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A segmental deletion resulting in DNAJB1–PRKACA gene fusion is
now recognized as the signature genetic event of fibrolamellar hepa-
tocellular carcinoma (FL-HCC), a rare but lethal liver cancer that pri-
marily affects adolescents and young adults. Here we implement
CRISPR-Cas9 genome editing and transposon-mediated somatic gene
transfer to demonstrate that expression of either the endogenous
fusion protein or a chimeric cDNA leads to the formation of indolent
liver tumors in mice that closely resemble human FL-HCC. Notably,
overexpression of the wild-type PRKACA was unable to fully reca-
pitulate the oncogenic activity of DNAJB1–PRKACA, implying that
FL-HCC does not simply result from enhanced PRKACA expression.
Tumorigenesis was significantly enhanced by genetic activation of
β-catenin, an observation supported by evidence of recurrent Wnt
pathway mutations in human FL-HCC, as well as treatment with the
hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes
tissue injury, inflammation, and fibrosis. Our study validates the
DNAJB1–PRKACA fusion kinase as an oncogenic driver and candidate
drug target for FL-HCC, and establishes a practical model for preclin-
ical studies to identify strategies to treat this disease.
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Fibrolamellar hepatocellular carcinoma (FL-HCC) ubiqui-
tously harbors an ∼400-kb deletion on chromosome 19 that

produces an in-frame fusion of DnaJ heat shock protein family
member B1 (DNAJB1) and protein kinase cAMP-activated cat-
alytic subunit alpha (PRKACA) (1, 2) (Fig. S1A). DNAJB1 en-
codes a subunit of the heat shock factor 40 (HSP40) complex,
which activates the ATPase of HSP70 and serves as a molecular
chaperone that can be induced by an array of environmental
stresses (3). PRKACA encodes a catalytic subunit of protein ki-
nase A (PKA), which resides in the cytoplasm in an inactive
tetrameric complex with PKA C-β and two regulatory subunits of
the PKA holoenzyme (4). Activation of G protein-coupled re-
ceptors leads to cAMP-dependent activation of the PKA cata-
lytic subunits and subsequent phosphorylation of a panoply of
cellular substrates (4). The crystal structure of the DNAJB1–
PRKACA fusion protein shows that the catalytic site, regulatory
subunit binding, and anchoring protein binding remain similar to
those of the wild-type PRKACA (5).
Beyond the presence of DNAJB1–PRKACA fusions, FL-HCC

tumorigenesis is poorly understood. Few, if any, other significantly
recurrent mutated genes have been described (6, 7), and while
broad copy-number alterations have been observed, they do not
specifically implicate known oncogenes or tumor suppressors (7).
Unlike liver cancer in older adults, FL-HCC is not associated with

any known etiological risk factors such as alcoholism, chronic hep-
atitis infection, or liver flukes (8).
Currently, FL-HCC is diagnosed on the basis of histological

features such as large cells with granular eosinophilic cytoplasm,
vesiculated nuclei, and large nucleoli. Ultrastructural studies
observe a hyperaccumulation of mitochondria and abundant
endoplasmic reticulum (9). While early onset and lack of chronic
liver disease are suggestive of FL-HCC, classic HCC can also
occur in young patients and misdiagnosis is common (10). Given
the specificity of DNAJB1–PRKACA fusion for FL-HCC, its
detection will likely be decisive for correct diagnosis (2).
Surgical resection is currently the primary treatment for FL-

HCC patients. Although often described as a relatively indolent
disease, a high rate of recurrence represents a major clinical
challenge (11), and the 5-y survival rate is 34% (12). There is no
evidence of survival benefit from adjuvant chemotherapy or any
systemic treatment applicable to classic HCC (13). While the
unique demographics and genetics of FL-HCC suggest that these
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patients should be treated differently from those with HCC,
there have been few clinical trials that have been tailored to this
patient population (www.clinicaltrials.gov). The development of
FL-HCC–specific therapies has been further hindered by the
lack of genetically and biologically accurate model systems.
Mouse models have been a powerful tool for evaluating the

oncogenic potential of candidate drivers and studying the biology
of tumorigenesis, and as preclinical systems to test novel thera-
peutics (14). In this study, we employed hydrodynamic trans-
fection combined with either CRISPR-Cas9–mediated editing of
the endogenous deletion or transposon-mediated transgenesis of
fusion cDNA and variants, allowing us to introduce genetic le-
sions in a subset of hepatocytes without the time and expense of
producing germ-line genetic strains (15, 16). Using this ap-
proach, we demonstrate that the DNAJB1–PRKACA fusion is a
bona fide oncogene and identify genetic and environmental
factors that cooperate with the fusion event to drive aggressive
disease. Our results further show that the PRKACA kinase do-
main is required for these effects, providing a rationale for tar-
geting kinase activity pharmacologically. We anticipate that the
models presented herein will serve as a powerful platform for
future biological and preclinical studies.

Results
CRISPR-Mediated Deletion Results in the Fusion Oncogene and Drives
Tumorigenesis in Vivo. The oncogenic potential of the endogenous
DNAJB1–PRKACA fusion in vivo was assessed. Coexpression of
Cas9 with multiple single-guide RNAs (sgRNAs) can be used to
model chromosome translocations, inversions, and deletions by
generating DNA double-strand breaks at the breakpoints of
chromosome rearrangements, which are subsequently joined by
nonhomologous end joining (17–21). While such events are rare,
an oncogenic rearrangement is expected to be positively selected
in vivo. We determined whether the FL-HCC–associated rear-
rangement could be generated in hepatocytes of young adult
mice via hydrodynamic tail-vein injection using tandem sgRNAs
corresponding to the breakpoints of the disease-associated de-
letion in the first introns of Dnajb1 and Prkaca (Fig. 1A). Im-
portantly, the deleted region on human chromosome 19 in FL-HCC
is syntenic to a corresponding region on mouse chromosome 8. In
fact, all protein-coding genes present in the human region have
orthologs present in the mouse region, and are arranged in the same
order (Fig. 1A).
To test the feasibility of this approach, different sgRNAs ca-

pable of targeting the first intron of Dnajb1 and Prkaca were
coexpressed with Cas9 in NIH 3T3 cells or adult livers using
lentiviral transduction or hydrodynamic injection, respectively
(Fig. S1A), and confirmed to produce a fusion event using PCR
(Fig. S1 B and C). Next, two sgRNA pairs, targeting different
sequences within the same introns (herein CRISPR.1 and
CRISPR.2), were introduced into the livers of adult mice and the
animals were monitored over time. A subset of animals trans-
duced with both sgRNA combinations became moribund with
liver tumors 16 to 24 mo post injection (Fig. 1B). Tumor-bearing
mice typically harbored disease involving multiple lobes, pre-
sumably from independent initiating events, and ranged from
diffuse to macroscopically visible (Fig. 1C). In samples evaluated
histologically, 2/9 mice injected with CRISPR.1, and 3/7 mice
injected with CRISPR.2, died as a result of tumor burden. Ad-
ditionally, nonmoribund animals that were killed harbored his-
tological evidence of disease (annotated as “asymptomatic”) in
2/9 CRISPR.1 mice and 2/7 of CRISPR.2 mice (Fig. 1D). For both
guide pairs, RT-PCR and Sanger sequencing with fusion-specific
primers confirmed expression of the intended Dnajb1–Prkaca
fusion oncogene in these lesions (Fig. 1E).
Histologically, the CRISPR-induced mouse tumor cells (Fig.

1F) were strikingly similar to human FL-HCC (Fig. 1G). Like
human FL-HCC, the mouse liver tumors were composed of large,

pleiomorphic polygonal cells with abundant eosinophilic cy-
toplasm, large vesicular nuclei, and prominent nucleoli. Fur-
thermore, the lobular structure of the tumors was clearly disrupted
(Fig. 1H) and distinctive cytoplasmic inclusions were observed (see
below). However, unlike the human disease, the mouse tumors
were not surrounded by detectable fibrosis. Supporting the robust-
ness of these results, tumors with similar latency and histology were
recapitulated with an independent Cas9-expressing vector (Fig.
S1D). Thus, induction of an endogenous Dnajb1–Prkaca fusion
through intrachromosomal deletion drives tumors with features of
FL-HCC in mice. Independent work from others recently dem-
onstrated an FL-HCC phenotype of lesions in mice using similar
methods (22).

DNAJB1–PRKACA Fusion Drives Liver Tumorigenesis. The segmental
deletion that results in the DNAJB1–PRKACA gene fusion en-
tails heterozygous loss of seven other coding genes, with un-
known functional contribution. In other contexts, such deletions
can contribute to tumorigenesis directly through attenuating the
function of haploinsufficient tumor suppressors (23). To deter-
mine whether the DNAJB1–PRKACA fusion is sufficient to drive
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Fig. 1. CRISPR-mediated deletion results in a fusion oncogene and drives
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cluding Dnajb1 and Prkaca, and schematic of an endogenous 400-kb
deletion targeted by hydrodynamic injection of vector containing tandem
sgRNAs targeting introns of Dnajb1 and Prkaca and Cas9. (B) Overall survival
of mice injected with CRISPR.1 (n = 10) or CRISPR.2 (n = 9). (C) Macroscopic
view of a tumor-bearing liver. N, adjacent normal; T, tumor. (D) Fraction of
mice harvested with no detectable tumor, asymptomatic mice with histo-
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(moribund) for each indicated genotype. (E) Sanger sequencing of chimeric
transcript amplified from tumors generated by CRISPR.1 (Top) and CRISPR.2
(Bottom). (F) H&E staining of tumors generated by CRISPR.1 (Top) and CRISPR.2
(Bottom). (G) Human case of FL-HCC (F, fibrosis). (H) Normal mouse liver, where
sinusoids trace from central veins to portal triads (CV, central vein; PV, portal
vein) with intact sinusoids (white line; s). (Scale bars, 50 μm.)
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tumorigenesis (uncoupled from the typical genomic deletion),
and whether simply the overexpression of the wild-type PRKACA
gene could recapitulate this effect, we used hydrodynamic injection
to deliver a transposon expressing the human DNAJB1–PRKACA
fusion cDNA or a full-length wild-type PRKACA cDNA. Cotrans-
fection of transiently expressed Sleeping Beauty transposase (SBase)
with a transposon construct allows for stable integration and consti-
tutive overexpression of the cDNA that mimics the high levels in
human tumors (1) (Fig. 2A).
Expression and protein stability are similar between the DNAJB1–

PRKACA fusion protein and full-length WT PRKACA, and over-
expression of wild-type PRKACA produced some changes to hepa-
tocyte histology but did not trigger the formation of lethal tumors
(Fig. 2 B–E). However, expression of the DNAJB1–PRKACA cDNA
produced tumors with similar kinetics, penetrance, and morphology
as CRISPR-driven murine FL-HCC (Fig. 2 B, C, and F). Again, a
spectrum of histological findings supported the similarity between
these complementary methods and human FL-HCC (Figs. 1 and 2),
including the presence of large tumor cells with granular, eosinophilic
cytoplasm and prominent nucleoli (Fig. 2F). Mitotic figures, steatosis,
and pale bodies (8) were also observed (Fig. 2G). These results imply
that the DNAJB1 portion of the fusion protein contributes to disease
beyond facilitating overexpression of PRKACA, and that the chro-
mosome 19 deletion event is not required for oncogenesis.

Murine Tumors Display Structural and Molecular Features of Human
FL-HCC. To validate that the murine model recapitulates other
aspects of the human disease, we further characterized the

phenotype of murine tumors. Human FL-HCC has consistently
recognizable ultrastructural features that were also observed in
murine FL-HCC tumors by electron microscopy (EM). Like
human FL-HCC, murine tumor cells were typically larger than
adjacent normal hepatocytes and contained clumped hetero-
chromatin (Fig. 3 A and B and Fig. S2A), occasional pale bodies
(Fig. 3B), and prominent nucleoli (Fig. S2 B and C). Most no-
tably, tumor cells exhibited a marked increase in mitochondria
with atypical appearance (8, 9, 24) (yellow arrowheads, Fig. 3 C
and D and Fig. S2 E–H). Numerous megamitochondria were
observed. The mitochondria were round to oval and homoge-
neous without obvious cristae and were surrounded by abundant
rough endoplasmic reticulum (red arrowheads, Fig. 3 C and D
and Fig. S2). Throughout the tumor, cells had moderate to severe
perinuclear and cytoplasmic aggregates of lipofuscin pigment
(Fig. 3B and Fig. S2I). This finding, along with the mitochon-
drial phenotype, could be consistent with a state of oxidative
stress (25, 26).
Human FL-HCC is known to often express markers of mul-

tiple lineages, including hepatic, biliary, and neuroendocrine (27,
28). The murine tumors were positive for hepatocyte markers
HNF4A and HNF1A, with some cells showing reduced expres-
sion, consistent with reduced hepatocyte lineage commitment
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(Fig. S3 A and B). However, the murine tumors were negative for
other proteins that are often expressed in FL-HCC, including
biliary markers CK7 and CK19 as well as CD68 (Fig. S3 C–F),
perhaps reflecting the fact that mature hepatocytes are targeted
by the hydrodynamic transfection technique and thus are nec-
essarily the cell of origin of the murine FL-HCC model, whereas
the cell of origin in human FL-HCC is unknown.
To further validate the mouse model, gene expression analysis by

RNA-seq (sequencing) was performed on murine tumors and con-
trol liver tissue and compared with human FL-HCC. Sequencing
reads that cross the junction were observed, confirming expression of
the fusion (Fig. 3G). Principal component analysis demonstrated
that the vast majority of the variance between samples described the
differences between tumor and normal samples (Fig. 3H). A focused
analysis to investigate the similarity between mouse and human
tumors was evaluated in two ways. First, single-sample gene set
enrichment analysis (ssGSEA) (29), using FL-HCC expression sig-
natures from three independent published studies (7, 10, 30),
was used to confirm that differentially expressed genes in human
tumors were, in aggregate, significantly enriched in our murine
tumors (Fig. 3I). Second, a supervised analysis of curated func-
tional gene sets previously reported as enriched in FL-HCC (30)
was consistent with murine tumor expression data (Fig. S4A).
These results provide a global analysis that classifies the murine
model as FL-HCC. Overall, the murine tumors arising in the
presence of the DNAJB1–PRKACA fusion show most, but not all,
features of the human disease.

Molecular Profiling of Murine FL-HCC Reveals Processes Linked to
Tumorigenesis. Unbiased analysis of expression data also sug-
gested yet other biological processes that may be relevant to FL-
HCC pathogenesis. A total of 5,710 genes were significantly
differentially expressed between tumor and normal tissue (Fig.
4A and Dataset S1), and further global analysis by GSEA was
performed (Fig. 4B and Dataset S2). The gene expression data,
in agreement with human signatures, showed evidence of increased

proliferation and mitogenic signaling (Fig. 4 A–C). For example,
cell-cycle and DNA biosynthesis gene sets, and specifically Cdk1,
Gins2, and Cenpa, were highly up-regulated in the experimental
tumors (Fig. 4 D and E). Accordingly, tumors displayed an ele-
vated Ki67 index (∼9%) compared with adjacent normal tissue
(∼1%) (Fig. 4C). Activation of the PI3K pathway was indi-
cated by down-regulation of Deptor (a negative regulator of
mTORC1 also decreased in human tumors) and up-regulation of
the receptor tyrosine kinase ligands Egf, Nrg2, and Ereg in both
mouse and human tumors (30) (Fig. 4A and Fig. S4E). This
observation was validated by immunofluorescence showing high
levels of phospho-S6rp, a marker of mTOR activity that is highly
expressed in most FL-HCCs but rarely in classic HCC (7, 31)
(Fig. 4C).
Supporting previous reports that dedifferentiation is associ-

ated with DNAJB1–PRKACA–driven transformation (32), we
observed down-regulation of hepatocyte lineage markers and up-
regulation of some neuroendocrine markers (Fig. 4D and Fig.
S4G), as has been observed in human FL-HCC (30). GSEA
further showed down-regulation of epithelial cell fate commit-
ment, bile acid biosynthesis, liver-specific genes, and xenobiotic
metabolism (33), and up-regulation of a teratoma-associated
gene set (Fig. 4E). Similarly, gene expression signatures defining
specialized zones of hepatocytes (34) were universally lost,
consistent with human data (30) (Fig. S4H).
Murine FL-HCC cells may also have defects in cell adhesion.

Tumor cells displayed a decrease in Cdh1/E-cadherin expression,
and cell adhesion- and desmosome-associated gene sets were
down-regulated (Fig. 4 A and B). E-cadherin down-regulation
was confirmed by immunohistochemistry (IHC), and EM revealed
indistinct or simple tumor cell–cell junctions (Fig. S2 J and K).
Loss of cell polarity was indicated by a loss of synchronized
glycogen storage evident in neighboring hepatocytes, shown by
largely negative periodic acid Schiff (PAS) staining (Fig. 4D). An
exception to this pattern was the observation of PAS+ Mallory/
hyaline bodies, which are commonly found in FL-HCC (8)
and are reminiscent of a stress-induced phenotype (35) (Fig.
4D, Insets).
Murine and human tumors also showed evidence of a response

to oxidative stress, as indicated by the up-regulation of enzymes
involved in detoxifying reactive oxygen species (ROS) (e.g.,
Nqo1, Gpx3, Gpx4, and Acox1) (Fig. 4B and Fig. S4F). The ac-
cumulation of mitochondria can be driven by oxidative stress
(36); up-regulation of mitochondrial-encoded transcripts (Fig.
S4B) and an increase in the number of mitochondria observed by
EM (Fig. 3 and Fig. S2 E–H) were also evident in both the mouse
model and clinical samples. Whether or how each of these fea-
tures contributes to the pathogenesis of FL-HCC remains to
be determined.

WNT Pathway Cooperates with DNAJB1–PRKACA to Accelerate FL-
HCC. To further understand the genetic basis of FL-HCC and
address the long latency of the single-hit models, we investigated
additional factors that could accelerate disease. We queried the
MSK-IMPACT collection of targeted sequencing data of over
18,000 cancer patients (37). Eighteen liver cancer patients (age
18 to 36) whose tumors harbored the DNAJB1–PRKACA fusion
were identified (Fig. 5A). As expected, the fusion was not de-
tected in any liver cancer patient over the age of 36 (0/414 pa-
tients) or in any nonliver cancer patient (0/18,367 patients),
confirming the remarkable specificity of the DNAJB1–PRKACA
fusion to liver oncogenesis (Fig. S5A). While HCC and intra-
hepatic cholangiocarcinoma (ICC) share several common mu-
tations, none of these have been linked to FL-HCC. Surprisingly,
we noted previously unreported recurrent mutations in the Wnt
pathway in human FL-HCC (Fig. 5 A and B). The MSK-IMPACT
cohort contains 3/18 (17%) samples of FL-HCC with CTNNB1
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or APC mutation (age 18 to 21 y old). These cases each showed
classic histological features of FL-HCC (Fig. S5C).
In parallel, candidate drivers of liver cancer were evaluated

for their ability to synergize with DNAJB1–PRKACA to trans-
form hepatocytes. Neither transposon-based delivery of MYC,
AKTmyristoylated, NOTCHICD, YAPS127A, Fgf15, Il10, and Il18 nor
CRISPR-mediated inactivation or knockout of p19ARF, Pten,
Prkar1a, Rb1, Cdkn1b, and Tsc2 cooperated with DNAJB1–
PRKACA (Fig. S6). However, an activated form of β-catenin
uniquely cooperated with DNAJB1–PRKACA (using a trans-
poson encoding CTNNB1T41A cDNA). Of note, CTNNB1T41A is
the same allele that co-occurred with the DNAJB1–PRKACA fusion
in a human primary FL-HCC and its corresponding brain metastasis
(Fig. 5B and Fig. S5B). Both pairs of tandem guide CRISPRs, as well
as transposon delivery of fusion cDNA, synergized with transposon
delivery of stabilized β-catenin, increasing penetrance and reducing
latency of the model (Fig. 5 C and D). In all cases, the histology of
the resulting tumors matched the single-hit models, though some

features (e.g., cell size) were more pronounced (Fig. 5E). The ac-
celeration of the model by Wnt signaling was further validated by the
combination of DNAJB1–PRKACA cDNA and disruption of Apc
using CRISPR, which yielded tumors with a similar phenotype (Fig.
S7). While expression of the DNAJB1–PRKACA fusion alone led to
increased membranous β-catenin and phosphorylation of β-catenin
at PKA phosphorylation site S675, expression of the canonical Wnt
target AXIN2 was negative or weak in samples without genetic
manipulation of the Wnt pathway (Fig. S7), which is corroborated
by low expression of AXIN2 mRNA (Dataset S1) and the
“HALLMARK_WNT_BETA_CATENIN_SIGNALING” gene set
(Dataset S2) in samples driven by the fusion only. Of note, tumor
cells arising in a mouse injected with the CRISPR.1 sgRNA pair
and the CTNNB1T41A transposon formed tumors upon multiple
rounds of s.c. transplantation into syngeneic recipients (Fig. S8).
Hence, genetic lesions that activate Wnt signaling occur in the
human disease and can cooperate with DNAJB1–PRKACA to
accelerate FL-HCC.
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Inflammatory and Fibrotic Agent 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine
Enhances FL-HCC Tumorigenesis. FL-HCC typically occurs in young
patients who do not have the overt chronic liver diseases that often
promote fibrosis and contribute to the emergence of classic HCC (8).
Nevertheless, since the tumors arising in our mouse model lacked the
eponymous fibrosis characteristic of human FL-HCC, we wondered
whether experimental strategies to induce fibrosis might ac-
celerate murine tumors. The hepatotoxin 3,5-diethoxycarbonyl-
1,4-dihydrocollidine (DDC) causes oxidative liver damage, cell death
in periportal hepatocytes, atypical ductal expansion of progenitor
cells, and, ultimately, fibrosis (38), and can accelerate HCC tumori-
genesis by specific oncogenic events (39, 40).
Consistent with published results, mice treated with a 0.1%

DDC-containing diet develop hepatomegaly, inflammation, and
fibrosis with portal bridging by 8 wk of treatment but did not
develop tumors (38, 41) (Fig. 6 and Fig. S9A). Although the
DDC diet showed some increase in the onset of tumors following
expression of mutant CTNNB1 alone, the effects on the combi-
nation of mutant CTNNB1 and DNAJB1–PRKACA were dra-
matic: In fact, 6-mo survival was decreased from 60 to 70% with
CTNNB1T41A/DNAJB1–PRKACA to 0% observed with the same
combination in DDC-treated mice (Fig. 6 A and B). The his-
tology of the tumor cells themselves remained largely unchanged
by DDC treatment but, as expected, the surrounding tissue ac-
quired DDC-associated phenotypes associated with tissue re-
generation following injury (Fig. 6C and Figs. S9B and S10).
Surprisingly, the morbidity of the combination often preceded
the establishment of significant fibrosis (Fig. 6C and Fig. S9).
Therefore, these data suggest that one or more factors associated
with the DDC-induced regenerative response can fuel murine
FL-HCC. Furthermore, the combination of our non–germ-line
genetic approaches and a DDC diet produces FL-HCC–like tu-
mors at high penetrance and with a short latency.

Tumorigenicity of DNAJB1–PRKACA Is Dependent on the Kinase
Domain. To illustrate the potential of a rapid and robust model
of FL-HCC, we used the above methods to address whether the
kinase activity of the DNAJB1–PRKACA fusion is essential for its
ability to drive tumorigenesis—a prerequisite for rationalizing
the use of small-molecule inhibitors targeting the PRKACA ki-
nase for treatment of FL-HCC. To this end, we produced a ki-
nase-dead version of the DNAJB1–PRKACA fusion harboring a
mutation in the PRKACA component, equivalent to the pre-
viously described K72H mutation (42), and compared its onco-
genic potential with the intact fusion cDNA when combined with
DDC and CTNNB1T41A. A cohort of mice was produced and
killed at 9 to 10 wk to examine the presence or absence of liver
lesions. While clusters of neoplastic hepatocytes with classic FL-
HCC morphology were observed in samples with an intact kinase
domain, no such atypical hepatocytes were identified in samples
expressing the kinase-dead fusion cDNA (Fig. 7A). Furthermore,
expression of the kinase-intact fusion led to a significantly ele-
vated Ki67-positive fraction of GFP+ cells, while the GFP+ cells
in samples expressing the kinase-dead fusion cDNA did not show
a significantly higher Ki76-positive fraction compared with ad-
jacent normal liver or DDC-treated empty vector controls (Fig.
7C). Thus, the PRKACA kinase domain is required for FL-HCC
tumor initiation.

Discussion
Using a combination of hydrodynamic transfection, somatic
genome editing, and transposon-mediated gene delivery, we
demonstrate that the DNAJB1–PRKACA fusion is a bona fide
oncogene that drives FL-HCC. Since tumors were produced by
both the endogenous fusion and ectopic expression of the fusion
cDNA, it appears that the loss of the intervening 400-kb deleted
region, encompassing seven additional genes, is dispensable for
tumorigenesis. The gene fusion appears to be functionally dis-
tinct from the mere overexpression of wild-type PRKACA, which
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is insufficient to drive tumor progression, at least when expressed
in adult hepatocytes. On the other hand, the kinase domain of
PRKACA is required for the FL-HCC phenotype. Importantly,
this indicates that the potentially druggable enzymatic activity of
the chimera is important for tumorigenesis.
Numerous features of the FL-HCC models described here mimic

the human disease. Histologically, our methods generate tumors
whose morphology is strikingly reminiscent of human FL-HCC.
Dramatic accumulation of mitochondria appears to be a consistent
consequence of DNAJB1–PRKACA activity, further linking our
model to the human disease. Globally, we observe an expression
signature significantly enriched with the genes differentially ex-
pressed in human FL-HCC. Nonetheless, DNAJB1–PRKACA
expression in the murine hepatocytes does not appear to directly
drive all molecular features of FL-HCC (fibrosis, expression of
biliary markers, CD68). Additionally, while human FL-HCC often
metastasizes, no metastases were observed in the mouse model.
Perhaps other biological factors, or time, are needed for metastatic
progression. These differences notwithstanding, the mouse model
allows for insight into the phenotype of protein kinase A fusion
activity in the liver in a controlled setting. We observe that induction
of the fusion results in tumors with activated mTOR signaling (a
druggable pathway) and detectable effects of oxidative stress (a
potential vulnerability), validated by multiple previous reports
describing human clinical samples (7, 30, 31, 33).

In human FL-HCC, we observed recurrent mutations that
hyperactivate the Wnt pathway together with the DNAJB1–
PRKACA fusion. Furthermore, genetic alteration of this path-
way—but not several other oncogenes or tumor suppressors—
synergized with DNAJB1–PRKACA–driven tumorigenesis in
the mouse. While the basis for this genetic interaction remains to
be determined, it is possible that modification of β-catenin may
be one downstream output of DNAJB1–PRKACA and that
stabilization of β-catenin may amplify its functional conse-
quences. PKA has been described to regulate β-catenin through a
variety of mechanisms, including direct modification via C-terminal
phosphorylation (43–45); accordingly, phospho-β-catenin is elevated
in human FL-HCC (46, 47). Alternatively, β-catenin may protect
cells from oxidative stress imposed by DNAJB1–PRKACA (48).
DDC dramatically shortened tumor latency, unexpectedly

preceding extensive fibrosis. By causing oxidative stress-induced
cell death in a subset of periportal hepatocytes, DDC sets in
motion a liver regenerative response that is associated with
compensatory expansion of liver progenitor cells, activation of
myofibroblasts, fibrosis, and massive immune cell infiltration
(41) in a process supported by β-catenin expression in hepato-
cytes (48). Any or all of the activated and recruited cell types
could contribute paracrine signals that protect and stimulate
growth in the spatially separated (largely pericentral) population
of hepatocytes that are transfected by hydrodynamic injection
(49). While chronic liver damage is not considered to be nec-
essary for human FL-HCC, our data raise the possibility that
some environmental factor, perhaps in a susceptible population,
may be relevant in the etiology of the disease. Alternatively, it is
possible that β-catenin and/or DDC facilitated a change in cell state
that supports or expands a susceptible progenitor cell population
more prevalent in adolescents.
Animal models set a gold standard for assessing the oncogenic

potential of aberrations observed in human cancer and provide
experimental systems to study disease mechanisms or test novel
therapeutic strategies (14). While one patient-derived xenograft
of FL-HCC has been described (32), our models introduce the
ability to examine the entire process of tumor initiation in im-
mune-competent organisms. The somatic engineering methods
described here involve only delivery of plasmid DNA to hepato-
cytes and do not require expensive and time-consuming generation
or breeding of germ-line mouse strains, cell transplantation, or
stable expression of Cas9. The model is easily implemented, repro-
ducible, and genetically defined. As such, these systems are a powerful
platform for further understanding the biology of FL-HCC and
facilitating drug discovery for a disease that disproportionately
affects young patients and has limited treatment options.

Materials and Methods
Animals and Treatments. Female, 6- to 10-wk-old C57BL6/N mice were pur-
chased from Envigo. All animal experiments were approved by the Memorial
Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use
Committee (protocol 11-06-011). For hydrodynamic tail-vein injection, a
sterile 0.9% NaCl solution was prepared containing plasmid DNA of either
40 μg CRISPR vector or 20 μg transposon vector together with CMV-
SB13 transposase (1:5 molar ratio). Mice were injected into the lateral tail
vein with a total volume corresponding to 10% of body weight (typically
2 mL for a 20-g mouse) in 5 to 7 s (15, 50). DDC treatment was adminis-
tered through a diet containing 0.1% DDC (Sigma-Aldrich; Envigo) until
sacrifice (40). Transplants were performed by finely mincing freshly isolated
tumors, suspending in 1:1 PBS:Matrigel, and injecting s.c. in a 100-μL
volume.

ElectronMicroscopy. Tissue was fixed in 4%glutaraldehyde and transferred to
cold PBS until further processed. The tissues were post fixed in 1% osmium
tetroxide in PBS. After washing in water, the tissue was stained with 2%
aqueous uranyl acetate for ∼2 h at 4 °C. Tissues were dehydrated through a
dilution series of acetone followed by propylene oxide and embedded in
Epon. Ultrathin sections were deposited on grids and stained with uranyl
acetate for 15 min and lead citrate for 5 min.
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Immunohistochemistry and Immunofluorescence. Tissue was prepared for
histology by fixing in 10% buffered formalin overnight and then transferred
to 70% ethanol until paraffin embedding and sectioning (IDEXX RADIL).
Antigen retrieval was performed in a pressure cooker with sodium citrate
buffer. The following primary antibodies were used: Ki67 (Abcam; ab16667;
1:200), p-S6rp (Cell Signaling; 2211; 1:200), E-cadherin (BD; 610181; 1:500),
HNF1a (Santa Cruz; sc-6547; 1:100), HNF4a (Abcam; ab41898; 1:200), CK7
(Abcam; ab181598; 1:500), CK19 (Abcam; ab133496; 1:1,000), CD68 (MSKCC
Pathology Core Facility; 5 μg/mL), IBA1 (Wako; 1:500), GFP (Abcam; ab13970;
1:200), β-catenin (BD; 610154; 1:500), p-β-catenin (Cell Signaling; 9567;
1:100), and AXIN2 (Abcam; ab32197; 1:800). Primary antibodies were in-
cubated at 4 °C overnight in blocking buffer. Sections were incubated with
anti-rabbit ImmPRESS HRP-conjugated secondary antibodies (MP7401; Vec-
tor Laboratories), and chromagen development was performed using
ImmPACT DAB (SK4105; Vector Laboratories). Stained slides were counter-
stained with Harris hematoxylin. Images of stained sections were acquired
on a Zeiss Axio Scope Imager Z.1. Raw tif files were processed using Pho-
toshop CS5 software (Adobe Systems) to adjust white balance.

RNA-Seq. Total RNAwas isolated from frozen tissue using the RNeasy Mini Kit
(Qiagen), quality control was performed on an Agilent Bioanalyzer, and
500 ng of total RNA (RNA integrity number >8) underwent polyA selection
and TruSeq library preparation according to instructions provided by Illu-
mina (TruSeq RNA Sample Prep Kit version 2) with six cycles of PCR. Single-
end, 75-bp sequencing was performed at the Cold Spring Harbor Laboratory
core facility. Approximately 8 million reads were acquired per sample.
Resulting RNA-seq data were analyzed as described previously (23). Adaptor
sequences were removed using Trimmomatic (51). RNA-seq reads were then
aligned to the mouse genome (mm10) using STAR (52) with default pa-
rameters, and genome-wide transcript counting was performed using Sub-
read to generate a count matrix (53, 54). Differential expression analysis was
performed by DESeq2 (55). Genes were considered to be significantly dif-
ferentially expressed if tumor/normal comparison was greater than twofold
and false discovery rate (FDR)-adjusted P value was less than 0.05.

Human–murine mapping of orthologs was performed based on the
Ensembl database accessed through the Biomart R/Bioconductor package
(56). Human fibrolamellar HCC signatures were defined as genes with at

least twofold and significant expression changes in fibrolamellar tumors
with respect to normal. Human transcriptional profiling data were obtained
from published studies (7, 30) and The Cancer Genome Atlas/Broad GDAC
firehose using annotation from Dinh et al. (10). For comparison with human
datasets and for gene set enrichment analysis, the ssGSEA method was
implemented using the GSVA package within R (29). The GSVA outputs were
subsequently compared across groups using the limma package (57). The C2,
C3, C5, and Hallmark collections of gene sets from MSigDB version 6.0 were
queried (58).

Human Tumor Sequencing Data. The MSK-IMPACT sequencing data (37) were
obtained from the MSKCC cBioPortal (59) (www.cbioportal.org). Of the 18
DNAJB1–PRKACA fusion cases, 14 were annotated as fibrolamellar HCC and
4 were annotated as HCC. We considered all DNAJB1–PRKACA–positive liver
cancers as FL-HCC, given the common misdiagnosis of this rare cancer type
(10), for which the presence of the DNAJB1–PRKACA fusion should be con-
sidered diagnostic (2).
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