
* *

0

10

20

30

40

50

60

70

24 48 72

Control
FUT9 knockdown

Pe
rce

nt 
o f 

s c
r a

t ch
 op

en

Hours after scratch

*

*

*

F
o

ld
 c

h
a

n
g

e
 i n

 g
e

n
e

 
e

xp
re

s
s

io
n

HCT116 DLD1

HCT116 DLD1 HCT116 DLD1

Control

0

10

20

30

40

50

60

70

80

90

24 48 72

Pe
rce

nt 
of 

sc
r a

tch
 op

en

Hours after scratch

Control
FUT9 overexpression

*

*

*

Figure 3.

ª 2017 The Authors Molecular Systems Biology 13: 956 | 2017

Noam Auslander et al FUT9 is a metabolic driver of colorectal cancer Molecular Systems Biology

7



tumors, while its overexpression significantly reduces proliferation

in that state.

Given the opposite predicted effects of KD perturbation in colon

adenomas vs. tumors, we performed an additional GSMM analysis

to study whether FUT9 inactivation at early colorectal cancer stages

can induce the metabolic state observed at advanced tumors, or only

its inactivation at late stages can induce this transformation. To this

end, we first inferred the likely metabolic state of advanced colorec-

tal tumors using the GIMME algorithm (Becker & Palsson, 2008), as

done above in the adenoma analysis. We then predicted the likely

metabolic states after the loss if FUT9 in each of the four different

stages of colorectal cancer progression, asking how similar is the

metabolic state induced after the loss of FUT9 in each of these stages

to the advanced, late cancerous state. The metabolic state after the

KD of FUT9 in each stage-specific context was predicted using the

MOMA algorithm (Segrè et al, 2002) (Materials and Methods). This

analysis revealed that the loss of FUT9 at early stages does not bring

the metabolic state close to that observed in advanced cancer.

Rather, for the FUT9 loss to cause such an effect, it has to occur in

later stages of the disease (Fig 2G). This indicates that FUT9 down-

regulation is a tumor-transformative event only if occurs at later

stages of tumor progression. To study this further from a genomic

perspective, we analyzed the correlation between FUT9 copy

number and the copy number levels of known early and late genetic

markers of colorectal cancer. We find that FUT9 expression levels

negatively correlate with the loss of the early markers APC and MCC

(Spearman q = �0.1726 and �0.1707, P-value < 0.05, respectively),

while it is positively correlated with the loss of TP53, a marker of

the advanced stage (Fearon, 1992; Lurje et al, 2007) (Spearman

q = 0.1759, P-value < 0.05, Fig 2H).

An experimental study of the predicted effects of FUT9 on
driving colon cancer

FUT9 knockdown increases colon cancer cells proliferation

and migration

To test the prediction that FUT9 downregulation supports colon

cancer aggressiveness, we silenced its expression using shRNA-

based knockdowns in two colorectal cancer cell lines, HCT116 and

DLD1 that express FUT9 (Fig 3C). Knockdown and control cells were

seeded at equal numbers, allowed to propagate under normal condi-

tions, and the abundance of viable cells was assessed by Resazurin

staining. These experiments revealed that the knockdown of FUT9 in

both cell lines significantly increases their expansion compared to

matching non-targeting shRNA controls (Fig 3A). In agreement,

FUT9 silencing also enhanced anchorage-independent growth in soft

agar (Mori et al, 2009) (Fig 3B). Moreover, the loss of FUT9

augmented the ability of cancer cells to form colonies in monolayers,

when cells were seeded at very low densities (Fig 3D). To further

assess the specificity of our observations, we constitutively overex-

pressed FUT9 under the CMV promoter (Fig 3C). Consistent with the

effect of FUT9 silencing, FUT9 overexpression suppressed the colony

formation capacity of both HCT116 and DLD1 cells (Fig 3E). The

aggressiveness of tumor cells not only depends on their ability to

proliferate, but also on their ability to migrate and invade surround-

ing tissues. To determine the effect of FUT9 on migration of colorec-

tal cancer cells, we performed wound-healing assays (Liang et al,

2007). These experiments show that FUT9 knockdown enhances cell

migration (Fig 3F), while FUT9 overexpression produces the oppo-

site response (Fig 3G). Interestingly, changes in glycosylation

pattern are known to modulate cell migration, cell–cell adhesion, cell

signaling, growth, and metastasis (Hakomori, 1996; Fuster & Esko,

2005; de Freitas Junior & Morgado-Dı́az, 2016). As FUT9 belongs to

the glycosyltransferase family, to gain mechanistic insight we next

investigated how loss of FUT9 may enhance cell migration. We used

an RT2 Profiler human glycosylation PCR array (Qiagen, 330231

PAHS-046ZA) to examine the changes in the expression pattern of

glycosylation-related genes in FUT9 knockdown cells when

compared to control cells (Appendix Fig S3). Interestingly, we found

downregulation of the glucosidase II alpha subunit GANAB (fold

change = �11.28) and Core2/Core4 beta-1,6-N-acetylglucosaminyl-

transferase GCNT3 (fold change = �3.55) (Appendix Fig S3A).

Downregulation of both these genes has been previously shown to

lead to enhanced cell migration and invasion, resulting in aggressive

cancers, consistent with our results showing FUT9 knockdown leads

to increased colony formation and cell migration (Fig 3D and F)

(Huang et al, 2006; Chiu et al, 2011). Previous studies in colorectal

cancer have shown that higher levels of core 1 glycans, T antigen,

and Tn antigen are the most predominantly observed O-glycosyla-

tion changes (Holst et al, 2015). Consistent with this, loss of FUT9

showed an upregulation of the N-acetylgalactosaminyl transferases,

GALNT8 (fold change = 11.80), GALNT13 (fold change = 4.21), and

GALNT12 (fold change = 1.94) (Appendix Fig S3B). These three

enzymes catalyze the formation of the Tn antigen by transferring

▸Figure 4. Expression of FUT9 supports tumor development.

A HCT116 FUT9 knockdown and matching control cells were seeded in ultra-low attachment plates and cultured for 1 week. The resulting tumorspheres were
collected, dissociated, and the total number of cells counted. The graph represents the mean � s.e. of two independent replicates normalized to the number of
control cells. Each replicate represented tumorsphere cells collected from 24 independent wells. Representative images are shown. Scale bar, 1,000 lm.

B FUT9-overexpressing and control cells were cultured as tumorspheres and analyzed as in (A). Two independent replicates and representative pictures are depicted. The
graph represents the mean � s.e. of two independent replicates normalized to the number of control cells. Representative images are shown. Scale bar, 1,000 lm.

C CD44 expression in FUT9 knockdowns (in red) and shRFP control (in blue) in HCT116 cells was assessed using anti-CD44 and flow cytometry, and representative
histograms were overlayed (second panel). Isotype controls were also plotted and overlayed (first panel). Median fluorescent intensity (MFI) values derived from the
software are plotted as bar chart. The graph represents the mean � s.e. of two independent replicates.

D HCT116 FUT9 knockdown or control cells were injected subcutaneously into the right flank of NOD/SCID mice and monitored for tumor formation. Each tumor was
measured using calipers, and the mean volume for the FUT9 knockdown and control tumors was graphed (first panel). The graph represents two independent
experiments with a minimum of 11 mice analyzed per experimental condition. Mean tumor volumes � s.d. are shown. Upon experiment termination, tumors were
extracted, weighed, and the mean tumor weights � s.d. are shown in the second panel.

E A schematic showing the abundance of FUT9-positive cells over the course of colon cancer development.

Data information: *P < 0.05, Student’s t-test.
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N-acetylgalactosamine to a serine or threonine residue of a polypep-

tide (Freire & Osinaga, 2003). In fact, these N-acetylgalactosaminyl

transferases were also found to be highly expressed in different

tumors (Milde-Langosch, 2015; Nogimori et al, 2016). Similarly, we

found the beta-1,3-N-acetylglucosaminyltransferase B3GNT8 to be

upregulated (fold change = 3.46), in FUT9 knockdown cells, consis-

tent with previous reports in colon cancer (Ishida et al, 2005). Over-

all, these observations are in line with our experimental data and

computational predictions that FUT9 inactivation plays a tumori-

genic role at later stages, which mostly require invasive and migra-

tory activity.

FUT9 activity benefits colorectal cancer tumor-initiating cells

Our genomic analysis revealed that, while FUT9 is strongly down-

regulated at later stages of colon cancer development, it is still

present in colon polyps and early adenoma (Appendix Fig S1),

indicating that FUT9 activity may be required at the initial stages

of tumor initiation. Thus, while FUT9 downregulation benefits the

bulk of tumor cells as shown above, its activity may support the

subpopulation of cancer stem cells or tumor-initiating cells (TICs)

that play a central role in tumor development. To study this

hypothesis, HCT116 with FUT9 knockdown and matching control

cells were cultured as tumorspheres, which are predominantly

formed by TICs (Chan et al, 2016; Liu et al, 2016; Rybicka &

Król, 2016; Qureshi-Baig et al, 2017). Consistent with our expecta-

tions, FUT9 knockdown reduced expansion of HCT116 cells in

tumorspheres, while FUT9 overexpression produced enhanced

proliferation of tumorsphere-forming cells (Fig 4A and B). On a

molecular level, this was accompanied by the reduced expression

of OCT4 transcription factor in FUT9-silenced cells (Appendix Fig

S4). Since OCT4 has been shown to support TIC formation

(Levings et al, 2009; Chiou et al, 2010), this observation provides

a mechanistic explanation for FUT9 effect in supporting TIC activ-

ity. These results show that, in contrast to the anti-proliferative

effects of FUT9 activity in the bulk of colon cancer cells (Fig 3A–

D), FUT9 activity may actually be required for the efficient expan-

sion of TIC populations. This was further confirmed by flow

cytometry analysis, showing that FUT9 silencing decreases the

expression of a prominent colorectal cancer TIC marker CD44

(Dalerba et al, 2007; Qureshi-Baig et al, 2017) in HCT116 cells

(Fig 4C).

Testing FUT9 activity in a mouse model

Since TIC cells are essential for tumor initiation, tumor mainte-

nance, and tumor growth (Cheng & O’Neill, 2009; Ricci-Vitiani et al,

2009; Grinshtein et al, 2011; Beck & Blanpain, 2013; Bansal et al,

2016; Zhang et al, 2016), increased TIC activity is expected to accel-

erate tumor growth in vivo (Grinshtein et al, 2011; Beck & Blanpain,

2013; Bansal et al, 2016). To test the effect of FUT9 on this process,

we generated a xenograft model of colorectal cancer in immune-

deficient NOD/SCID gamma mice. HCT116 cells with silenced FUT9

expression or control cells transduced with non-targeting shRNA

were injected subcutaneously in equal numbers into the flank of the

immunodeficient mice, and the growth of the resulting tumors was

monitored. In agreement with its inhibitory effect in tumorspheres,

FUT9 silencing also significantly reduced growth of xenograft

tumors (Fig 4D). This may reflect the dual functionality of FUT9

where it supports tumor development by enhancing TIC activity

(Fig 4E), while inhibiting the expansion of the bulk of tumor cells

(Fig 3).

Discussion

We present a novel approach for identifying metabolic tumor

suppressors that leads to the discovery of the complex, multi-faceted

role of FUT9 in colon cancer. On the methodological side, we show

here that a metabolic modeling MTA analysis can successfully iden-

tify metabolic genes that play a causal role in cancer initiation and

progression from an initial list of genes that are formed via a stan-

dard genome-wide analysis. Such an analysis may be thus

performed to further identify causal metabolic cancer genes given

any list of candidate cancer drivers emerging from a genomic analy-

sis, in other cancer types.

The role of FUT9 in colorectal cancer appears to be rather

complex. Our results indicate that FUT9 activity promotes the

expansion of TICs, while its downregulation supports expansion

and aggressiveness of bulk of tumor cells. TICs represent a higher

proportion of the overall cell population in a tumor at earlier

stages of tumor development. At later stages however, TICs are

gradually outgrown by the rest of the tumor cells (Fig 4E), but they

are still required for efficient tumor growth and maintenance

(Cheng & O’Neill, 2009; Ricci-Vitiani et al, 2009; Grinshtein et al,

2011; Beck & Blanpain, 2013; Bansal et al, 2016; Zhang et al,

2016). Since our experimental data suggest that FUT9 provides an

advantage for TIC populations, while its reduced activity benefits

other tumor cells, its relative abundance should be expected to

gradually drop with tumor progression, mirroring a decrease in the

proportional representation of TICs. Notably, in accordance with

that, we found that FUT9 expression is maintained in earlier

tumors: colorectal polyps and colorectal adenoma at the levels

observed in healthy colon tissue (studied in paired, matched

samples; Appendix Fig S1), while FUT9 levels progressively

decrease from the M0 to M1 stages (Appendix Fig S5). Reduced

FUT9 expression at the M1 metastatic stage also matches our

observations, suggesting that FUT9 downregulation enhances

migration of colorectal cancer cells. This further supports a notion

that as tumors develop, FUT9 activity is switched off in the bulk of

tumor cells to enhance their aggressiveness, which should nega-

tively affect patient survival. In agreement, our computational

analysis showed a positive correlation between FUT9 expression

and survival of colorectal cancer patients.

This study is focused on the identification of tumor suppressor

genes, as simulating a gene’s knockdown in the metabolic model is

very well defined, while simulating the over-expression of genes is

more complex and challenging. Thus, developing an MTA approach

to identify causal metabolic oncogenes whose overexpression is

transforming the metabolic state remains an open challenge. Cancer

evolution usually involves a sequence of genetic and environmental

events; indeed, while our computational analysis points to the

central role that FUT9 plays in generating a tumorigenic metabolic

state in colon cancer, we find that its role depends on the overall

genomic context, such as the cell types in which it occurs and the

staging of the tumors. In agreement, our experimental data reveal

that, while FUT9 activity enhances OCT4 expression and is essential

for the formation of tumor-initiating cells, it also shows that FUT9
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downregulation enhances the invasive behavior of bulk colon cancer

cells, which hence contributes at later stages following tumor initia-

tion. Hence, our results should be viewed bearing this reservation in

mind.

Overall, our findings support a dual role for FUT9 in colorectal

cancer. They suggest that it may act in this malignancy in a

manner similar to the reported actions of the EphB2 receptor, a

known hallmark of colorectal cancer TICs (Merlos-Suárez et al,

2011) that is also downregulated to allow colorectal cancer tumor

progression (Cortina et al, 2007). Our description of this complex

action of FUT9 identifies an entirely new player in colorectal

cancer and adds another intriguing member to the rather short list

of metabolic genes that have been shown to play a critical role in

tumor biology.

Materials and Methods

Kaplan–Meyer survival analysis of potential tumor suppressors

For each gene found to be significantly lowly expressed and deleted

through gene expression and copy number data, we applied

Kaplan–Meyer survival analysis to examine the association of its

downregulation with poor patient survival. We use TCGA COAD

survival and gene expression data and separate the expression of

each gene to “high” and “low” bins by its median level. We calcu-

late the ΔAUC resulting from the two Kaplan–Meyer curves and

select only genes with ΔAUC < 0 indicating that their low expres-

sion is associated with poor survival.

A constraint-based model of metabolism

A metabolic network consisting of m metabolites and n reactions

can be represented by a stoichiometric matrix S, where the entry Sij
represents the stoichiometric coefficient of metabolite i in reaction j.

A constraint-based model (CBM) imposes mass balance, directional-

ity, and flux capacity constraints on the space of possible fluxes in

the metabolic network’s reactions through a set of linear equations

S � v ¼ 0 (1)

vmin � v� vmax (2)

Where v is the flux vector for all reactions in the model (i.e., the

flux distribution). The exchange of metabolites with the environ-

ment is represented as a set of exchange (transport) reactions,

enabling a pre-defined set of metabolites to be either taken up or

secreted from the growth media. The steady-state assumption repre-

sented in Equation (1) constrains the production rate of each

metabolite to be equal to its consumption rate. Enzymatic direction-

ality and flux capacity constraints define lower and upper bounds

on the fluxes and are embedded in Equation (2). In the following,

flux vectors satisfying these conditions will be referred to as feasible

steady-state flux distributions. Gene knockdowns are simulated by

constraining the flux through the corresponding metabolic reaction

to zero. Similarly, environmental perturbations are simulated by

constraining the flux through the associated exchange reaction to

zero.

For each of the dataset analyzed here, we simulated the same

media that was used in the experiment (DMEM). For modeling

human metabolism, we have used Recon1 (Duarte et al, 2007).

Metabolic transformation algorithm (MTA)

MTA receives as input the gene expression measurement of two

distinct metabolic states, termed source and target states. Next the

algorithm executes the following steps: (i) determine the flux distri-

bution that corresponds to the source state using integration Meta-

bolic Analysis Tool (iMAT); (ii) identify the set of genes whose

expression has significantly elevated or reduced between the source

and targets states, and the set of genes whose expression remained

relatively constant between the states. Next, the algorithm searches

for perturbations that can alter the fluxes of the changed reactions

in the observed direction, while keeping the fluxes of the unchanged

reaction as close as possible to their predicted source state. Finally,

MTA outputs a ranked list of candidate perturbations according to

their ability to transform from the source to the target metabolic

state.

The transformation score

Relying on the optimization value obtained by MTA to rank the

transformations induced by different perturbations is sub-optimal,

since the integer-based scoring of the changed reactions is coarse-

grained and does not distinguish between solutions achieving large

flux alterations and those obtaining flux changes barely crossing the

e threshold. Therefore, we chose to quantify the success of a trans-

formation by a scoring function based on the resulting flux distribu-

tions rather than on the optimization objective values themselves.

First, we denote the resulting flux distribution obtained in a given

MIQP solution (for a given reaction knockout) as vres. Second, reac-

tions found in RF and RB are classified into two groups Rsuccess and

Runsuccess, denoting whether they achieved a change in flux rate in

the required direction (forward or backward) or not. The following

scoring function is then used to assess the global change achieved

by the employed perturbation:

P
i2Rsuccess

abs vrefi � vresi

� �h i
� P

i2Runsuccess

abs vrefi � vresi

� �h i

P
i2RS

abs vrefi � vresi

� � (3)

The numerator of this function is the sum over the absolute

change in flux rate for all reactions in Rsuccess, minus a similar sum

for reactions in Runsuccess. The denominator is then the correspond-

ing sum over reactions in RS (the reactions which should stay

untransformed). Following, perturbations achieving the highest

scores under this definition are the ones most likely to perform a

successful transformation by both maximizing the change in flux

rate for significantly changed reactions, and minimizing the corre-

sponding change in flux of unchanged reactions. Using an alterna-

tive scoring function based on the Euclidean distance instead of

absolute values yielded similar results.

While we believe that the TS score (Equation (3)) is the right

one to pursue from a biological point of view, optimizing it

directly is a very difficult mathematical task. To accomplish that

one would need to develop a novel optimization algorithm for
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solving a mixed non-linear programming problem, whose objec-

tive function is non-smooth and non-differentiable, requiring non-

smooth optimization tools. Attempting such a solution directly

would greatly complicate the problem as one would need to add

many variables and constraints. Furthermore, the specific form of

this ratio is actually dependent on the solution itself (as it evalu-

ates Rsuccess and Runsuccess separately) making the entire task infea-

sible. In light of these evident difficulties, we have chosen to take

a two-step approach in this study that is sub-optimal but yet tract-

able. While the wild-type solution always achieves maximal values

in terms of the original proxy objective function used in step 3 (by

definition), it does not necessarily achieve high transformation

scores (step 4). This is because the wild-type solution is the least

constrained, and hence, most of the solutions found in step 3 can

be satisfied by achieving only a minimal epsilon change. Those

are obviously non-optimal from a biological standpoint as they do

not really come close to the desired objective, and hence, their TS

score (in step 4) is sub-optimal in many of the cases, correctly

ruling them out as biologically viable solutions. MTA analysis is

established upon learning the regulatory effects of the knockdown

of metabolic genes via the direct stoichiometric flux coupling of

the reactions they encode to other reactions in the human meta-

bolic network (which are inherently embedded in the reactions

stoichiometric matrix it includes).

Aggregated oncogenic transformation scores (OTS)

MTA scores each reaction according to the extent of which its

knockout is predicted to cause the observed transformation from

normal to cancer. For each reaction i (RXNi), we define the aggre-

gated OTS score by:

OTSðRXNiÞ ¼
X

j 2matchedpaires

Iij � 1� P Iij ¼ 1
� �� �

Where Iij is one when reaction i was scores higher than random

(MTA score when no perturbation is simulated) and zero otherwise.

P Iij ¼ 1
� �

is a reaction’s probability to be scored higher than random

in matched pair j (which is the number of perturbation that are

scored higher then no perturbation in pair j). Thus, paired samples

in which fewer reactions received a significant score are more heav-

ily weighted.

Reaction-to-gene mapping of OTS

OTS is assigned to each reaction in the metabolic model. Each meta-

bolic gene is assigned the highest score assigned to one of its associ-

ated reactions, using the reaction-to-gene mapping defined by the

Recon1 metabolic model.

Colon polyp and colon tumor gene expression normalization

To apply MTA from polyp to tumor, we applied quantile normaliza-

tion to the 1,496 metabolic genes present in Recon1 metabolic

model. We used 27 colon samples from TCGA that were used for

the paired-MTA analysis and 32 colon adenoma sample when the

reference distribution is the mean expression of these 1,496 meta-

bolic genes across all 272 colon tumors in TCGA.

Utilizing MOMA and GIMME algorithms to predict the pathway-
level effect of FUT9 inactivation in late-stage colon cancer

To investigate FUT9 role in tumorigenesis in the metabolic model,

we set to discover which metabolic flux alterations are induced by

the loss of FUT9 in late-stage colon cancer. To this end, we

utilized the GIMME algorithm to simulate metabolic flux of stage 3

colon tumors. To evaluate FUT9 effect on metabolic fluxes at that

stage, we then utilize the MOMA algorithm and sample 100 flux

distributions with and without FUT9 knockdown. For each reac-

tion, we compare the MOMA sampled flux distributions with and

without FUT9 KD using one-sided Wilcoxon rank-sum test. We

define the set of reactions that are increased following FUT9

knockdown as reactions whose sampled flux is increased when

FUT9 knockdown is simulated vs. WT (Wilcoxon rank-sum

P-value < 0.05) and the set of reactions that are decreased follow-

ing FUT9 knockdown as reactions whose sampled flux is

decreased when FUT9 knockdown is simulated vs. WT (Wilcoxon

rank-sum P-value < 0.05).

Utilizing the MOMA algorithm to evaluate the effect of FUT9
knockdown and over-expression on biomass production, glucose
consumption, lactate production, and oxygen consumption

To predict the effect of FUT9 levels on biomass production, glucose

consumption, lactate production, and oxygen consumption, we

utilized the GIMME algorithm to simulate metabolic flux of (i) colon

adenoma state using the 32 adenoma samples from Sabates-Bellver

et al (2007) (ii) Colon cancer state using 268 cancerous samples

from the TCGA. For each of the adenoma and cancer predicted flux

distributions, we sampled 100 flux distributions for FUT9 KD and

another 100 for FUT9 OE (defined by setting the lower bound of

FUT9-associated reactions to 80% of their maximum), using MOMA

algorithm, aiming to minimize the metabolic adjustments after

FUT9 perturbations, from the initial adenoma or cancerous meta-

bolic state. In both cases, we set the lower bound of the biomass

reaction to be at least 80% of its optimal rate to simulate proliferat-

ing cells and restrict variability in the resulting fluxes.

Utilizing MOMA algorithm to predict stage-specific context in
which the loss of FUT9 is tumorigenic

To predict the context in which the loss of FUT9 drives the onco-

genic transformation, we used colorectal cancer gene expression

measurements from the TCGA database. For each sample, we

predict a flux distribution using the GIMME algorithm (Becker &

Palsson, 2008) (the mean flux distribution over 100 sample points

was used) and the metabolic model in which FUT9 is knocked

down. We then predict a flux distribution typical for stage 4 samples

(using the GIMME algorithm (Becker & Palsson, 2008), and genes

are considered downregulated with FDR corrected P-value < 0.05,

compared to all other stages). Then, we compute the MOMA score

obtained when aiming to minimize the metabolic adjustment from

each sample to the metabolic state predicted for stage 4 samples.

Finally, we compare the MOMA score distributions obtained for

samples in each of the stages (1–4), describing for each such sample

the extent to which the KO of FUT9 is predicted to bring the meta-

bolic flux distribution closer to that of stage 4. A similar analysis
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was repeated when using iMAT instead of GIMME to predict flux

distributions, yielding similar results (Appendix Fig S6).

Cell lines and transfections

HCT116 and DLD1 colon cancer cell lines were selected based on

expression data for FUT9. Both cell lines were cultured in McCoy’s

5A medium supplemented with (Fisher Scientific, SH3020001) 10%

(v/v) FBS (Life Technologies, 12483020), 100 units/ml penicillin-

streptomycin solution (Thermo Scientific, SV30010) at 37°C with

5% CO2. HEK293T cells were used to generate lentivirus and

cultured in DMEM (Fisher Scientific, SH3024301) containing 10%

(v/v) FBS and 100 units/ml penicillin-streptomycin at 37°C with

5% CO2. Cells were passaged using 0.25% trypsin–EDTA at 70%

confluency.

Transfections were done using X-tremeGENE 9 (Roche,

6365809001) as per the manufacturer’s instructions. Lentivirus was

generated by transfecting HEK293T cells cultured in 100-mm dishes

with psPAX2, pMD2.6, and pLKO.1-shRNA or pLX304 expression

plasmids. Media was replaced after 24 h with DMEM containing 2%

(w/v) bovine serum albumin (BSA) (Fisher Scientific, BP9703100)

and lentivirus was harvested after 24 and 48 h and pooled.

To generate the FUT9 knockdown cells, HCT116 and DLD1 cells

were transduced with lentivirus containing shRNA sequences speci-

fic to FUT9. Two shRNA sequences for FUT9 were used, which were

transduced separately or, in subsequent experiments, pooled and

transduced together. An shRNA sequence specific to RFP (Sigma)

was used as a non-targeting control. For each transduction, 0.5 ml

of each shRNA lentivirus was added to 2 × 105 cells in a 35 mm

dish in a final volume of 3 ml with 8 lg/ml of polybrene (Sigma,

107689). Twenty-four hours after transduction, the media was

removed and replaced with media containing 2 lg/ml puromycin

(Fisher Scientific, BP2956100) for selection. Cells were selected for a

minimum of 48 h before use in experiments. Knockdown cells were

passaged a maximum of five times. The FUT9-overexpressing cells

were generated by transducing HCT116 cells with lentivirus contain-

ing pLX304-FUT9 (DNA SU, HsCD00444887) using the same trans-

duction method as above. After transduction, cells were selected

using 4 lg/ml of blasticidin (VWR, 89149-988) for 14 days. Cells

were maintained with 1 lg/ml of blasticidin.

Quantitative real-time PCR (RT–qPCR) analysis

RNA was isolated from cell pellets using RNeasy mini kit (Qiagen,

74104) according to the manufacturer’s instructions including

DNase treatment (Qiagen, 79254). RNA quantification was

performed using a NanoDrop 2000c spectrophotometer (Thermo

Scientific) and RNA integrity was verified spectrophotometrically by

A260/A280 ratios between 1.8 to 2.0 and A260/A230 ratios greater

than 1.7. Equal quantities of RNA were used to generate cDNA using

the RT2 First Strand Kit (Qiagen, 330401) according to the manufac-

turer’s instructions.

FUT9 expression levels were evaluated using TaqMan real-time

PCR gene expression assay (Life Technologies, 4369016 and

4331182, assay ID: Hs00276003_m1). The fold change in gene

expression was analyzed using the ΔΔCT method. Human Glycosyla-

tion-related gene expression was evaluated using RT2 Profiler

human glycosylation PCR array (Qiagen, 330231 PAHS-046ZA)

according to the manufacturer’s instructions. Data analysis was

performed using the ΔΔCT method as described in the manufac-

turer’s web portal (SABiosciences).

Cell viability assay

Equal numbers of Fut9 knockdown and control cells were seeded

in 96 well plates (5 × 103 cells per well). After 72 h, the abun-

dance of viable cells was analyzed using Resazurin (Fisher Scien-

tific, AR002). Resazurin was added to each well at a concentration

of 10% (v/v) and the plates were incubated at 37°C and read

using SpectraMax M5 microplate reader (VWR) after 1, 2, 3, and

4 h. An increased number of viable cells reflect increased cell

expansion.

Growth on soft agar

The ability of FUT9 knockdown and control cells to grow in low-

anchorage conditions was determined by seeding cells in a soft agar

medium. Cells were trypsinized and 2.5 × 104 cells suspended in

0.35% agar-media supplemented with 10% (v/v) FBS and 4% (v/v)

minimum essential medium vitamin solution (Life Technologies,

11120052) and layered on a 0.6% agar-media bottom layer in 6 well

plates. Cells were allowed to grow for 28 days and colonies were

imaged using an EVOS FL Cell Imaging System microscope at 40×

magnification (Life Technologies) and the density of colonies was

quantified using ImageJ software.

Colony formation assay

The ability of individual cells to form colonies was shown by seed-

ing a low density of cells (50–200 cells per well) in a 24-well culture

plate. After 10 days, the colonies were fixed with 100% cold

methanol for 10 min and stained using 1% crystal violet. The

numbers of visible colonies were counted.

Wound-healing assay

Cells were cultured in 6-well plates and allowed to grow to a conflu-

ent monolayer. A scratch was made in each well by scraping with

100 ll pipette tip across the cell monolayer (time point zero of the

experiment). Wells were rinsed with PBS three times to remove

floating cells. The same areas of each scratch (2 per scratch) were

imaged at the time of scratch (0 h), 24, 48, and 72 h using an EVOS

FL Cell Imaging System microscope at 100× magnification. The

width of scratch in each image was measured using PowerPoint

software.

Tumorsphere culture and tumorsphere-forming cell counts

For tumorsphere culture, 2 × 103 cells from monolayer cultures

were seeded into 96-well Ultra-Low attachment plates (Corning, 07-

200-603) in complete MammoCult medium (Stemcell Technologies,

05620), prepared according to the manufacturer’s instruction. Cells

were cultured for 7 days, tumorspheres in each well were imaged

with an EVOS FL Cell Imaging System microscope. Tumorspheres

were then collected, dissociated, and cells were counted using a

hemocytometer. For each replicate in this experiment, tumorspheres
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from 24 independent wells were collected into a 15 ml tube and

centrifuged at 300 × g for 5 min. Collected tumorspheres were

dissociated into a single cell suspension in 500 ll of pre-warmed

trypsin–EDTA. Cells were washed with tumorsphere culture

medium containing 2% FBS and resuspended in serum-free tumor-

sphere culture medium for cell counting.

Xenograft models

All animal experimental procedures were reviewed and approved

by the University of Saskatchewan Animal Research Ethics Board.

Mice used in the present study were from our established colony of

NOD SCID gamma mice at the Laboratory Animal Services Unit

(LASU), University of Saskatchewan. Mice were maintained at the

LASU during the course of the experiments. Control shRFP and

shFUT9 knockdown HCT116 cells were trypsinized and resus-

pended in ice-cold PBS. Cells were mixed 1:1 with Matrigel (Corn-

ing, CB-40234) and 3 × 106 cells in a total volume of 100 ll and
injected subcutaneously into the left flank of 6- to 8-week-old

immunodeficient NOD/SCID gamma mice. At least five mice that

developed tumors were used in our analysis for each experimental

condition in each biological replicate. One of the mice in the control

group was excluded from the analysis of the last two time points

due to lethality. Tumors were measured every 3–4 days using a

digital caliper, and the tumor volume was calculated using the

tumor ellipsoid formula A/2*B2 where A and B represent the long

and the short diameter of the tumor, respectively. Upon experiment

termination, tumors were extracted, fixed in 10% formalin, and

weighed.

FACS analysis

Cells were harvested and washed 3 times with ice-cold PBS contain-

ing 0.25% FBS. Cells were incubated with FITC-conjugated mouse-

anti-human CD44 antibody (BD, 555478) or FITC-conjugated mouse

IgG2b antibody (BD, 555742) for 30 min at 4°C in the dark. Cells

were then washed thrice with PBS, run through a Beckman Coulter

CytoFLEX flow cytometer at 488 nm, and analyzed using CytExpert

V1.2 software.

Data availability

The MTA codes and the GSMM reconstruction are available as

Code EV1. The codes and data structures for running MTA from

healthy to cancer and from healthy to adenoma are available as

Codes EV2 and EV3, respectively. The codes and data structures

for generating genomic properties of FUT9 figures are available as

Code EV4.

Expanded View for this article is available online.

Acknowledgement
The authors thank Erez Persi, Welles Robinson, Allon Wagner, and Yonatan

Saadon for their comments on the manuscript and helpful discussion.

Author contributions
NA and ER conceived and designed the research. FJV and AF designed the

experimental procedure. NA performed the computational analysis and

statistical computations. CEC, BMT, EJM, FSV, SP, TF, and KKB performed the

experiments. KY and NG helped with the computational analysis. NA, AF, FJV,

and ER wrote the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J

(2012) Reconstruction of genome-scale active metabolic networks for 69

human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:

e1002518

Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J (2014)

Identification of anticancer drugs for hepatocellular carcinoma through

personalized genome-scale metabolic modeling. Mol Syst Biol 10: 721

Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Järvinen H, Mecklin JP,

Hemminki A, Schwartz S, Aaltonen LA, Arango D (2005) SMAD4 as a

prognostic marker in colorectal cancer. Clin Cancer Res 11: 2606 – 2611

Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-

functional tumor suppressor gene. J Cell Sci 120: 3327 – 3335

Bansal N, Bartucci M, Yusuff S, Davis S, Flaherty K, Huselid E, Patrizii M,

Jones D, Cao L, Sydorenko N, Moon Y-C, Zhong H, Medina D, Kerrigan J,

Stein MN, Kim IY, Davis TW, DiPaola RS, Bertino J, Sabaawy HE (2016)

BMI-1 targeting interferes with patient-derived tumor-initiating cell

survival and tumor growth in prostate cancer. Clin Cancer Res 22:

6176 – 6791

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S,

Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L,

Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena

J, Mapa FA et al (2012) The cancer cell line encyclopedia enables

predictive modelling of anticancer drug sensitivity. Nature 483:

603 – 607

Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev

Cancer 13: 727 – 738

Becker SA, Palsson BO (2008) Context-specific metabolic networks are

consistent with experiments. PLoS Comput Biol 4: e1000082

Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J,

Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM,

Ligon AH, Cho Y-J, Haery L, Greulich H, Reich M, Winckler W, Lawrence

MS, Weir BA et al (2010) Supp info: the landscape of somatic copy-

number alteration across human cancers. Nature 463: 899 – 905

Chan TS, Hsu CC, Pai VC, Liao WY, Huang SS, Tan KT, Yen CJ, Hsu SC, Chen

WY, Shan YS, Li CR, Lee MT, Jiang KY, Chu JM, Lien GS, Weaver VM, Tsai

KK (2016) Metronomic chemotherapy prevents therapy-induced stromal

activation and induction of tumor-initiating cells. J Exp Med 213: 1 – 22

Cheng X, O’Neill HC (2009) Oncogenesis and cancer stem cells: current

opinions and future directions. J Cell Mol Med 13: 4377 – 4384

Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen

YS, Lin TW, Hsu HS, Wu CW (2010) Coexpression of Oct4 and Nanog

enhances malignancy in lung adenocarcinoma by inducing cancer stem

cell-like properties and epithelial-mesenchymal transdifferentiation.

Cancer Res 70: 10433 – 10444

Chiu CC, Lin CY, Lee LY, Chen YJ, Lu YC, Wang HM, Liao CT, Chang JTC, Cheng

AJ (2011) Molecular chaperones as a common set of proteins that regulate

the invasion phenotype of head and neck cancer. Clin Cancer Res 17:

4629 – 4641

Molecular Systems Biology 13: 956 | 2017 ª 2017 The Authors

Molecular Systems Biology FUT9 is a metabolic driver of colorectal cancer Noam Auslander et al

14

https://doi.org/10.15252/msb.20177739


Cortina C, Palomo-Ponce S, Iglesias M, Fernández-Masip JL, Vivancos A,

Whissell G, Humà M, Peiró N, Gallego L, Jonkheer S, Davy A, Lloreta J, Sancho

E, Batlle E (2007) EphB–ephrin-B interactions suppress colorectal cancer

progression by compartmentalizing tumor cells. Nat Genet 39: 1376 – 1383

Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, Hoey T, Gurney A,

Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF

(2007) Phenotypic characterization of human colorectal cancer stem cells.

Proc Natl Acad Sci USA 104: 10158 – 10163

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin

VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE,

Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su

SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.

Nature 462: 739 – 744

Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid

leukemia. Trends Mol Med 16: 392 – 397

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson

BØ (2007) Global reconstruction of the human metabolic network based

on genomic and bibliomic data. Proc Natl Acad Sci USA 104: 1777 – 1782

Fearnhead NS, Britton MP, Bodmer WF, Hospital JR, Ox O (2001) The ABC of

APC. Hum Mol Genet 10: 721 – 733

Fearon ER (1992) Genetic alterations underlying colorectal tumorigenesis.

Cancer Surv 12: 119 – 136

Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting

selective drug targets in cancer through metabolic networks. Mol Syst Biol

7: 501

Freire T, Osinaga E (2003) Immunological and biomedical relevance of the Tn

antigen. Immunologia 22: 27 – 38

de Freitas Junior JCM, Morgado-Díaz JA (2016) The role of N-glycans in

colorectal cancer progression: potential biomarkers and therapeutic

applications. Oncotarget 7: 19395 – 19413

Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects

in cancer. J Mol Med 89: 213 – 220

Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel

therapeutic targets. Nat Rev Cancer 5: 526 – 542

Gouveia R, Schaffer L, Papp S, Grammel N, Kandzia S, Head SR, Kleene R,

Schachner M, Conradt HS, Costa J (2012) Expression of glycogenes in

differentiating human NT2N neurons. Downregulation of

fucosyltransferase 9 leads to decreased Lewisx levels and impaired neurite

outgrowth. Biochim Biophys Acta 1820: 2007 – 2019

Grinshtein N, Datti A, Fujitani M, Uehling D, Prakesch M, Isaac M, Irwin MS,

Wrana JL, Al-awar R, Kaplan DR (2011) Small molecule kinase inhibitor

screen identifies polo-like kinase 1 as a target for neuroblastoma tumor-

initiating cells. Cancer Res 71: 1385 – 1395

Hakomori SI (1996) Tumor malignancy defined by aberrant glycosylation and

sphingo(glyco)lipid metabolism. Cancer Res 56: 5309 – 5318

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation.

Cell 144: 646 – 674

Hazra A, Fuchs CS, Chan AT, Giovannucci EL, Hunter DJ (2008) Association of

the TCF7L2 polymorphism with colorectal cancer and adenoma risk.

Cancer Causes Control 19: 975 – 980

Holst S, Wuhrer M, Rombouts Y (2015) Glycosylation characteristics of

colorectal cancer. Adv Cancer Res 126: 203 – 256

Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond.

Cell 134: 703 – 707

Huang M-C, Chen H-Y, Huang H-C, Huang J, Liang J-T, Shen T-L, Lin N-Y, Ho

C-C, Cho I-M, Hsu S-M (2006) C2GnT-M is downregulated in colorectal

cancer and its re-expression causes growth inhibition of colon cancer

cells. Oncogene 25: 3267 – 3276

Inufusa H, Adachi T, Kiyokawa T, Nakatani Y, Wakano T, Nakamura M, Okuno

K, Shiozaki H, Yamamoto S, Suzuki M, Ando O, Kurimoto M, Miyake M,

Yasutomi M (2001) Ley glycolipid-recognizing monoclonal antibody

inhibits procoagulant activity and metastasis of human adenocarcinoma.

Int J Oncol 19: 941 – 946

Ishida H, Togayachi A, Sakai T, Iwai T, Hiruma T, Sato T, Okubo R, Inaba N,

Kudo T, Gotoh M, Shoda J, Tanaka N, Narimatsu H (2005) A novel b1,3-N-

acetylglucosaminyltransferase (b3Gn-T8), which synthesizes poly-N-

acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett

579: 71 – 78

Khamas A, Ishikawa T, Shimokawa K, Mogushi K, Iida S, Ishiguro M, Mizushima

H, Tanaka H, Uetake H, Sugihara K (2012) Screening for epigenetically

masked genes in colorectal cancer using 5-aza-20-deoxycytidine, microarray

and gene expression profile. Cancer Genomics Proteomics 9: 67 – 75

King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate

hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25:

4675 – 4682

Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger

AC, Hamilton SR, Hedge P, Markham A, Carlson M, Joslyn G, Groden J,

White R, Miki Y, Miyoshi Y, Nishisho I, Nakamura Y (1991) Identification of

a gene located at chromosome-5q21 that is mutated in colorectal cancers.

Science 251: 1366 – 1370

Kiuru M, Lehtonen R, Arola J, Salovaara R, Järvinen H, Aittomäki K, Sjöberg J,

Visakorpi T, Knuutila S, Isola J, Delahunt B, Herva R, Launonen V, Karhu A,

Aaltonen LA (2002) Few FH mutations in sporadic counterparts of tumor

types observed in hereditary leiomyomatosis and renal cell cancer

families. Cancer Res 62: 4554 – 4557

Levings PP, McGarry SV, Currie TP, Nickerson DM, McClellan S, Ghivizzani SC,

Steindler DA, Gibbs CP (2009) Expression of an exogenous human Oct-4

promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 69:

5648 – 5655

Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and

inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:

329 – 333

Liu C-C, Lin S-P, Hsu H-S, Yang S-H, Lin C-H, Yang M-H, Hung M-C, Hung S-

C (2016) Suspension survival mediated by PP2A-STAT3-Col XVII determines

tumour initiation and metastasis in cancer stem cells. Nat Commun 7:

11798

Lurje G, Zhang W, Lenz H-J (2007) Molecular prognostic markers in locally

advanced colon cancer. Clin Colorectal Cancer 6: 683 – 690

Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007)

The Edinburgh human metabolic network reconstruction and its

functional analysis. Mol Syst Biol 3: 135

Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC,

Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ,

Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM,

Carmichael L et al (2009) Recurring mutations found by sequencing an

acute myeloid leukemia genome. N Engl J Med 361: 1058 – 1066

Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D,

Sevillano M, Hernando-Momblona X, Da Silva-Diz V, Muñoz P, Clevers H,

Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature

identifies colorectal cancer stem cells and predicts disease relapse. Cell

Stem Cell 8: 511 – 524

Milde-Langosch KS (2015) Relevance of betaGal-betaGalNAc-containing

glycans and the enzymes involved in their synthesis for invasion and

survival in breast cancer patients. Breast Cancer Res Treat 151: 515 – 528

Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M,

Shitara N, Iwama T, Utsunomiya J, Kuroki T, Mori T (1999) Higher

ª 2017 The Authors Molecular Systems Biology 13: 956 | 2017

Noam Auslander et al FUT9 is a metabolic driver of colorectal cancer Molecular Systems Biology

15



frequency of Smad4 gene mutation in human colorectal cancer with

distant metastasis. Oncogene 18: 3098 – 3103

Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M,

Murphy S, Nevins JR (2009) Anchorage-independent cell growth signature

identifies tumors with metastatic potential. Oncogene 28: 2796 – 2805

Nam H, Campodonico M, Bordbar A, Hyduke DR, Kim S, Zielinski DC, Palsson

BO (2014) A systems approach to predict oncometabolites via context-

specific genome-scale metabolic networks. PLoS Comput Biol 10: e1003837

Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C, Jalaludin B,

Segelov E (2004) PTEN mutations are common in sporadic microsatellite

stable colorectal cancer. Oncogene 23: 617 – 628

Nishihara S, Iwasaki H, Nakajima K, Togayachi A, Ikehara Y, Kudo T, Kushi Y,

Furuya A, Shitara K, Narimatsu H (2003) 3-Fucosyltransferase IX (Fut9)

determines Lewis X expression in brain. Glycobiology 13: 445 – 455

Nogimori K, Hori T, Kawaguchi K, Fukui T, Mii S, Nakada H, Matsumoto Y,

Yamauchi Y, Takahashi M, Furukawa K, Tetsuya O, Yokoi K, Hasegawa Y,

Furukawa K (2016) Increased expression levels of ppGalNAc-T13 in lung

cancers: significance in the prognostic diagnosis. Int J Oncol 49: 1369 – 1376

Nudelman E, Levery SB, Kaizu T, Hakomori S (1986) Novel fucolipids of

human adenocarcinoma: characterization of the major Le(y) antigen of

human adenocarcinoma as trifucosylnonaosyl Le(y) glycolipid

(III3FucV3FucVI2FucnLc6). J Biol Chem 261: 11247 – 11253

Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat

Biotechnol 28: 245 – 248

Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, Mankoo P,

Carter H, Siu I-M, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S,

Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J et al

(2008) An integrated genomic analysis of human glioblastoma multiforme.

Science 321: 1807 – 1812

Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K,

Sethumadhavan S, Woo H-K, Jang HG, Jha AK, Chen WW, Barrett FG,

Stransky N, Tsun Z-Y, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina

K, Chan AM et al (2011) Functional genomics reveal that the serine

synthesis pathway is essential in breast cancer. Nature 476: 346 – 350

Qureshi-Baig K, Ullmann P, Haan S, Letellier E (2017) Tumor-Initiating Cells: a

criTICal review of isolation approaches and new challenges in targeting

strategies. Mol Cancer 16: 40

Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R (2009) Colon cancer stem cells. J

Mol Med 87: 1097 – 1104

Rybicka A, Król M (2016) Identification and characterization of cancer stem

cells in canine mammary tumors. Acta Vet Scand 58: 86

Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer

H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV,

Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G

(2007) Transcriptome profile of human colorectal adenomas. Mol Cancer

Res 5: 1263 – 1275

Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E,

Drubbel AV, Theobald SJ, Abbo SR, Tran MGB, Rajeeve V, Cardaci S, Foster

S, Yun H, Cutillas P, Warren A, Gnanapragasam V, Gottlieb E, Franze K,

Huntly B et al (2016) Fumarate is an epigenetic modifier that elicits

epithelial-to-mesenchymal transition. Nature 537: 544 – 547; Corrigendum:

540: 150

Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and

perturbed metabolic networks. Proc Natl Acad Sci USA 99: 15112 – 15117

Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD,

Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA

cycle dysfunction to oncogenesis by inhibiting HIF-a prolyl hydroxylase.

Cancer Cell 7: 77 – 85

Slattery ML, Folsom AR, Wolff R, Herrick J, Caan BJ, Potter JD (2008)

Transcription factor 7-like 2 polymorphism and colon cancer. Cancer

Epidemiol Biomarkers Prev 17: 978 – 982

Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR,

Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM,

Haigis MC, DePinho RA, Cantley LC, Kimmelman AC (2013) Glutamine

supports pancreatic cancer growth through a KRAS-regulated metabolic

pathway. Nature 496: 101 – 105

Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the

PTEN tumour suppressor. Nat Rev Mol Cell Biol 13: 283 – 296

Suzuki M, Inufusa H, Yamamoto S, Hamada T, Aga M, Ando O, Ohta T,

Yasutomi M, Kurimoto M (1997) Le(y) glycolipid acts as a co-factor for

tumor procoagulant activity. Int J Cancer 73: 903 – 909

Sykes DB, Kfoury YS, Mercier FE, Wawer MJ, Law JM, Haynes MK, Lewis TA,

Schajnovitz A, Jain E, Lee D, Meyer H, Pierce KA, Tolliday NJ, Waller A,

Ferrara SJ, Eheim AL, Stoeckigt D, Maxcy KL, Cobert JM, Bachand J et al

(2016) Inhibition of dihydroorotate dehydrogenase overcomes

differentiation blockade in acute myeloid leukemia. Cell 167: 171 – 186.e15

Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark

even warburg did not anticipate. Cancer Cell 21: 297 – 308

Yizhak K, Gabay O, Cohen H, Ruppin E (2013) Model-based identification of

drug targets that revert disrupted metabolism and its application to

ageing. Nat Commun 4: 2632

Yizhak K, Le Dévédec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C, Schulze

A, van de Water B, Ruppin E (2014) A computational study of the

Warburg effect identifies metabolic targets inhibiting cancer migration.

Mol Syst Biol 10: 744 .

Zhang WC, Chin TM, Yang H, Nga ME, Lunny DP, Lim EKH, Sun LL, Pang YH,

Leow YN, Malusay SRY, Lim PXH, Lee JZ, Tan BJW, Shyh-Chang N, Lim EH,

Lim WT, Tan DSW, Tan EH, Tai BC, Soo RA et al (2016) Tumour-initiating

cell-specific miR-1246 and miR-1290 expression converge to promote

non-small cell lung cancer progression. Nat Commun 7: 11702

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

Molecular Systems Biology 13: 956 | 2017 ª 2017 The Authors

Molecular Systems Biology FUT9 is a metabolic driver of colorectal cancer Noam Auslander et al

16


