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Bidirectional scaling of synaptic transmission, expressed as a
compensatory change in quantal size following chronic activity
perturbation, is a critical effector mechanism underlying homeo-
static plasticity in the brain. An emerging model posits that the
GluA2 AMPA receptor (AMPAR) subunit may be important for the
bidirectional scaling of excitatory transmission; however, whether
this subunit plays an obligatory role in synaptic scaling, and the
identity of the precise domain(s) involved, remain controversial.
We set out to determine the specific AMPAR subunit required for
scaling up in CA1 hippocampal pyramidal neurons, and found that
the GluA2 subunit is both necessary and sufficient. In addition, our
results point to a critical role for a single amino acid within the
membrane-proximal region of the GluA2 cytoplasmic tail, and
suggest a distinct model for the regulation of AMPAR trafficking in
synaptic homeostasis.
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In the vertebrate CNS, AMPA receptors (AMPARs) mediate
the majority of fast excitatory synaptic transmission, and while

these receptors are formed as tetrameric combinations of four
subunits (GluA1–4), each subunit is differentially expressed over
development and throughout the brain, and obeys distinct traf-
ficking patterns during both basal activity and plasticity (1, 2).
Numerous studies have explored the putative AMPAR subunit
specificity in acute forms of plasticity, including both long-term
potentiation (LTP) and long-term depression (LTD) (1–4).
However, recent evidence suggests that there is no absolute re-
quirement for a specific AMPAR subunit in supporting LTP (5)
or LTD (6). In contrast, there has been comparatively little ex-
ploration of possible AMPAR subunit requirements in slower,
homeostatic forms of plasticity.
First demonstrated in experiments characterizing the effects of

chronic activity suppression in cultured neurons (7, 8), synaptic
scaling is now an established phenomenon in excitatory neurons, in
which chronic changes in neural activity induce counteracting
changes in postsynaptic neurotransmitter receptor abundance,
contributing to the restoration of baseline neuronal output (9).
Previous studies have implicated the GluA2 AMPAR subunit in
both cell-autonomous and network-wide synaptic scaling in pyra-
midal cells of the visual cortex and hippocampus (10–12; but see
ref. 13). However, other lines of evidence suggest that GluA2-
lacking, calcium-permeable, AMPARs are preferentially traf-
ficked to the synapse during scaling (14–17; but see ref. 10).
Here we set out to find the AMPAR subunit and specific regions

within it required to support scaling up (“scaling” hereinafter). To
achieve this, we used a variety of molecular replacement techniques,
replacing endogenous AMPARs with chimeric AMPAR subunits,
or subunits containing point mutations within identified critical re-
gions. We first explored the requirement for the individual AMPAR
subunits GluA1 and GluA2 in synaptic scaling, as the vast majority
of endogenous AMPARs in CA1 pyramidal neurons are GluA1/
A2 heteromers (18, 19). We found a requirement for GluA2, but
not for GluA1, in scaling of postsynaptic currents in rodent

hippocampal pyramidal neurons in organotypic slice culture, con-
sistent with previous observations from dissociated cultures of cor-
tical neurons (10). In addition, we found that AMPAR subunits
lacking the GluA2 cytoplasmic C-terminal domain (CTD) failed to
support scaling, while both wild-type GluA2 and chimeric subunits
containing the GluA2 CTD were sufficient to support scaling. In
neurons expressing only GluA2(Q) homomers, scaling remained
intact, indicating that GluA2 is sufficient to support scaling. Most
surprisingly, we found no requirement for the distal GluA2 CTD,
despite evidence from previous studies identifying the distal CTD as
important (11). Instead, we identified a specific amino acid se-
quence within the membrane-proximal GluA2 CTD as necessary
and sufficient, and demonstrated that point mutations within the
region disrupt the ability of the GluA2 subunit to support scaling,
suggesting a previously undescribed interaction.

Results
The GluA2 AMPAR Subunit, but Not GluA1, Is Necessary for Homeostatic
Synaptic Scaling Following Chronic Activity Blockade. Previous studies
exploring the need for the GluA2 AMPAR subunit in synaptic
scaling have relied primarily on recording miniature excitatory
postsynaptic currents in dissociated cultures of cortical rodent
neurons. Here we instead turned to organotypic hippocampal slice
cultures, a system that is also pharmacologically accessible but
allows the use of evoked stimulation of CA3 inputs onto CA1
pyramidal neurons, more closely modeling the input that these
cells receive in vivo. Slices were prepared from P6–P8 animals and
biolistically transfected the following day, a technique resulting in
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very sparse transfection, to investigate the effects of cell-autonomous
genetic manipulations (Fig. 1A).
We first set out to verify in slice culture that, as in dissociated

culture, synaptic AMPAR content scales up following chronic si-
lencing with saturating concentrations of tetrodotoxin (TTX; 1 μM).
Using a bipolar electrode, we stimulated Schaffer collateral axons
from CA3 and recorded both synchronous and asynchronous ex-
citatory postsynaptic currents (EPSCs and aEPSCs, respectively) in
CA1 pyramidal neurons. The aEPSC recordings were made in the
presence of 4 mM extracellular strontium, which resulted in
desynchronization of vesicle release from the presynaptic terminal,
allowing for analysis of discrete aEPSCs (Fig. 1B, asterisks). For
asynchronous recordings, a train of three stimuli spaced 500 ms apart
was used to elicit aEPSCs, and following each stimulus artifact, a
50-ms period containing a synchronous component of the EPSC was
not analyzed (Fig. 1B, Left, gray bars following stimulation artifacts).
As expected, aEPSCs scaled up by ∼40% in wild-type neurons

following chronic activity blockade (Fig. 1B, Right). It has been
reported that GluA2-lacking receptors, which generate strongly
inwardly rectifying currents, are recruited to the synapse fol-
lowing scaling (14–17; but see ref. 10); however, the rectification
index (RI) of evoked synaptic AMPAR currents was unaltered
following protracted (>72 h) TTX exposure (Fig. 1C). We also
examined the rectification of extrasynaptic AMPAR currents
from somatic outside-out patches (Fig. 1D) by generating IV
curves. Compared with the dramatic rectification seen in GluA2-
lacking cells (broken line in Fig. 1D; data from ref. 18), the
curves from control cells (black line) and cells exposed to TTX

(green line) were very similar, although there was a slight, albeit
significant, decrease in RI (P < 0.01; Fig. 1D).
We then sought to confirm the role for GluA2 in scaling. We

first confirmed the efficacy of our short-hairpin RNA (shRNA)
knockdown of the GluA2 subunit by comparing the RI of evoked
EPSCs from shRNA-transfected cells and neighboring control
cells (20). Expression of the shRNA for 7–9 d resulted in strongly
rectifying EPSCs (Fig. 1E). In all subsequent experiments, we
simultaneously recorded aEPSCs in a transfected neuron and a
neighboring control neuron. By monitoring the control cells, we
could verify the presence of TTX-induced scaling in any given set
of experiments. We show statistical comparisons across treat-
ment conditions to focus on the scaling phenomenon, because
genetic manipulations in this study (such as GluA2 knockdown)
produced baseline effects on aEPSC amplitude, thereby ob-
scuring the utility of a direct paired comparison.
We confirmed the absence of scaling in neurons expressing the

shRNA (Fig. 1 F and I), as the size of the aEPSCs in untrans-
fected cells (clear bars) was increased following TTX treatment,
while the size of aEPSCs recorded from the shRNA-expressing
cells treated with TTX (salmon bar) were no different from those
not treated with TTX (gray bar). The scaling of aEPSC ampli-
tudes was fully restored with cotransfection of an RNAi-resistant
GluA2 (Fig. 1 G and I, with shRNA resistance denoted by an
asterisk appended to the subunit name). In addition, the relative
amplitude of synchronous EPSCs in GluA2-lacking cells com-
pared with neighboring controls was not maintained after
chronic network silencing (Fig. S1), further verifying the re-
quirement for GluA2 in scaling.
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Is the GluA1 AMPAR subunit required for scaling? To test this
possibility, we biolistically transfected an shRNA targeting GluA1
(Fig. S2) and examined the effect of chronic activity blockade with
TTX. The scaling of aEPSCs in GluA1-lacking cells was the same as
that observed in untransfected cells (Fig. 1 H and I). These data
confirm the need for GluA2, but not for GluA1, in scaling of EPSCs.
The finding that scaling is intact in the absence of GluA1 raises
the possibility that GluA2 may be sufficient for this phenomenon.

The GluA2 AMPAR Subunit Is Sufficient for Homeostatic Synaptic
Scaling Following Chronic Activity Blockade. We next asked whether
GluA2 alone is sufficient for synaptic scaling in the absence of
all endogenous AMPARs. To address this question, we used a
molecular replacement strategy with conditional knockout mice
homozygous for floxed GluA1, GluA2, and GluA3 (GRIA1–3fl/fl),
from which we generated slice cultures between postnatal days
6 and 9. We then sparsely transfected Cre recombinase along
with the unedited rectifying GluA2 subunit GluA2(Q) using
biolistic transfection on the day after preparation of cultures
(Fig. 2A). We used GluA2(Q) rather than the GluA2(R), be-
cause neurons expressing only GluA2(R) generate little AMPAR
current (18). This strategy allows for a complete replacement of
endogenous heteromeric AMPARs with GluA2 homomers in
transfected neurons lacking GRIA1–3, confirmed by measuring
the RI (Fig. 2B).
On this null background, GluA2(Q) rescued ∼70% of syn-

chronous EPSC amplitude at −70 mV, relative to neighboring
untransfected cells (Fig. S3 A and B), and cells expressing only
GluA2(Q) exhibited normal scaling (Fig. 2C). These aEPSC data
were supported by synchronous EPSC experiments (Fig. S3 A
and B). In addition, GluA1 replacement on the GRIA1–3fl/fl + Cre
background was unable to support scaling (Fig. 2D). These

results support a model in which GluA2 is not only necessary, but
also sufficient, for the synaptic expression of scaling.

The GluA2 C Tail Is Critical for Homeostatic Synaptic Scaling. Previous
studies have suggested that the GluA2 CTD may be integral for the
scaling pathway. Dialysis of a GluA2 CTD peptide into the cell
blocked scaling (10), presumably by acting in a dominant negative
fashion. Further evidence pointed to a homeostatic mechanism by
which GRIP interacts with the distal GluA2 CTD (11). To clarify
further the role of the GluA2 CTD in scaling, we performed a series
of experiments replacing endogenous GluA2 with GluA1/A2 chi-
meric subunits or with truncated GluA2 CTDs.
In neurons expressing GluA2 shRNA, we rescued synaptic

currents with chimeric, truncated, or mutated RNAi-resistant
AMPAR subunits to assess the role of the GluA2 CTD in scaling.
We first rescued with chimeric AMPAR subunits in which the
CTDs of the GluA1 and GluA2 were swapped (GluA1A2CTD
and GluA2*A1CTD) (Fig. 3 A and B). We confirmed the synaptic
incorporation of the GluA2*A1CTD by the loss of rectification
(Fig. 3F). Despite its targeting to the synapse, this chimera was
unable to rescue scaling, indicating a requirement for the GluA2
CTD (Fig. 3 C and E). The possibility remained that the GluA2
CTD was not sufficient to restore scaling in the absence of the rest
of the GluA2 subunit. However, when we rescued with GluA2
CTD appended to GluA1, scaling was rescued (Fig. 3 D and E),
confirming the key role of the GluA2 CTD in scaling.

The Membrane Proximal Cytoplasmic Tail of the GluA2 Subunit Is
Critical for Homeostatic Synaptic Scaling. What domain of the
CTD of GluA2 is required for scaling? To address this question,
we designed a series of truncations (Fig. 4 A and B). In neurons
expressing a construct in which the entire CTD of GluA2
(GluA2*Δ838, referred to as GluA2*ΔCTD) is deleted, scaling
was absent (Fig. 4 C and F and Fig. S4 A and C). However, this
negative result could be due to a failure of GluA2Δ*CTD to
form functional receptors, or from its inability to traffic to the
synapse. To address this, we quantified the synaptic RI of
evoked EPSCs (Fig. 4G). The fact that rectification was the
same as in control cells indicates that this receptor is functional
and traffics to the synapse. These findings establish the need for
the GuA2 CTD in scaling.
We next reintroduced sections of the GluA2 CTD to the

GluA2*ΔCTD construct, adding back nine amino acids to the
membrane-proximal region (MPR) of the CTD (Fig. 4 A and B).
Surprisingly, this replacement subunit, GluA2*Δ847 (CTD trun-
cated following K847) was able to fully rescue scaling of aEPSCs
(Fig. 4 D and F and Fig. S4 B and C). This result, in which scaling is
rescued with a GluA2 subunit lacking the majority of the CTD,
appears to be at odds with previous studies in which phosphoryla-
tion of distal residues, Y876 or S880, reduced the GRIP1/
GluA2 interaction and blocked scaling (11, 21, 22). Therefore, we
carried out phosphomimetic experiments in which we mutated the
distal serine to glutamate (GluA2*S880E). In our hands, robust
scaling occurred with this mutation (Fig. 4 E and F).

Specific Membrane Proximal Cytoplasmic Residues in the GluA2
AMPAR Subunit Are Necessary for Scaling. After establishing a re-
quirement for the MPR of the GluA2 CTD in scaling, we set out to
determine the role of specific residues. Examination of this region
(Fig. 5 A and B) revealed that the only difference between
GluA2 and GluA1 is the presence of two alanines in GluA2
(A841 and A843) instead of two serines in GluA1 (S816 and S818).
We focused on these residues. In all subsequent experiments, we
quantified the RI of the evoked EPSCs to ensure that all constructs
successfully trafficked to the synapse (Fig. 5H). Mutating the two
GluA2 alanines to “GluA1-like” serines (GluA2*A841S and
A843S) abolished scaling (Fig. 5 C and G). In addition, scaling was
absent when the same mutations were made in the truncated GluA2
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(GluA2*Δ847) (Fig. S5). These results establish the requirement
for either one or both membrane-proximal alanines for scaling.
We next tested the requirement for these two residues in-

dividually. Surprisingly, scaling was restored when endogenous
GluA2 was replaced with GluA2*A841S (Fig. 5 D and G), but not
when replaced with GluA2*A843S (Fig. 5 E and G), indicating a
specific role for A843 of GluA2. If this alanine is critical for scaling,
then we might predict that mutating the equivalent serine in GluA1
(S818) to an alanine would rescue scaling. Indeed, we found that this
construct (GluA2*A1CTD S818A) rescued scaling (Fig. 5 F andG).

Discussion
Homeostatic synaptic scaling, operating at a much slower time scale
than more acute forms of plasticity, such as LTP and LTD, is a
critical mechanism by which the cell tunes the strength of its synaptic
inputs up or down to counteract normal or pathological activity
perturbations, contributing to the restoration of baseline neuronal
output. Even subtle deficits in a neuron’s ability to maintain a set-
point of activity in response to chronic perturbations would result in
catastrophic degradation of salient information. Thus, accurately
characterizing the molecular interactions of downstream effectors—
including the postsynaptic receptors themselves—that drive synaptic

scaling is of critical importance in understanding the mechanism by
which a cell is able to maintain this setpoint of activity.
Using molecular replacement strategies to dissect the role of

specific AMPAR subunits and associated domains, we established
that the GluA2 subunit is both necessary and sufficient for scaling.
In addition, we identify a specific and novel role for the GluA2
CTD. While previous reports have implicated the GluA2 CTD in
homeostasis (10, 11), our results define a critical residue in the
MPR. In contrast to previous studies (11, 21), we could find no
requirement for more distal sequences or specific residues therein.
Perhaps the difference in results is due to the preparation; we used
hippocampal slice culture, while previous studies used dissociated
visual cortical or hippocampal neurons. Finally, we identified a
specific uncharged residue, S843, within the membrane-proximal
CTD of the GluA2 subunit that, when mutated, renders the
GluA2 CTD unable to support scaling. Taken together, these re-
sults reinforce the crucial role of the GluA2 subunit in bidirectional
synaptic scaling, and suggest a novel molecular interaction medi-
ating the phenomenon.
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neighboring neurons transfected with GluA2 shRNA and shRNA-insensitive
AMPAR chimeric subunit GluA2*A1CTD. (D) GluA2 shRNA + shRNA-
insensitive AMPAR chimeric subunit GluA1A2CTD. Treatment conditions are
the same as in C. (E) Summary bar graph indicating unpaired scaling data
under the same transfection conditions. Significance was measured across
treatment conditions. (F) Comparison of synaptic rectification of chimeric
AMPAR GluA2*A1CTD (with pore residue conferring calcium and in-
tracellular polyamine block present) with cells transfected with GluA2 shRNA
for comparison and cells transfected with GluA2 shRNA + full-length shRNA-
insensitive GluA2. (Scale bars for aEPSC sample traces: 5 pA and 20 ms unless
indicated otherwise.) *P < 0.05; ****P < 0.0001; n.s., not significant.
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Previous attempts to establish specific AMPAR subunit con-
tributions to synaptic scaling are confusing. Several studies have
reported evidence of an increase in the relative abundance of
GluA1 homomers after long-term incubation in TTX (14–17; but
see ref. 10), while other reports have found little evidence that
any AMPAR subunit is, alone, necessary for scaling (13). We
attempted to address these discrepancies by protracted in-
cubation (>72 h) of organotypic hippocampal slice cultures with
TTX to assay both synaptic and surface rectification, finding no
change in synaptic rectification and a very small, albeit signifi-
cant, decrease in the rectification of extrasynaptic AMPARs.
These findings make it highly unlikely that GluA2-lacking re-
ceptors play an appreciable role in scaling.
In contrast to previous results suggesting that GluA2-lacking

receptors are critical for scaling, we found that GluA2 is essential
for scaling, reinforcing the GluA2-centric model of synaptic ho-
meostasis supported by evidence from multiple studies. For ex-
ample, GluA2 is required for scaling down following chronic,
cell-autonomous optogenetic excitation (12). In addition, GluA2 is
necessary for distance-dependent scaling of AMPARs along the
dendrite (20). Finally, we previously identified a requirement for
the GluA2 subunit in AMPAR consolidation following loss of
synaptic scaffolding proteins (23). Taken together, these findings lay
the groundwork for a model of bidirectional homeostatic control of
postsynaptic strength through the GluA2 AMPAR subunit.
An intriguing question arises that we were unable to resolve

within the scope of this study: given the otherwise striking sim-
ilarity between the MPR of the GluA1 and GluA2 subunits, how

might the presence of a single nonpolar amino acid (A843)—or
the absence of a polar amino acid—confer such distinct synaptic
trafficking behavior? We speculate that there exists some unique
interaction between an effector protein and the proximal GluA2
CTD that is blocked by a polar serine residue, through either
phosphorylation or steric hindrance.
Intriguingly, few protein interactions have been described within

the MPR of the GluA2 CTD. The MPR of the GluA1 subunit has
been found to interact with 4.1N/Band 4.1, a neuronally enriched
FERM domain cytoskeletal-associated protein from the 4.1 family
of membrane organizers that coordinates synaptic receptors with
the actin cytoskeleton (24, 25). Germ line knockout of both 4.1N
and 4.1G, two closely related members of the 4.1 family, does not
grossly perturb glutamatergic synapses, pointing to a possible
functional redundancy within the family of proteins (26). However,
there is little evidence for any interaction between 4.1N and GluA2.
Several groups have investigated interactions between iGluR sub-
units and 4.1N, with initial evidence pointing toward the GluA1
CTD (27). Subsequent studies identified interactions with GluA4 as
well as the kainate receptor subunits, GluK1 and GluK2 (28, 29),
but an interaction with GluA2 has not been ruled out. Intriguingly,
it was recently found that posttranslational modifications to the
MPR in the CTD of GluK2—a region with some sequence simi-
larity to the AMPARmembrane-proximal CTDs—can dramatically
impact association between these receptor subunits and 4.1N (29).
The palmitoylation of GluK2 within this membrane-proximal se-
quence promotes association with 4.1N, while activation of PKC
and the subsequent phosphorylation of the GluK2 MPR at a serine
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Fig. 5. A specific residue in the membrane-proximal
CTD of the GluA2 AMPAR subunit is necessary for
scaling. (A) Endogenous GluA1 and GluA2 C-tail
amino acid sequences, and GluA2 or chimeric AMPAR
C-tail sequences with point mutations. The shaded-
gray box in the membrane-proximal sequence shows
the region with divergent sequences in the first
14 amino acids of AMPAR C-tails, as well as the lo-
cation of mutations. TM, transmembrane. (B) Sche-
matic diagram of truncated or mutated GluA subunits.
Blue and red indicate GluA2 and GluA1 subunit ori-
gin, respectively. (C) Paired asynchronous recordings
without and with previous chronic TTX treatment in
control neurons and neighboring neurons transfected
with GluA2 shRNA and shRNA-insensitive AMPAR
chimeric subunit GluA2*A841S, A843S. The schematic
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were the same as in C. (E ) GluA2 shRNA + shRNA-
insensitive AMPAR chimeric subunit GluA2*A843S.
Treatment conditions were the same as in C. (F) GluA2
shRNA + shRNA-insensitive AMPAR chimeric subunit
GluA2*A1CTD S818A. Treatment conditions are the
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paired scaling data, under the same transfection con-
ditions. Significance was measured across treatment
conditions. (H) Comparison of synaptic rectification of
mutated GluA2 or chimeric subunits to cells trans-
fected with GluA2 shRNA alone. (Scale bars for aEPSC
sample traces: 5 pA and 20 ms unless indicated oth-
erwise.) *P < 0.05; **P < 0.01; ***P < 0.001; ****P <
0.0001; n.s., not significant.
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residue proximal to a series of positively charged amino acids serves
to decrease the interaction with 4.1N. These posttranslational
modifications of iGluRs (to govern the differential association with
4.1N) control activity-dependent receptor endocytosis, and thus
could provide a mechanism by which AMPAR identity and abun-
dance are regulated in forms of synaptic homeostasis.
Other possible “scaling effector” proteins include the AP2 adapter

complex and NSF, which are known to interact with a specific stretch
of amino acids in the GluA2 CTD (30, 31), but these proteins are
unlikely to play a role in scaling, as a partial truncation of the GluA2
CTD (Δ847) that eliminates these binding sites either in part or in
their entirety does not block scaling. These results could point to-
ward a mechanism by which GluA2 is stabilized at synapses following
chronic silencing through some modification or interaction of resi-
dues in the proximal CTD, thus ensuring that GluA2-containing,
calcium-impermeable AMPARs are preferentially targeted to syn-
apses following global scaling.
Other explanations, while less parsimonious, are nevertheless

possible. For example, phosphorylation of S818 in the membrane-
proximal GluA1 CTDmay serve as a weak synaptic exclusion or ER
retention signal in the absence of a GluA2 subunit. The occupation
of synapses by AMPARs is a tightly-regulated process, and under
basal conditions, preventing excess AMPARs from entering syn-
apses is likely critical for preserving cellular patterns of information
storage. Further experiments are needed to identify the protein or
proteins upstream of synaptic AMPAR insertion that interact with
the membrane-proximal CTD of GluA2.

Methods
Mouse Genetics. Animals were housed according to the guidelines of the
Institutional Animal Care and Use Committee the University of California, San

Francisco. Mice with the GRIA1fl/fl, GRIA2fl/fl, and GRIA3fl/fl (GRIA1–3fl/fl) were
generated and genotyped as described previously (18).

Neuronal Transfection. Sparse biolistic transfections of organotypic slice cul-
tures were performed as described previously (32). In utero electroporations
were performed as described previously (33). Additional details and exper-
imental constructs are provided in SI Methods.

Electrophysiology in Slice Cultures. Dual whole-cell recordings in area CA1 were
done by simultaneously recording responses from a fluorescent transfected
neuron and neighboring untransfected control neuron. Dual whole-cell re-
cordings measuring strontium-evoked aEPSCs used an extracellular solution
bubbled with 95% O2/5% CO2 consisting of 119 NaCl mM, 2.5 mM KCl, 4 mM
SrCl2 (substituted with 4 mM CaCl2 in synchronous EPSC recordings), 4 mM
MgSO4, 1 mM NaH2PO4, 26.2 mM NaHCO3, and 11 mM glucose. One hundred
micromolar picrotoxin was added to block inhibitory currents, and in syn-
chronous EPSC experiments, 2 μM 2-chloroadenosine was used to control ep-
ileptiform activity. Intracellular solution contained 135 mM CsMeSO4, 8 mM
NaCl, 10 mM Hepes, 0.3 mM EGTA, 5 mM QX314-Cl, 4 mM MgATP, 0.3 mM
Na3GTP, and 0.1 mM spermine. The TTX treatment protocol and aEPSC re-
cording protocol and analysis are described in SI Methods. Synaptic and surface
rectification were measured as described in SI Methods.

Statistical Analysis. The Mann–Whitney U test was used for all experiments
involving unpaired data, including all outside-out patch data, and the
Kruskal–Wallis test with Dunn correction for multiple comparisons was used
for rectification experiments. For all experiments using paired data, a two-
tailed Wilcoxon signed-rank test was used. Data analysis was conducted in
Igor Pro (Wavemetrics), Excel (Microsoft), and GraphPad Prism.
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