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Inflammasomes are cytosolic multiprotein complexes that initiate
host defense against bacterial pathogens by activating caspase-1–
dependent cytokine secretion and cell death. In mice, specific
nucleotide-binding domain, leucine-rich repeat-containing family, ap-
optosis inhibitory proteins (NAIPs) activate the nucleotide-binding do-
main, leucine-rich repeat-containing family, CARD domain-containing
protein 4 (NLRC4) inflammasome upon sensing components of the
type III secretion system (T3SS) and flagellar apparatus. NAIP1 recog-
nizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod
protein, and NAIP5 and NAIP6 recognize flagellin. In contrast, humans
encode a single functional NAIP, raising the question of whether
human NAIP senses one or multiple bacterial ligands. Previous studies
found that human NAIP detects both flagellin and the T3SS needle
protein and suggested that the ability to detect both ligands was
achieved by multiple isoforms encoded by the single human NAIP
gene. Here, we show that human NAIP also senses the Salmonella
Typhimurium T3SS inner rod protein PrgJ and that T3SS inner rod
proteins from multiple bacterial species are also detected. Further-
more, we show that a single human NAIP isoform is capable of sens-
ing the T3SS inner rod, needle, and flagellin. Our findings indicate
that, in contrast to murine NAIPs, promiscuous recognition of multiple
bacterial ligands is conferred by a single human NAIP.
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In response to pathogenic bacteria, the innate immune system is
required for inflammatory responses that promote host de-

fense. Host defense is initiated by the engagement of pattern
recognition receptors (PRRs) by pathogen-associated molecular
patterns (1). Cytosolic PRRs detect pathogens that introduce
products into host cells as a consequence of bacterial virulence
activities, such as specialized secretion systems. A subset of cy-
tosolic PRRs, termed the nucleotide-binding domain, leucine-
rich repeat-containing (NLR) family, is composed of 23 mem-
bers in humans and 34 members in mice (2, 3). A subfamily of
NLRs, known as nucleotide-binding domain, leucine-rich repeat-
containing family, apoptosis inhibitory proteins (NAIPs), recog-
nizes bacterial proteins that are translocated into the host cell by
Gram-negative bacteria. One such pathogen is Salmonella, which
uses a virulence-associated type III secretion system (T3SS) to
inject effector proteins into the host cell cytosol that promote
bacterial invasion and survival (4). These secretion systems also
translocate structurally related components of the T3SS or
closely related flagellar apparatus, enabling cytosolic detection of
bacteria by NAIPs (5). In mice, ligands for four of seven distinct
NAIPs are known: NAIP1 recognizes the T3SS needle protein,
NAIP2 recognizes the T3SS inner rod protein, and both NAIP5 and
NAIP6 recognize flagellin (6–11). Upon binding their cognate li-
gands, the NAIPs recruit the adaptor nucleotide-binding domain,
leucine-rich repeat-containing family, CARD domain-containing
protein 4 (NLRC4) (12–14). The resulting NAIP/NLRC4 inflam-
masome then recruits and activates caspase-1 (15). Active caspase-
1 mediates processing and secretion of IL-1 family cytokines and a

proinflammatory cell death termed pyroptosis (16–18), which pro-
mote antimicrobial functions critical for controlling bacterial in-
fection (19–22). This inflammasome also plays a protective role in
mouse models of colitis-associated colorectal cancer and may be a
useful strategy in tumor immunotherapy (23, 24). However, the
NLRC4 inflammasome can cause sepsis-like disease after antibiotic
disruption of the microbiota, and activating NLRC4 mutations
cause an autoinflammatory syndrome in humans (25–29). Defining
the mechanisms of human NAIP sensing of bacterial ligands may,
therefore, provide insight into therapeutic approaches for diverse
infectious and autoinflammatory diseases.
Unlike in mice, the human NAIP locus has a number of pseu-

dogenes and gene duplications and has retained a single functional
copy of the full-lengthNAIP gene (30, 31). Initial studies with human
monocytic cell lines suggested that human NAIP could only sense
the T3SS needle protein (7–9). However, a recent study found that
flagellin also triggers NAIP inflammasome activation in primary
human macrophages and indicated that detection of flagellin was
mediated by an alternate splice isoform of NAIP (32). These findings
suggested that, in humans, specificity for different bacterial ligands is
encoded by distinct splicing variants of the single NAIP gene.
Here, we show that, in addition to the T3SS needle protein

and flagellin, primary human macrophages also mount NAIP
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inflammasome responses against T3SS inner rod proteins from
multiple bacterial pathogens. In addition, our data show that the
Salmonella Typhimurium SPI-2 T3SS inner rod protein, SsaI,
which is required for intracellular bacterial replication, does not
activate the inflammasome in human macrophages, suggesting
that intracellular Salmonella evades NAIP recognition in both humans
and mice. Intriguingly, we find that a single human NAIP isoform
is sufficient for NLRC4 inflammasome responses to the T3SS needle,
inner rod, and flagellin. Overall, our findings suggest that, unlike
mice, which express multiple NAIPs that each possesses exquisite
ligand specificity, the single human NAIP has evolved to broadly
recognize multiple bacterial ligands. These findings provide im-
portant insight into distinct mechanisms of innate immune sensing
of Gram-negative bacteria by mice and humans.

Results
Salmonella Typhimurium Induces Flagellin-Independent Inflammasome
Responses in Primary Human Macrophages. In murine macrophages,
the NAIPs induce inflammasome activation on direct recognition of
proteins from the T3SS and the structurally related flagellar appa-
ratus. The relative contribution of these components to the inflam-
masome response in human macrophages is still unclear. Thus, we
examined cell death as well as secretion of IL-1α and IL-1β after
infection of human monocyte-derived macrophages (hMDMs) with
WT, SPI-1 T3SS-deficient (ΔsipB), or flagellin-deficient (ΔfliCfljB)
Salmonella Typhimurium strains. Compared with WT Salmonella-
infected macrophages, ΔfliCfljB Salmonella-infected macrophages
exhibited a slight but not statistically significant decrease in inflam-
masome activation as measured by IL-1α and IL-1β secretion, IL-1β
processing, and cell death (Fig. 1). In contrast, inflammasome acti-
vation was abrogated in ΔsipB-infected macrophages (Fig. 1 A–C).
Immunoblot analysis indicated no defect in pro–IL-1β production in
ΔsipB-infected hMDMs, but inflammasome-mediated cleavage of
pro–IL-1β into its active form was not observed (Fig. 1D). These
results suggest that Salmonella infection of primary human macro-
phages induces robust flagellin-independent inflammasome activa-
tion that requires the SPI-1 T3SS.

Salmonella Typhimurium T3SS Inner Rod Protein PrgJ Activates the
Inflammasome in Primary Human Macrophages. Previous studies
using immortalized human monocytic cell lines found that the
NAIP inflammasome could be activated by the T3SS needle
protein but not flagellin or the T3SS inner rod (7–9). However,
another study found that NAIP played a role in restricting the
intracellular replication of flagellated bacteria (33). Recently, it
was shown that flagellin can activate the NAIP inflammasome in
primary hMDMs (32). As our data suggested that there is a robust
flagellin-independent, T3SS-dependent inflammasome response to
Salmonella, we sought to determine whether, in addition to the
T3SS needle protein PrgI, the T3SS inner rod protein PrgJ could
induce inflammasome activation in primary hMDMs. We utilized
the Gram-positive pathogen Listeria monocytogenes, which does
not encode a T3SS apparatus, to directly deliver PrgJ or PrgI into
host cells (34). After infection, Listeria uses the pore-forming
toxin Listeriolysin O (LLO) to escape into the cytosol, where it
expresses the protein ActA on the bacterial surface to poly-
merize actin (35, 36). We utilized strains that ectopically express
PrgJ or PrgI translationally fused to the N terminus of ActA and
under control of the actA promoter. This approach of delivering
flagellin into the host cell cytosol robustly activates the mouse
NAIP5 inflammasome (34). Indeed, as expected, hMDMs in-
fected with Listeria expressing PrgI induced robust IL-1α and
IL-1β secretion, IL-1β processing, and cell death above that of
WT Listeria-infected cells (Fig. 2). Surprisingly, infection with PrgJ-
expressing Listeria also induced robust IL-1α and IL-1β release,
IL-1β processing, and cell death (Fig. 2). Importantly, cytosolic
access was required for inflammasome activation, as PrgJ-expressing
Listeria lacking hly, the gene encoding LLO, did not induce IL-1β
secretion (Fig. S1).
To determine whether PrgJ alone could induce inflammasome

activation independently of bacterial infection, we used an anthrax

toxin-based delivery system (9, 11, 37). In this system, bacterial
ligands are translationally fused to the N-terminal domain of Ba-
cillus anthracis lethal factor (LFn). The LFn domain enables ligand
translocation into the host cell cytosol through a membrane
channel formed by the anthrax protective antigen (PA) protein.
We used a translational fusion of LFn and PrgJ (LFn-PrgJ) as well
as LFn fused to flagellin as a positive control for NAIP inflamma-
some activation. To avoid potential confounding effects of TLR5
detection of flagellin, we used a truncated Legionella pneumo-
phila flagellin that lacks the TLR5-activating region but retains
the C-terminal 166 amino acids detected by murine NAIP5 (38,
39). In agreement with previous findings (32), hMDMs treated
with PA+LFn-FlaA310–475 (referred to as FlaTox) induced robust in-
flammasome activation as measured by significantly increased IL-1α
and IL-1β cytokine release, IL-1β processing, and cell death (Fig. 3).
Treatment with PA+LFn-PrgJ (referred to as PrgJTox) also induced
robust IL-1α and IL-1β cytokine secretion, IL-1β processing, and cell
death (Fig. 3). In contrast, treatment with PA, LFn-FlaA310–475,
or LFn-PrgJ alone did not activate, indicating that FlaA and PrgJ
induce inflammasome activation only when delivered into the host
cell cytosol via PA. Altogether, these results show that primary
human macrophages undergo inflammasome activation on cytosolic
sensing of the Salmonella Typhimurium T3SS inner rod protein.

Human NAIP Is Required for Maximal Inflammasome Responses to the
T3SS Inner Rod Protein PrgJ. Human NAIP is required for inflam-
masome responses to flagellin and the T3SS needle protein (7, 9,
32). To test whether NAIP is also necessary for detecting PrgJ, we
used siRNAs to silence NAIP in primary hMDMs (Fig. S2). As
expected (32), anti-NAIP siRNA treatment resulted in significantly
decreased IL-1α and IL-1β secretion after FlaTox administration
compared with control siRNA treatment. Anti-NAIP siRNA treat-
ment also led to significantly decreased IL-1α and IL-1β secretion in
response to PrgJTox administration relative to control siRNA-treated
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Fig. 1. Salmonella Typhimurium induces T3SS-dependent, flagellin-independent
inflammasome responses in primary human macrophages. hMDMs were primed
with LPS for 3 h and treated with PBS (mock), WT Salmonella (WT ST), ΔsipB ST, or
ΔfliCfljB ST at a multiplicity of infection of 20 for 4 h. (A) Cell death (percentage
cytotoxicity) wasmeasured by lactate dehydrogenase release assay and normalized
to mock infected cells. (B and C) IL-1α and IL-1β supernatant levels were measured
by ELISA. (D) Immunoblot analysis was performed on supernatants (sup) for ma-
ture IL-1β and on lysates for pro–IL-1β and β-actin as a loading control (represen-
tative of two donors). Each data point represents the mean of triplicate infected
wells for each of five different human donors. Shaded bars represent the overall
mean of the donors. NS, not significant. *P < 0.05 by paired t test; **P < 0.01 by
paired t test.
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cells, suggesting that NAIP is required for maximal inflammasome
responses to PrgJ (Fig. 4 A and B). Importantly, siRNA-mediated
silencing of NAIP did not significantly affect inflammasome re-
sponses to LPS+Nigericin, which specifically activates the NLRP3
inflammasome and does not engage NAIP (40) (Fig. 4 C and D).
These results indicate that NAIP is required for maximal inflam-
masome responses to the T3SS inner rod.

T3SS Inner Rod Proteins from Other Bacterial Species Induce
Inflammasome Activation in Human Macrophages. As T3SS in-
ner rod proteins from multiple bacterial species activate the
mouse NAIP2 inflammasome (41), we next examined whether
other bacterial T3SS inner rod homologs similarly activate human
cells. We engineered Listeria strains expressing the T3SS inner rod
proteins from Burkholderia thailandensis (BsaK), Shigella flexneri
(MxiI), and Chromobacterium violaceum (CprJ). In agreement
with previous findings (41), mouse macrophages infected with Lis-
teria expressing these inner rod homologs robustly secreted IL-1β
(Fig. S3). hMDMs infected with Listeria expressing PrgI, PrgJ, BsaK,
and MxiI also resulted in robust IL-1β secretion and processing
well above that of WT Listeria-infected cells (Fig. 5 A and B). In
contrast, CprJ-expressing Listeria induced relatively low levels
of IL-1β secretion and processing. These findings show that human
macrophages broadly detect and activate the inflammasome in re-
sponse to T3SS inner rod proteins from multiple bacterial species.

Salmonella Typhimurium SPI-2 T3SS Inner Rod Protein SsaI Evades
Immune Detection by Human Macrophages. Salmonella Typhimu-
rium uses two different T3SSs, termed SPI-1 and SPI-2. The SPI-
1 T3SS plays a role in bacterial invasion, whereas the SPI-2 T3SS
is required for intracellular survival and replication (42–44),
suggesting a need to evade host recognition of the SPI-2 T3SS.
Indeed, while the SPI-1 T3SS inner rod protein, PrgJ, robustly
activates the mouse NAIP2 inflammasome, the SPI-2 T3SS inner
rod protein, SsaI, evades detection (41). We, therefore, asked

whether SsaI also evades human NAIP by expressing SsaI in
Listeria. Consistent with previous findings (41), mouse macrophages
infected with Listeria expressing SsaI secreted negligible levels of
IL-1β (Fig. S3). Infection of hMDMs with SsaI-expressing Listeria
also resulted in negligible IL-1β secretion and cleavage compared
with infection with Listeria expressing PrgJ or PrgI (Fig. 5 C andD).
These data suggest that the SPI-2 T3SS inner rod protein SsaI has
evolved to evade NAIP recognition in both mice and humans.

The THP-1 Monocytic Cell Line Undergoes Inflammasome Activation in
Response to T3SS Inner Rod and Flagellin Proteins. Previous studies
using the U937 and THP-1 monocytic cell lines found that an-
thrax toxin-mediated delivery of flagellin or inner rod proteins
did not induce inflammasome activation (7, 9). Transfection of
purified PrgJ protein into these cells also failed to activate the
inflammasome (8). In contrast, recent findings and the data
presented here show that hMDMs mount robust inflammasome
responses to flagellin (32) and the T3SS inner rod. A previously
proposed explanation for these discrepant findings is that distinct
NAIP splicing isoforms possess differing ligand specificities and
that primary human macrophages and immortalized cells express
differing levels of particular isoforms (32). Alternatively, human
NAIP may recognize all three bacterial ligands regardless of
isoform type. As THP-1 cells express lower levels of NAIP and
NLRC4 than primary macrophages (32), the method of ligand
delivery or specific bacterial proteins previously used may not
have been sufficient for inflammasome activation in this cell
type. Previous studies utilized the C. violaceum inner rod protein
CprJ (7, 9), which we found to be a poor inflammasome activator
in hMDMs relative to other T3SS inner rod homologs (Fig. 5 A
and B). Another study used transfection-based delivery of PrgJ
protein (8), which is likely not as efficient at delivering proteins
into host cells as the anthrax toxin system.
Thus, we next tested whether THP-1 cells activate inflamma-

some responses to PrgJ delivered via Listeria or the anthrax toxin
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Fig. 2. L. monocytogenes-mediated delivery of the T3SS inner rod protein
PrgJ activates the inflammasome in primary human macrophages. hMDMs
were primed with Pam3CSK4 for 3 h and infected with PBS (mock), WT
Listeria (Lm), or Lm strains expressing PrgJ and PrgI at a multiplicity of in-
fection of five for 16 h. (A) Cell death (percentage cytotoxicity) was mea-
sured by lactate dehydrogenase release assay and normalized to mock
infected cells. (B and C) IL-1α and IL-1β supernatant levels were measured by
ELISA. (D) Immunoblot analysis of supernatants (sup) for mature IL-1β and
lysates for pro—IL-1β and β-actin as a loading control (representative of two
donors). Each data point represents the mean of triplicate infected wells for
each of seven different human donors. Shaded bars represent the overall
mean of the donors. *P < 0.05 by paired Wilcoxon signed rank test.
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Fig. 3. Anthrax toxin-mediated delivery of the T3SS inner rod protein PrgJ
induces robust inflammasome activation in primary human macrophages.
hMDMs were primed with Pam3CSK4 for 4 h and treated with PA alone, LFn-
FlaA310–475 alone, LFn-PrgJ alone, PA+LFn-FlaA310–475 (FlaTox), or PA+LFn-PrgJ
(PrgJTox) for 16 h. (A) Cell death (percentage cytotoxicity) was measured by
lactate dehydrogenase release assay and normalized to mock infected cells. (B
and C) IL-1α and IL-1β supernatant level were measured by ELISA. (D) Immu-
noblot analysis of supernatants (sup) for mature IL-1β and lysates for pro–IL-1β
and β-actin as a loading control (representative of two donors). Each data
point represents the mean of triplicate infected wells for each of four different
human donors. Shaded bars represent the overall mean of the donors. **P <
0.01 by paired t test.
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system. Although PrgI-expressing Listeria induced IL-1α and
IL-1β secretion in THP-1 cells, PrgJ-expressing Listeria failed to
do so (Fig. S4), despite robustly activating hMDMs (Fig. 2). In
contrast, THP-1 cells treated with PrgJTox robustly secreted
IL-1α and IL-1β (Fig. 6 A and B). Consistent with previous findings
(7, 9), anthrax toxin-mediated delivery of full-length flagellin failed
to activate THP-1 cells (Fig. S5). Intriguingly, anthrax toxin-
mediated delivery of a truncated version of flagellin robustly
triggered IL-1α and IL-1β secretion (Fig. 6 A and B), likely be-
cause of more efficient delivery of truncated flagellin. These data
show that THP-1 cells are capable of detecting the T3SS needle,
inner rod, and flagellin but are less responsive than hMDMs, as the
type of bacterial ligand and route of delivery influence the extent of
inflammasome activation.

A Single NAIP Isoform Mediates Inflammasome Responses to T3SS
Needle, Inner Rod, and Flagellin Proteins. Our data show that
both THP-1 cells and hMDMs recognize T3SS needle, inner rod,
and flagellin and that NAIP contributes to ligand detection. We
next sought to understand how a single human NAIP gene could
confer recognition of all three ligands in contrast to mice, which
utilize distinct NAIPs to recognize each ligand. Interestingly,
studies in which chimeric mouse NAIPs were generated to define
the ligand specificity domain identified a chimeric mouse NAIP
capable of recognizing multiple ligands (45), suggesting the
possibility that human NAIP might function as a broad receptor.
Human monocytic cell lines express lower levels than hMDMs of a
particular full-length NAIP splicing isoform (termed NAIP*) that
enables sensing of flagellin (32). We, therefore, sought to test
whether a single NAIP isoform possesses specificity for a given
bacterial ligand or is capable of detecting all three bacterial ligands.

We ectopically expressed the NAIP* isoform previously shown to
recognize flagellin (32) along with other NLRC4 inflammasome
components in HEK293 cells and then used the anthrax toxin sys-
tem to deliver bacterial ligands into these cells. As expected,
HEK293 cells expressing the NAIP* isoform robustly processed
IL-1β in response to flagellin (Fig. 6C). Unexpectedly, however,
delivery of PrgJ or the Burkholderia T3SS needle protein (YscF) also
induced robust IL-1β processing (Fig. 6C). Critically, inflammasome
activation by FlaA, PrgJ, and YscF required NAIP, as delivery of
bacterial ligands into cells only expressing NLRC4, caspase-1, and
IL-1β did not result in IL-1β processing. Inflammasome activation
also required delivery of the bacterial ligands, as untreated cells or
PA treatment alone did not process IL-1β. Altogether, these data
indicate that a single human NAIP isoform is sufficient to mediate
inflammasome responses to the T3SS needle, inner rod, and fla-
gellin proteins.

Discussion
Our data show that, like murine cells, human macrophages sense
multiple bacterial ligands from the T3SS and flagellar apparatus.
In addition to the T3SS needle and flagellin, T3SS inner rod
proteins from multiple bacterial species activate the human
NAIP inflammasome. Furthermore, a single human NAIP iso-
form can mediate inflammasome responses to all three bacterial
proteins in contrast to mouse NAIPs, which are highly selective
for recognition of individual flagellin or T3SS proteins (6–11).
Consistent with our findings, a recent study found that the
Pseudomonas aeruginosa T3SS inner rod also activates the hu-
man NAIP inflammasome (46). The region of murine NAIPs
that confers ligand specificity has been mapped to an internal
region composed of several nucleotide-binding domain (NBD)-
associated α-helical domains (45). This region has evolved under
positive selection in both rodents and primates (45), suggesting
that this domain mediates ligand detection in human NAIP as
well. How NAIP achieves broad recognition of multiple ligands
and whether NAIP binds these ligands with similar or differing
affinities or binding kinetics are unclear. The T3SS inner rod,
needle, and flagellin proteins exhibit low sequence conservation
but have some structural conservation, as the T3SS is thought to
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have evolved from the flagellar apparatus (47). Thus, human
NAIP may recognize structural elements common to all three
ligands. It will be of interest to determine whether NAIP de-
tection of these three ligands is functionally redundant or distinct
in the initiation of antimicrobial activities.
Our study raises intriguing questions about the evolution of

the NAIP/NLRC4 inflammasome. It is likely that a single NAIP
progenitor was present in the last common ancestor of primates
and rodents (48). In mice, there has been an expansion of NAIP
genes as a consequence of several gene duplication events (49);
interestingly, the murine NAIPs are specialists, as they each
recognize only one of three bacterial proteins derived from the
evolutionarily related T3SS and flagellar apparatus. In contrast,
the single human NAIP is a generalist, as it is capable of func-
tionally detecting all three bacterial proteins. The promiscuity
displayed by human NAIP may provide a selective advantage, as
it may be more difficult for pathogens to simultaneously evade
recognition of all three ligands by human NAIP.
Promiscuous ligand recognition may be a general strategy used

by the innate immune system to diversify protein functionality as
a means of promoting responses against different pathogenic
stimuli. For example, the natural killer (NK) activating receptor
NKG2D broadly recognizes several MHC class I-related proteins
in contrast to other NK receptors, which typically recognize a
single ligand. The ability of NKG2D to recognize a broad array

of stress-inducible host ligands may provide an evolutionary ad-
vantage against viruses that use mechanisms to down-regulate NKG2D
ligands as well as rapidly evolving cancers (50). Furthermore, the
TLR sorting adaptor TIRAP promiscuously detects multiple lipids,
which diversify subcellular sites of TLR signaling and thus, enable
responses to both extracellular and endosomal pathogens (51).
However, one possible tradeoff with a more promiscuous mode of
sensing is that human NAIP may possess weaker affinities or al-
tered binding kinetics for its bacterial ligands and hence, decreased
signaling potency. In contrast, a given mouse NAIP may possess
higher affinity or half-life in binding its particular ligand and thus,
confer heightened immune responses. Indeed, compared with
mouse macrophages, human macrophages do not seem to be as
responsive to cytosolic flagellin, as they are more permissive for
intracellular replication of flagellated bacteria (33). While the
precise basis for this difference is unknown, one possibility is that
human NAIP detects flagellin with lower affinity or altered binding
kinetics than mouse NAIP5.
It will be of interest to examine how coevolution with Gram-

negative bacteria shaped the NAIP genes in humans and other
mammals and whether pathogens have evolved strategies for
evading human NAIP. Functional NAIP copy number varies
among human populations, and increased copy number has been
postulated to confer a selective advantage in antibacterial defense
(52). Studies in mice have shown that inappropriate activation of
the NAIP/NLRC4 inflammasome can lead to lethal systemic in-
flammation resembling sepsis (29, 37). Moreover, gain-of-function
mutations in human NLRC4 result in pathologic enterocolitis and
autoinflammation (25–28). Perhaps gain-of-function mutations in
human NAIP confer similar pathological outcomes.
Our results provide insight into human NAIP detection of

bacterial proteins from the T3SS and flagellar apparatus. The
data presented here provide an important basis for elucidating
the mechanisms underlying human NAIP inflammasome responses
to bacterial infection, which could prove crucial to understanding
how the NAIP/NLRC4 inflammasome contributes to human health
and disease.

Materials and Methods
Ethics Statement. All studies involving hMDMs were performed in compliance
with the requirements of the US Department of Health and Human Services
and the principles expressed in the Declaration of Helsinki. Samples obtained
from the University of Pennsylvania Human Immunology Core are considered
to be a secondary use of deidentified human specimens and are exempt via
Title 55 Part 46, Subpart A of 46.101 (b) of the Code of Federal Regulations. All
experiments performed with mouse bone marrow-derived macrophages
were done so in accordance with the Animal Welfare Act and the recom-
mendations in Guide for the Care and Use of Laboratory Animals of the NIH
(53). The Institutional Animal Care and Use Committee of the University of
Pennsylvania approved all procedures (protocol 804928).

Bacterial Strains and Growth Conditions. Salmonella enterica serovar Typhi-
murium WT, ΔsipB (54), and ΔfliCfljB (55) isogenic strains on the SL1344
background were used. Three hours before infection, Salmonella was di-
luted into Luria–Bertani broth containing 300 mM NaCl and grown for 3 h
standing at 37 °C to induce SPI-1 expression (56). L. monocytogenes WT and
isogenic strains on the 10403S background were cultured in brain heart in-
fusion medium (34). Listeria strains encoding heterologous bacterial li-
gands (L. pneumophila FlaA, Salmonella Typhimurium PrgJ, and Salmonella
Typhimurium PrgI) translationally fused to the truncated N terminus of ActA
and under the control of the actA promoter were used (34). The pPL2 vector
encoding PrgJ was introduced into Δhly Listeria as previously described (34,
57). Listeria strains expressing Salmonella Typhimurium SsaI, B. thailandensis
BsaK, S. flexeri MxiI, and C. violaceum CprJ were constructed using codon-
optimized gene fragments (IDT) cloned into the pPL2 vector and introduced
into Listeria as previously described (34, 57).

Cellular Assays. Purified human monocytes from deidentified healthy human
donors were obtained from the University of Pennsylvania Human Immu-
nology Core. Monocytes were cultured in RPMI supplemented with 10% (vol/vol)
heat-inactivated FBS, 2 mM L-glutamine, 100 IU/mL penicillin, 100 μg/mL strep-
tomycin, and 50 ng/mL recombinant humanM-CSF (Gemini Bio-Products) for 6 d
to promote differentiation into hMDMs. One day before infection, adherent
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Fig. 6. A single NAIP isoform is sufficient for inflammasome responses to
flagellin, the T3SS inner rod protein, and the T3SS needle protein. (A and B)
THP-1 cells were primed with Pam3CSK4 and treated with PA alone, LFn-
FlaA310–475 alone, LFn-PrgJ alone, PA+LFn-FlaA310–475 (FlaTox), or PA+LFn-
PrgJ (PrgJTox) for 5 h. IL-1α and IL-1β supernatant levels were measured by
ELISA. Bar graphs display the mean ± SD of triplicate wells. Representative of
three independent experiments. ***P < 0.001 by unpaired t test; ****P <
0.0001 by unpaired t test. (C) HEK293 cells were transfected with expression
vectors encoding NLRC4, caspase-1, and IL-1β. Where indicated, cells were
also transfected with vectors encoding NAIP* (+) or empty vector control (−).
After 18 h, cells were treated with PA+LFn-PrgJ, PA+LFn-FlaA310–475, PA+
LFn-YscF, or PA alone for 9 h. Immunoblot analysis was performed on cell
lysates for mature and pro–IL-1β, NAIP*, NLRC4, caspase-1, and β-actin as a
loading control. Representative of three independent experiments.
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hMDMs were replated in media with 25 ng/mL human M-CSF lacking antibiotics
at 1.0 × 105 cells per well in a 48-well plate. Pam3CSK4 (100 ng/mL) and LPS
(500 ng/mL) pretreatments, bacterial infections, anthrax toxin-mediated delivery
of bacterial ligands, siRNA experiments, cytotoxicity assays, ELISA, immunoblot
analyses, qRT-PCR analyses, HEK293 inflammasome reconstitution assays, and
statistical analyses were performed as described in SI Materials and Methods.
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