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CD8+ T cells are preprogrammed for cytotoxic differentiation in
the thymus as they acquire expression of the transcription factor
Runx3. However, a subset of effector CD8+ T cells (Tc17) produce
IL-17 and fail to express cytotoxic genes. Here, we show that the
transcription factors directing IL-17 production, STAT3 and RORγt,
inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic
gene repression did not require the transcription factor Thpok,
which in CD4+ T cells restrains Runx3 functions and cytotoxicity;
and STAT3 restrained cytotoxic gene expression in CD8+ T cells
responding to viral infection in vivo. STAT3-induced RORγt re-
presses cytotoxic genes by inhibiting the functions but not the
expression of the “cytotoxic” transcription factors T-bet and Eome-
sodermin. Thus, the transcriptional circuitry directing IL-17 expres-
sion inhibits cytotoxic functions. However, by allowing expression
of activators of the cytotoxic program, this inhibitory mechanism
contributes to the instability of IL-17–producing T cells.
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T cells are essential to fight intracellular pathogens, including
viruses, bacteria, and protozoans. MHC I-restricted CD8+

T cells differentiate into cytotoxic (Tc1) effectors that produce the
cytokine IFNγ and cytolytic molecules, including perforin and
granzymes (1). Whereas acquisition of cytotoxic functions is not
typical of MHC II-restricted CD4+ T cells, IFNγ secretion by Th1
CD4+ effector T cells is essential to combat intracellular pathogens
(2). The differentiation of both Tc1 (CD8+) and Th1 (CD4+) T cells
involves the transcription factor Runx3 and the T-box factors T-bet
or Eomesodermin (Eomes). Runx3 is up-regulated during the dif-
ferentiation of MHC I-restricted T cells in the thymus (3, 4) and
remains expressed in postthymic resting and activated CD8+ T cells
(5). Although not expressed in naïve CD4+ T cells, Runx3 is in-
duced in differentiating CD4+ Th1 effectors (6, 7). While neither
T-bet nor Eomes are expressed in resting T cells, they are up-
regulated in differentiating Th1 and Tc1 effectors, in which they
sustain production of IFNγ and cytotoxic molecules (2, 8, 9).
CD4+ T cells are also involved in the control of extracellular

microbes, including bacteria, yeast, and fungi, through their pro-
duction of IL-17 and related cytokines (10, 11). The differentiation
of IL-17–producing CD4+ T cells (Th17) requires the transcription
factors STAT3 and RORγt (12–15). There is evidence that the
transcriptional circuitry directing IFNγ and cytotoxic gene expres-
sion in Th1 or Tc1 cells inhibits Th17-related gene expression (16).
Mechanistically, T-bet and Eomes directly antagonize the expres-
sion of RORγt (17–19) and thereby restrain IL-17 production.
Because MHC I molecules typically present peptide antigens

synthesized intracellularly, it had been considered that CD8+ T cells
were not involved in IL-17–mediated control of extracellular path-
ogens. Nonetheless, CD8+ T cells producing IL-17 (Tc17) are found
at effector sites both in humans and in experimental models, and
there is evidence that such cells have potential pathogenic proper-
ties (20–23). Moreover, the differentiation of Tc17 cells involves
STAT3 and RORγt, as does that of Th17 CD4+ effectors (20, 24).
This indicates that a common transcriptional circuitry, called
“Teff17” hereafter, directs IL-17 production in Th17 and Tc17 cells.
It was noted that Tc17 cells show reduced cytotoxic activity

and cytotoxic gene expression relative to Tc1 cells (20, 24, 25).

However, how this is achieved has not been investigated. Here,
we demonstrate that repression of cytotoxic genes is an intrinsic
property of the Teff17 circuitry, which we show acts in Tc17 CD8+

T cells by inhibiting the function but not the expression of Runx3.
Such inhibition depends on the transcription factor STAT3, in
part through its ability to promote RORγt expression. Accord-
ingly, the Teff17 circuitry represses cytotoxic genes independently
of Thpok in CD4+ T cells. Last, we show that RORγt itself re-
strains the activation of cytotoxic genes but fails to inhibit the
expression of T-bet or Eomes. We propose that such persistent
expression of key activators of cytotoxic differentiation contributes
to the instability of IL-17–producing T cells.

Results
Teff17 Transcriptional Circuitry Represses Cytotoxic Functions Despite
Persistent Runx3 Expression. Upon antigen stimulation, naïve CD8+

T cells typically differentiate into Tc1 killer cells that express mole-
cules essential for cytotoxicity, including perforin, granzymes A, B,
and K, and the cytokine IFNγ. In contrast, CD8+ T cells signaled
with TGF-β and IL-6 (Tc17 culture conditions) produce IL-17 and
show little if any cytotoxic activity (Fig. 1A and Fig. S1A). Of note,
CD8+ T cells activated in the presence of either TGF-β or IL-6 alone
maintained cytotoxic activity (Fig. S1B), suggesting that repression of
cytotoxic differentiation is characteristic of the Teff17 transcriptional
circuitry, rather than resulting from signaling by either cytokine.
To determine the impact of the Teff17 transcriptional circuitry

on the cytotoxic program, we compared gene expression in
Tc1 vs. Tc17 CD8+ T cells by microarray analyses. We identified
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269 genes differentially expressed (1.5-fold change, P < 0.05)
between these two subsets (Fig. 1B). Consistent with previous
reports (21, 24), expression of genes associated with IL-17 pro-
duction, such as Il17a, Il17f, Rorc (encoding RORγt), and Ahr,
was higher in Tc17 than Tc1 cells (Fig. 1C). Strikingly, we found
that Tc17 differentiation was associated with a broad repression
of the cytotoxic program, including genes encoding T-bet (Tbx21,
called T-bet here), Eomes (Eomes), and cytotoxic molecules (Fig.
1C). Quantitative RT-PCR (qPCR) experiments confirmed
lower expression in Tc17 than in Tc1 cells of genes encoding
granzymes A and B, and perforin (Gzma, Gzmb, and Prf1, respec-
tively) (Fig. S1C). These observations suggest that the transcrip-
tional circuitry involved in Tc17 differentiation broadly inhibits
cytotoxic gene expression.
The transcription factor Runx3 promotes cytotoxic gene ex-

pression and IFNγ production in CD8+ effector T cells (5); in
addition, both Runx3 and the related protein Runx1 promote the
production of IFNγ by “pathogenic” Th17 CD4+ T cells (17, 18).
Given that Tc17 effectors expressed neither IFNγ nor cytotoxic
genes, we predicted that they would express little or no Runx3.
Consistent with this idea, many previously identified Runx3-
dependent genes (Fig. 1D, Left) (26) were underexpressed in
Tc17 compared with Tc1 cells (Fig. 1D, Right), including canonical
cytotoxic genes Gzma, Gzmb, Gzmc, Fasl, or Havcr2 (encoding
Tim-3). However, and contrary to the prediction, immunoblot
analyses showed equivalent amounts of Runx3 protein in Tc1 and
Tc17 cells (Fig. 1E); importantly, Runx1 was not detected in either
subset. These findings indicate that the Teff17 transcriptional cir-
cuitry inhibits Runx3-dependent expression of cytotoxic genes
without affecting the expression of Runx3 itself.
The transcription factor Thpok antagonizes Runx-mediated

expression of cytotoxic genes in CD4+ T cells and is expressed,

although at modest levels, in activated CD8+ T cells (27–30).
Thus, we considered the possibility that Thpok may contribute to
cytotoxic gene repression in Tc17 cells. To address this, we
assessed wild-type (WT) and Thpok-deficient Tc17 effector cells
for the expression of granzyme B, a sensitive marker of Thpok
repression in both CD4+ and CD8+ T cells (28, 31). To ensure
that Tc17 effectors were MHC I restricted, they were derived
from naïve CD8+ T cells obtained from Cd4-cre+ Thpokfl/fl mice
expressing the MHC I-restricted P14 transgenic TCR. Thpok
disruption did not increase granzyme B expression (Fig. S1D),
supporting the conclusion that the transcriptional circuitry of
Tc17 cells overcomes Runx3-mediated activation of the cytotoxic
program independently of Thpok.

Stat3 Represses Cytotoxic Gene Expression. The preceding findings
suggested that repression of the cytotoxic program was integral
to the Teff17 transcriptional circuitry. Because the transcription
factor STAT3, activated by IL-6, is required for the differentia-
tion of both Th17 and Tc17 cells (20, 32), we examined whether
it represses cytotoxic gene expression. We differentiated CD8+

T cells from Cd4-cre+ Stat3fl/fl mice (called here Stat3−/−) under
Tc17 conditions. To avoid noncell-intrinsic effects, we compared
Stat3−/− and wild-type CD8+ T cells cocultured in the same en-
vironment (Fig. S2A). Unlike control cells in the same coculture,
Stat3-deficient CD8+ T cells failed to produce IL-17, and they
displayed increased granzyme B expression (Fig. 2A), suggesting
that STAT3 represses cytotoxic genes. To further evaluate this
possibility, we performed microarrays on RNAs prepared from
Stat3−/− and wild-type CD8+ T cells purified after coculture in Tc17
conditions. In parallel, we analyzed RNAs from wild-type and
Stat3−/− CD8+ T cells cocultured in Tc1 conditions. Gene expres-
sion in Stat3−/− Tc17 cells was highly similar to that in wild-type
Tc1 cells (Fig. 2B). Specifically, Stat3−/− Tc17 cells were skewed
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Fig. 1. The Tc17 transcriptional program represses cytotoxic functions.
(A) Contour plots of IL-17 vs. IFNγ expression on CD8+ T cells cultured under
Tc1 and Tc17 conditions. (B) Volcano plot displays Tc17/Tc1 expression ratios
(log2 values, full gene set) vs. P values; each symbol represents a distinct
gene. Relevant genes are indicated. Data are from three replicates. Lines
represent 1.5-fold change, P value 0.05. (C) Heatmap displays normalized
expression on selected genes in Tc1 and Tc17 cells (Z score, color scale at
Bottom). Data are from three replicates. (D) Volcano plot (Left) displays
expression ratios (log2 values, full gene set) vs. P values of differential ex-
pression in Runx3−/− over wild-type CD8+ T cells; original data are from ref.
26. The Right volcano plot displays Tc17/Tc1 expression ratio vs. P values of
differential expression for genes significantly underexpressed in Runx3−/−

cells (1.5-fold change, P < 0.05, gray shading on Left plot). Each symbol
represents a gene; relevant genes are indicated. (E) Immunoblot analyses of
Runx protein expression in effector CD4+ (ThN) or CD8+ T cells cultured
under Tc1 or Tc17 conditions. Data are representative of five (A) or two
(B–D) mice analyzed in four (A) or two (B–D) independent experiments.
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Fig. 2. STAT3 represses cytotoxic gene expression in CD8+ T cells. (A) Con-
tour plots of IL-17 vs. granzyme B intracellular expression in CD8+ T cells
cocultured under Tc17 conditions as shown in Fig. S2A. Data are gated on
WT CD45.1+ or Stat3−/− CD45.2+ cells and are representative of three mice
per genotype analyzed in three independent experiments. (B) Scatterplots
show microarray gene expression (log2 values, full gene set) in indicated cell
populations after sorting from mixed cultures set as in Fig. S2A. Genes with
1.5-fold or greater expression change in wild-type Tc17 vs. Tc1 cells (P < 0.05)
are defined in the Top plot and shown in red and blue in all three plots.
Relevant genes are indicated. Data are from three replicates. (C) Heatmap
displays normalized expression on selected genes in Tc1 WT, Tc17 WT, and
Tc17 Stat3−/− cells (Z score, color scale at Bottom). Data are from three
replicates.
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toward expression of cytotoxic genes, including those encoding
granzymes B, C, and K, T-bet, and Eomes, in addition to their
impaired expression of canonical Tc17 genes, including Rorc, Il17a,
or Il17f (Fig. 2C). In contrast STAT3 disruption had no detectable
effect on the transcriptome of in vitro Tc1 effectors, which display
high-level expression of cytotoxic genes (Fig. S2B).
To examine whether STAT3 restrains cytotoxic gene expres-

sion in vivo, we evaluated the response of STAT3-deficient
CD8+ T cells during infection by the Armstrong strain of lym-
phocytic choriomeningitis virus (LCMV). While LCMV Arm-
strong is cleared by a strong cytotoxic CD8+ T-cell response (16,
33), it causes acute IL-6 production (34), allowing us to assess
the potential impact of STAT3 activation on cytotoxic genes.
Consistent with our hypothesis, disruption of Stat3 increased
Eomes expression and IFNγ production in effector CD8+ T cells
at the peak of the LCMV response (Fig. 3 A and B); analyses in
mixed bone-marrow chimeras (Stat3 deficient: wild type; 1:1)
showed that this effect is cell intrinsic (Fig. S2 C and D).
This suggested that STAT3 represses cytotoxic genes in vivo.

Accordingly, we speculated that ectopic activation of STAT3
in Tc1 cells should counteract their cytotoxic differentiation.
To test this, we used a Cre-inducible allele (Rosa26Stat3C-GFP)
in which the Rosa26 locus contains a floxed transcription ter-
mination site followed by a bicistronic insert encoding both
a constitutively active version of STAT3 (STAT3C) and GFP
as a reporter for Cre expression (35). To avoid constitutive
STAT3 activity in developing thymocytes and resting T cells, we
generated Rosa26Stat3C-GFP/+ mice carrying Ox40-cre, which is
expressed in 10–15% of effector CD8+ T cells after LCMV in-
fection (Fig. S2E) but not in naïve CD8+ T cells. As controls, we
used Rosa26YFP/+Ox40-cre mice, in which YFP identifies cells

with a history of Cre expression (Fig. S2E). In LCMV-infected
Rosa26Stat3C-GFP/+ Ox40-cre+ mice, expression of STAT3C resulted
in a significant inhibition of canonical Tc1 markers, as shown by
the reduced frequency of cells expressing granzyme B, IFNγ,
T-bet, and Eomes (Fig. 3 C and D). Thus, both loss- and gain-of-
function experiments support the conclusion that STAT3 inhibits
cytotoxic gene expression in CD8+ T in vivo.

STAT3 Target RORγt Represses Cytotoxic Effector Genes. In addition
to STAT3, expression of Teff17 genes involves the transcription
factors Irf4, Batf, and RORγt (13, 36–40). Both Irf4 and Batf are
expressed in Tc1 cells and promote IFNγ and cytotoxic gene
expression in vivo during viral infection (41–44). In contrast,
RORγt is specific to the Teff17 program. Because STAT3 pro-
motes RORγt expression, we considered the possibility that RORγt
would repress cytotoxic genes. To evaluate this, we expressed
RORγt in Stat3−/− CD8+ T cells cocultured with WT CD8+

T cells under Tc17 conditions. Enforced RORγt expression
failed to restore IL-17 production to wild-type levels, but strongly
repressed Gzmk and to a lesser extent Gzmb (Fig. 4 A and B).
However, even though it inhibited expression of IFNγ, a pro-
totypical T-bet target (Fig. 4C), RORγt failed to affect expres-
sion of T-bet or Eomes, the “master regulators” of cytotoxic
genes (Fig. 4D). Consistent with these results, reanalysis of
previously published ChIP-seq data from Th17 CD4+ T cells
detected STAT3 binding at T-bet, but little or no binding at Ifng,
Gzmb, and Gzmk, which were bound by RORγt (Fig. S3). Of
note, RORγt binding sites also recruited T-bet in Th1 cells (45)
(Fig. S3).
This suggested that RORγt inhibits the function of T-bet or

Eomes rather than their expression and prompted us to examine
whether ectopic expression of RORγt in WT Tc1 cells, which
express T-bet and Eomes, would dampen the cytotoxic program.
Indeed, retroviral RORγt transduction impaired both granzyme
B and IFNγ expression in wild-type Tc1 CD8+ effectors (Fig. 4 E
and F). We conclude from these experiments that RORγt in-
hibits cytotoxic differentiation at least in part independently of
STAT3, and that it acts by restraining the function but not the
expression of T-bet and Eomes.

Teff17 Effector Program Represses Cytotoxic Differentiation in CD4+

T Cells. While CD8+ T cells are preprogrammed for cytotoxic
differentiation, CD4+ T cells are preprogrammed to repress cy-
totoxic genes by their expression of Thpok, which inhibits
Runx3 expression and functions (28, 29, 46–48). Accordingly, we
previously showed that postthymic Thpok deletion diverts
Th1 and Th2 CD4+ effectors toward cytotoxic differentiation
(29). However, the preceding findings raised the possibility that
Th17 CD4+ T cells, which also express STAT3 and RORγt (12–
14, 49), would restrain cytotoxic gene expression independently
of Thpok. We addressed this question by activating naïve CD4+

T cells from Ox40-cre+ Thpokfl/fl mice (called ThpokAD for “ac-
tivation deleted”) in which Thpok disruption occurs during CD4+

T cell activation (50, 51). In line with previous results (29, 52),
Thpok disruption did not impair IL-17 production (Fig. S4A).
Importantly, Thpok was dispensable for the repression of Prf1,
Gzma, and Gzmb in Th17- but not in Th1-activated cells (Fig.
5A). We previously reported that Thpok prevents CD8α reex-
pression in naïve and Th1 effector CD4+ T cells (29). In contrast,
Th17 effector CD4+ T cells restrained CD8α expression despite
Thpok disruption (Fig. 5B). To determine whether repression of
cytotoxic genes requires Thpok in Th17 effectors in vivo, we
examined the small intestine lamina propria (siLP), a site highly
enriched in effector T cells in unmanipulated mice. Using cyto-
kine capture assays, we isolated T cells producing IFNγ (Th1) or
IL-17 (Th17) (Fig. S4B). Similar to in vitro analyses, repression
of Gzma and Prf1 in Th17 cells was independent of Thpok, un-
like in Th1 cells in which both genes were up-regulated after
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Thpok disruption (Fig. 5C); the same was true of repression of
CD8α (Fig. 5D).
The preceding findings demonstrate that Th17 effectors re-

press cytotoxic genes independently of Thpok, both in vitro and
in vivo. To examine the potential role of STAT3 in such re-
pression, we compared expression of IFNγ and granzyme B in
Stat3−/− and control CD4+ T cells cultured under Th17 conditions.
STAT3 disruption increased expression of both molecules (Fig.
S4C), a result consistent with previous transcriptome analyses (36,
53). However, the up-regulation of granzyme B and IFNγ ex-
pression in Stat3−/− CD4+ T cells was lower than in Stat3−/− CD8+

T cells cultured in the same conditions (Fig. S4C), consistent with
a STAT3-independent inhibition by Thpok.
In addition to repressing cytotoxic genes, Thpok promotes

expression of genes characteristic of the helper program, in-
cluding Cd40lg, encoding a surface protein essential for helper
activity. In Th1 cells, Thpok activation of Cd40lg is mediated in
part through antagonism of Runx functions (29). In contrast to
Th1 cells, Thpok was dispensable for CD40L expression in
Th17 effectors (Fig. 5E), supporting the conclusion that the

Th17 effector program of CD4+ T cells antagonizes Runx
functions independently of Thpok.
In CD4+ T cells, Thpok serves in part redundantly with the

related transcription factor LRF (encoded by Zbtb7a, called Lrf
here) (29, 54). Thus, we considered that LRF could repress cy-
totoxic genes in Thpok-deficient Th17 effectors. To address this
question, we cultured CD4+ T cells that postthymically delete
both Thpok and LRF [from CD2-cre Thpokfl/fl Lrffl/fl mice (29)]
under Th1 and Th17 conditions. Double-deficient Th17 cells
fully repressed granzyme B expression (Fig. 5F) and, as pre-
viously reported (29), produced IL-17. In contrast, double-
deficient Th1 cells failed to repress the expression of cytotoxic
molecules compared with controls. Thus, repression of cytotoxic
gene expression requires neither Thpok nor LRF in Th17 cells,
unlike in other helper effector subtypes (29).

Discussion
The present report demonstrates that the transcriptional cir-
cuitry involved in IL-17 production in T cells broadly represses
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cytotoxic functions. Such repression is dependent on the tran-
scription factor STAT3, in part via the induction of RORγt.
Importantly, RORγt represses expression of cytotoxic effector
genes despite persistent expression of canonical transcription
factors Runx3, T-bet, and Eomes, implying that persistent in-
hibition of cytotoxic functions in Tc17 cells is highly dependent
on cytokine-activated STAT3.
While T-bet and Eomes had been shown to restrain RORγt

expression and thereby Th17 or Tc17 differentiation (16–18),
whether STAT3 or RORγt reciprocally inhibit cytotoxic gene
expression had not been elucidated. Although Th1-related and
cytotoxic genes are not expressed in Th17 CD4+ T cells (36, 55),
this observation did not imply repression by the Teff17 circuitry
because Th17 CD4+ T cells express Thpok, which itself inhibits
expression of cytotoxic genes (28, 29). In fact, Batf and Irf4, key
components of the Teff17 circuitry, are also needed for proper
Tc1 responses to viral infection (41–44). Here, we demonstrate
that a STAT3–RORγt-based Teff17 transcriptional circuitry re-
presses cytotoxic gene expression and the development of cyto-
toxic functions in Tc17 CD8+ T cells.
While RORγt represses effector genes (including those

encoding granzymes), it does not inhibit T-bet or Eomes ex-
pression, in contrast to T-bet inhibition of RORγt gene expres-
sion. Such an asymmetric control has important functional
implications. Whereas T-bet repression of RORγt stabilizes
Tc1 differentiation, the inability of RORγt to repress T-bet,
Eomes, and Runx3 compromises the stability of IL-17–producing
T cells. In circumstances where STAT3 activation is not sus-
tained (e.g., by IL-6 signaling), or is counteracted through sig-
naling by other cytokines (e.g., IL-12), the persistent expression
of T-bet, Eomes, and Runx3 would favor the reemergence of
cytotoxic gene expression.
Consistent with this asymmetric antagonism, IFNγ and IL-

17 double-producing CD8+ T cells are found in experimental
colitis (22). Similar dual producers contribute to graft versus host
disease (GVHD) after allogeneic stem cell transplantation (21),
and therefore are presumably equivalent to pathogenic Th17
cells described in experimental models of colitis and multiple
sclerosis (18, 56, 57). While these IFNγ- and IL-17–producing
CD8+ T cells expressed T-bet, they showed reduced expression
of Eomes and cytotoxic genes, including Gzmb. Consistent with
the idea that Tc17 cells are unstable, they were shown by fate-
mapping analyses to revert to a cytotoxic fate (21).
In contrast to Tc17 CD8+ T cells, in which inhibition of cy-

totoxic gene expression relies on the STAT3-driven Teff17 circuitry,
both that circuitry and the CD4+ lineage-specific transcription factor
Thpok contribute to restrain cytotoxic genes in Th17 CD4+ T cells.
Of note, Thpok-mediated repression of IFNγ can be overcome by
Th1-inducing environmental cues, despite persistent Thpok expres-
sion (28, 29, 58). Accordingly, Th17 effectors, which harbor epige-
netic marks of activity at Th1 loci, can acquire IFNγ production and
contribute to immunopathology during inflammation (59, 60).
STAT3 and RORγt may inhibit cytotoxic genes hierarchically,

as suggested by ChIP binding results: in this scenario, STAT3 acts on
transcriptional regulators T-bet, Eomes, and RORγt, which them-
selves control cytotoxic effector genes. Mechanistically, STAT3 may
serve by opposing the positive effect of STAT5 on cytotoxic genes,
including T-bet and Eomes (61). As STAT3 competes with STAT5
for DNA binding genome-wide (62), sustained STAT3 activation
may displace STAT5 and thereby inhibit expression of cytotoxic
genes. Additionally, because STAT5 and Runx3 molecules directly
interact (63), the competition between STAT3 and STAT5 may af-
fect Runx3-dependent genes, including Eomes (5).

In cells that coexpress RORγt and T-bet or Eomes, the pre-
sent study indicates that RORγt can counteract T-bet and Eomes
and restrain cytotoxic gene expression. The binding of RORγt to
Ifng, Gzmb, and Gzmk cis-regulatory regions suggests that such
an effect could be direct, through RORγt recruitment to these
genes. Because RORγt binds cis-regulatory elements that can
also recruit T-bet, it is possible that competition between these
factors for DNA binding controls cytotoxic gene expression.
Challenging this idea, RORγt and T-bet recognize distinct DNA
sequences (36, 64). Alternatively, RORγt could inhibit T-bet or
Eomes without affecting their DNA binding, e.g., by affecting
their recruitment of transcriptional coactivators.
Cytotoxic gene repression by STAT3 and RORγt is expected

to reduce the antitumor potential of CD8+ T cells in in-
flammatory tumor microenvironments. Indeed, Stat3 disruption
promotes responses against experimental tumors (65). Even
though the exact mechanisms by which STAT3 inhibits antitu-
moral activity remain to be elucidated, a growing number of
reports suggest a critical role of STAT3 and IL-6 signaling in
T cells and natural killer cells, consistent with an effect on cy-
totoxic gene expression (66–69). Thus, the ability to manipulate
and target this pathway might be a valuable approach to enhance
antitumor responses in cancer immunotherapy strategies.

Materials and Methods
Mice. Mice carrying floxed alleles for Thpok (28), Stat3 (70), Rosa26Stat3C-GFP

(35), or Lrf (71) were from our own colony or obtained from J. O’Shea
(National Institutes of Health, Bethesda), S. Koralov (New York University,
New York), and P. P. Pandolfi (Harvard University, Boston), respectively.
Additional strains are described in SI Materials and Methods. Animal pro-
cedures were approved by the National Cancer Institute Animal Care and
Use Committee.

In Vitro Cell Procedures. Sorted naïve (CD44lo) T cells were activated with anti-
CD3 and anti-CD28, in the presence of T cell-depleted irradiated WT spleno-
cytes and cytokines and anti-cytokines antibodies as described in SI Materials
and Methods. Retroviral transductions were performed as previously de-
scribed (31), using either MIGR-RORγt-Thy1.1 or PMRX-Thy1.1 retroviruses
(72). In vitro cytotoxicity was determined using pan-T-depleted WT spleno-
cytes coated with relevant GP33 (KAVYNFATM) or irrelevant (SIIFNEKL) pep-
tides, labeled with distinct CFSE concentrations, and cocultured with in vitro
derived CD8+ effector T cells for 24 h.

Microarrays and ChIP-Seq Data. Affymetrix Mouse Exon 2.0 ST arrays were
processed as described in SI Materials and Methods and analyzed with Partek
Genomic Suite; data are deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) database under accession nos.
GSE104143 and GSE104144. The Runx3 dataset (26) was obtained from the
GEO (accession no. GSE50131). The STAT3 and RORγt (36) and T-bet ChIP-seq
datasets (45) were obtained from the GEO (GSE40918 and GSE40623, re-
spectively), aligned to the mouse genome (mm10 release) using the Bowtie
package and analyzed with Partek Flow on the National Institutes of Health
high-performance computing Biowulf cluster.

Statistical Analyses. All statistical analyses were performed using Prism
software. Bars in graphs indicate average ± SEM. Comparisons were per-
formed by two-tailed unpaired t test. *P values <0.05.

Additional information is available in SI Materials and Methods.
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