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Abstract

Background: Normalization is an important data preparation step in gene expression analyses, designed to remove
various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent
statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing
information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably
introduce some bias. This bias typically inflates type | error; and can reduce statistical power in certain situations. In this
study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a
multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize
the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for
hypothesis testing that suitably pairs with the proposed robust normalization.

Results: We first compared super-delta with four commonly used normalization methods: global, median-IQR,
quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical
power with tighter control of type | error rate than its competitors. In many cases, the performance of
super-deltais close to that of an oracle test in which datasets without technical noise were used. We then
applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant
chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to
identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all
these methods selected largely consistent pathways. Detailed investigations on the relatively small differences
showed that pathways identified by super-delta have better connections to breast cancer than other methods.

Conclusions: As a new pipeline, super-delta provides new insights to the area of differential gene expression
analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties.
Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art
procedures. It also has the potential of expansion to be incorporated with other data type and/or more general
between-group comparison problems.
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Background

Gene expression data analysis has become a popular
research area in the 21st century. To identify differentially
expressed (DE) genes, namely those that have significantly
different mean expression levels between groups of sam-
ples (e.g., cancer patients and normal people), is one of the
most common tasks in transcriptome research.

Due to the complex nature of high-throughput expres-
sion data, true gene expression levels that may be associ-
ated with the underlying biological conditions are almost
always confounded by sample-specific variation induced
by various technical noise and batch effects. Unlike com-
mon i.i.d. random measurement error pertain to a specific
gene for a subject, sample-specific variation affects thou-
sands of genes at a time and can increase both variance
and inter-gene correlation significantly. Over the past two
decades, several normalization procedures have been pro-
posed to remove sample-specific variation for microarray
data. The first approach [1, 2] depends on the use of
a small subset of genes (housekeeping genes) that are
expected to have constant true gene expression levels
for all samples. In other words, housekeeping genes are
assumed to be not differentially expressed (NDE) a pri-
ori. Based on the constant expression assumption, the
observed variation of housekeeping genes must be a com-
bination of sample-specific and i.i.d. noise. By the strong
law of large numbers, the i.i.d. noise tend to get can-
celled out when we average a relatively large number
of such housekeeping genes, so the remaining variation
can be considered as an “estimate” of the sample-specific
noise. Subtracting these estimates from the transcriptome
reduces noise and spurious correlation, and makes sam-
ples more comparable for subsequent statistical analyses.
The main drawback of this approach is that the set of
“housekeeping” gene is a moving target that depends on
the biological conditions and can hardly be made objec-
tive. Furthermore, even if the mean expression of a house-
keeping gene is constant for all conditions in a given study,
it may exhibit natural variability for different subjects
[3] that are disadvantageous for normalization. The sec-
ond approach is to use objective, data-driven methods to
transform data so that certain statistical characteristics are
made constant for all normalized samples in a pool. Pop-
ular choices include the global normalization [2, 4] that
makes (trimmed) mean of normalized samples identical;
median-IQR normalization [5] that makes both location
(median) and scale (IQR) identical; and the quantile nor-
malization [6] that aligns the entire sample distribution
curves across all samples. These normalization methods
do not depend on the somewhat subjective selection of
housekeeping genes and are much more popular in cur-
rent practice than the first approach. By and large, all
normalization methods tend to reduce both sample vari-
ation and inter-gene correlation sharply and make the
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analytical results more stable, if not always more powerful
[7-9]. Because the second type of normalization achieves
variance-reduction by borrowing information across all
genes (and samples, in the quantile normalization case)
irrespective of whether these genes are housekeeping or
not, they also introduce certain bias that may reduce
statistical power [8] and/or inflate type I error rate [7]
when a non-trivial proportion (e.g., more than 10%) of
all genes are DE and the differential expression pattern is
not balanced, namely number of up-regulated genes does
not equal that of down-regulated genes. A data-driven
variable transformation called the §-sequence method
[10, 11] is an alternative to the aforementioned normaliza-
tion procedures. In this method, every gene is normalized
by another one with similar variance that acts as the
housekeeping gene. Unlike standard normalization proce-
dures that use the same sample means/medians/quantiles
as the references for every gene, §-sequence method
selects one specific housekeeping gene for each gene. The
theoretical considerations of this approach is explained in
[12]. As a consequence, the §-sequence method is a local
normalization method because only one gene is needed to
normalize a given gene. This property is especially impor-
tant for translating results from whole-transcriptome
analyses to clinical applications in which only a dozen or
so genes will be used as biomarkers for biological con-
ditions such as a specific type of cancer — we no longer
have the luxury of borrowing information from thousands
of genes for normalization. Simulation studies showed
that compared with competing methods, §-sequence is
more robust for studies with unbalanced expression pat-
terns but is more likely to be under-powered and always
has a “fixed” type I error resulted from imperfect “pair-
breaking” procedure [7]. These disadvantages make &-
sequence method only applicable for studies with very
large (e.g, n > 100) sample size and relatively strong
signal.

In this study, we propose a new gene expression analysis
pipeline for microarray platforms called super-delta
that consists of a data-driven housekeeping gene identi-
fication step and a modified DE gene selection step. In
the first step, one pairing housekeeping gene is identi-
fied for each gene based on a robust statistical method. In
the second step, DE genes are selected based on a modi-
fied two-sample ¢-test that accommodates for the unique
distributional properties of the normalized expressions.
Based on large-sample theory, we demonstrated that up
to an O(n~1/2) term, our pipeline is asymptotically equiv-
alent to applying ¢-tests to a hypothetical expression data
free of sample-specific noise (dubbed as the oracle test in
our study).

In simulation studies, we compared super-delta
with four popular competing normalization methods:
global, medIQR, LOESS, and quantile. We think
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these four methods represent a spectrum of normalization
methods that range from “very parametric” (global) to
“very nonparametric” (quantile). We expect the per-
formance of other methods, such as a variant of global
normalization with trimmed mean or median, can be
represented as members within this spectrum. Our simu-
lation studies showed that super-delta almost always
has higher statistical power and lower type I error rate
than the competing methods. In fact, its statistical perfor-
mance is very close to that of the oracle test.

Finally, we applied super-delta and competing
methods to a large-scale dataset with 242 breast can-
cer patients who received neoadjuvant chemotherapy. We
found that while the overlap of DE genes identified by all
five methods is very high, super-delta always iden-
tified more DE genes. Literature search confirmed that
these unique DE genes are known to have biological con-
nections to breast cancer or chemotherapy. Functional
enrichment analyses based on these DE genes confirmed
high consistency of all methods at the pathway level; and
super-delta identified two unique pathways that are
intricately involved in breast cancer.

Methods

Gene expression data from breast cancer patients

Gene expression data collected from 242 breast cancer
patients who took Docetaxel and Anthracycline (TxA)
chemotherapy are used in this study. Among them, 80
patients are identified as pathologic complete response
(pCR, or group A) and 162 are identified as resid-
ual disease (RD, or group B) based on their clinical
responses. More specifically, we download the raw gene
expression files in . CEL format from Gene Expression
Omnibus (GEO, [13]) series GSE20194 [14], GSE23988
[15], GSE25065 [16], and GSE42822 [17]. All data are
summarized by the robust multi-array average method
[6, 18, 19]. After log2 transformation and non-specific
filtering that removed 50% of genes with low inter-
quartile range (IQR) to the data, expression levels of
11,141 probe sets are reported for each sample. Through-
out this manuscript, we denote the log-transformed, un-
normalized expression level of the ith gene sampled from
the jth subject as yg., where a = A, B is the group to which
the jth subject belong.

Normalization methods

In this study, we compare the performance of
super-delta with four commonly used normalization
methods, global, medIQR, quantile, and loess.
We briefly introduce these methods as follows.

e Global normalization (global). Let
¥ = Ly 7j=12...,ma=A,B bethe
mean expression of sample j. Then the normalized
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expression is defined as yz* =5 =¥
i=12,...,mj=12,...,n,a = A,B. The idea of
global normalization is simple and straightforward: It
uses the per-sample mean expression as the
“housekeeping gene” for all genes. Note that
sometimes a constant, such as the overall mean
expression across all samples, is added to all yz* to
avoid negative values. Clearly, this practice does not
affect the subsequent differential expression analysis.
Median-IQR normalization (medIQR). Let Med; and
IQR;,j =1,2,...,n, be the sample median and IQR
computed from all gene expressions in sample j. The
median of Med; and the median of IQR; are denoted
by Medp and IQR, respectively. For each sample j,
expressions are adjusted by first subtracting the
sample’s median Med;, and then multiplied by the

ratio II%I;O Finally, the median of the medians Medg
J

is added to all values. This procedure is essentially a
location-scale transformation based on sample
median and IQR, which are more robust to outliers
than sample mean and standard deviation.
Apparently, normalized samples have the same
median (Medp) and IQR (IQRy).

Quantile normalization (quant). First, a reference
array of empirical quantiles, denoted as

q= (41,92 --->qm), is computed by taking the
average across all ordered arrays. Let

y?l),j < y?Z)J <o K y?m),j denote the ordered gene
expression observations in the jth array
(j=1,2,...,n) of the ath (a = A, B) group, the rth
(r=1,2,...,m) element of this reference array is

1 n n
=5, (Zﬂ’ﬁ),k + Zyﬁ),z) : (1)
k=1 =1

Next, the original expressions are replaced by the
entries of the reference array with the same rank. The
normalized gene expressions are

1 n n
A (ny\r;;»k + Zy(Br;;u) - @
=1

k=1

Interested readers can find more details in [6].

Cyclic loess normalization (loess). This is a
between-array normalization method based on
removing spurious variation estimated by local
regression. This method is described in [6, 20] and
implemented in several R packages. For this study, we
use the implementation provided by the LIMMA
package [21].
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The bias-variance trade-off of the normalization
procedures
In this section, we would like to briefly discuss the bias-
variance trade-off of normalization procedures based on
the following widely adopted mixed effects model for gene
expression [7, 22-25]. For genes i = 1,2,...,m; samples
j = 1,2,...,mn and two conditions a = A, B, the log2-
transformed gene expression level is modeled as
Vi =i +ej+of =xj+af (3)

Here uf is the mean expression value of the ith gene in
group a; oz;‘ ~ N(0,7?) is a random effect term that rep-
resents per-sample variation specific to the jth sample;
ef} ~ N(0,02) is an i.i.d. random variable that represents
both measurement error and true biological variation that
cannot be explained by oc;’; xg. = ui + E; can be con-
sidered as the oracle gene expression level that is free of
per-sample variation.

Let us denote the mean group difference by d; := ,uf —
,uf . We are interested in testing the following hypotheses

HY :di=0, vs. H”:d;#£0, i=12,...,m.
(4)

Empirical evidences show that 72 is typically much
greater than o2 [9], so applying a suitable normalization
procedure to reduce the per-sample variation increases
the statistical power in most cases, as compared to apply-
ing two-group tests to non-normalized data [8]. However,
normalization procedures borrow information from both
DE and NDE genes to reduce the impact of o/, so it creates
certain bias that may inflate type I error rate and reduce
testing power. As an example, based on Eq. (3), global
normalized expressions are

¥t =y = = (nf — 1) + (ef,’« - E.‘}) , (5)
which is free of «f (variance reduction). On the

other hand, the expected group difference after global
normalization is

() =t 0
~——
bias
The bias term, @ — i, is not zero if the differentia-

tion pattern is not balanced, namely the average effect of
up-regulation is not exactly equal that of down-regulation
for all genes. Other normalization procedures, such as
the quantile normalization and rank normalization, also
introduce certain bias in such situation, although the
mathematical derivation is more cumbersome. Interested
readers can find more details in [7, 8].

Super-delta
The algorithm of the proposed method, super-delta,
can be described as follows.
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1. The 8 step. We take the difference between a given

gene with all other genes. The difference between the
ith and i'th gene of the jth sample in group a is
denoted by &7, j and has the following representation

based on Eq. (3)

a _ ,a_ ,a o _ A _ a4
81‘/,} = — My F e — €y =X — Xy (7)
In a sense, 87, can be considered as the ith gene
expression normalized by the candidate

“house-keeping” gene i’. Apparently, ‘SZ’,;' is free of

sample-specific noise and has variance 202,

. The test step. We compute the two-sample t-statistic

for all i and 7 from 85,].

t”’ P 125 u s (8)

2 2
N, A QA N B oB
leAl (8”'/’/» - Bii/) + Zj/il ( l'l'/,j/ - aii’)
i N-2 '

)
Here Sfi/ is the pooled estimate of standard deviation
computed from 85,,], from groups A and B.
N = Ny + N3 is the total sample size.

. The summary step. After the above steps, for each

gene I, we obtain an (m — 1)-dimensional vector
(denoted by t;) of summary statistics ¢, for i’ # i.
We now need to find a unique representative
summary statistic out of them and calculate a single
p-value for gene i. A robust median fold trim median
(MFTM) estimator is used for this purpose.
Specifically, we first remove a proportion (e.g., 20%)
of t;7 that has the largest absolute values from t;.
Denote the trimmed vector of t-statistics as t!''™, we
define the representative statistic for the ith gene as
/2 times the sample median of t?rim

MM = /2 x Med (€M) (10)

For comparison, we also implemented methods that
uses +/2t; (super-delta with untrimmed mean
estimator) and v/2Med(t;) (super-delta with
untrimmed median estimator) as the representative
statistic in simulation studies. The use of adjusting
factor +/2 will be explained later.

. As a “bonus”, we can identify the gene that achieves

the median of tgrim and call it the pairing gene of
gene i This pairing gene can be considered as the
empirical housekeeping gene specific to gene i. Note
that we have to randomly select one such gene out of
two candidates when the size of £"™ is even.

. Calculate raw p-values from the representative

statistics. Apply a suitable multiple testing procedure
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to control for overall type I error rate. A gene is
declared as DE if its adjusted p-value is less than a
given threshold such as 0.05.

Heuristically speaking, tLMFTM produced by super-
delta is meant to be an approximation of the oracle
t-statistic, which is the two-sample ¢-statistic computed
from the oracle expressions as follows

o

=, (11)

p 1 1
Gi N7A+N73

o (x;j — &A)Z + Y08, (xff - ’_CB)Z

p N . (12)

Here s4 and s are the two group standard deviations
calculated from oracle expressions x‘g and xg respectively.

Note that the variance of xZ is o2 but the variance of
é‘g,,j is 202, so we need to multiply the sample median by

adjusting factor +/2. In reality, xZ is always confounded

by ot;’, so we need to remove this sample-specific noise
by subtraction.

The following theorem says that, both the mean and
median of the ¢-statistics obtained from a set of non DE
genes converge to a multiple of the oracle statistic £; under
the assumption of interchangeable covariance structure.

Theorem 1 Assume that oiz = o2 for all i (inter-
changeable covariance structure). The conditional mean
and median of ty, for k € S°, the set of non DE genes, have
the following asymptotic representation.

Psl'_ 1 * —
E(tile) — ‘/5 £ +O(N7Y), (13)
e 1, .
Med(tyle;) — 3 L+ O(N ) (14)

Here 'Pe; stands for convergence in probability.

This theorem justifies the usage of multiplication coef-
ficient +/2 above. For details of its proof please see
Additional file 1.

It is reasonable to assume that only a small fraction
of all genes are true DE genes. The median fold trim
is designed to remove a small subset of very extreme ¢-
statistics that are likely the results of pairing with a true
DE gene. This trimming procedure does not change the
results much when the up- and down-regulated genes are
approximately equal; but in case they are highly unbal-
anced, it can greatly reduce the bias that may be produced
by borrowing information from the DE genes, which in
turn improves both type I error control and statistical
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power significantly, as is evident in Table 2. Theoreti-
cal discussions of the impact of MFTM can be found in
Additional file 1.

Results

Differential expression analysis for the real data

A t-test with Welch approximation [26] was implemented
after each normalization procedure. All p-values were
adjusted by the Benjamini-Hochberg procedure [27] to
control for false discovery rate (FDR). A gene is selected
as differentially expressed if the adjusted p-value is less
than 0.05 and the fold change [28—30] was greater than
1.25. Numbers of significant DE genes are illustrated in
the Venn diagram in Fig. 1. We see that while the number
of DE genes selected by the three competing procedures
are close, super-delta can detect approximately 15%
more significant DE genes (Additional file 2).

Gene annotation and gene set enrichment analysis

After obtaining the significant gene lists from all pro-
cedures, we sorted each list by the absolute values of
t-statistics. We then annotate the top 30 most signifi-
cant genes in each DE gene list in order to understand
their biological functions. By and large, the majority of
these most significant genes identified by all five meth-
ods are directly or indirectly related to the formation,
development, metastasis, and resistance to chemotherapy
of breast cancer. As an example, MCM6 is the most sig-
nificant gene selected by super-delta method. This
gene is a highly conserved mini-chromosome mainte-
nance protein that is essential for the initiation of eukary-
otic genome replication. It is known to be a predictive
biomarker for breast cancer classification and prognosis
[31]. Other notable breast cancer related genes identi-
fied by super-delta include YBX1, KPNA2, SKP2, and
NAT1. The full lists of significant genes selected by differ-
ent methods and their detailed annotations can be found
in Additional files 2 and 3.

While most pairing genes are related to either basic
biological processes or immune responses (see “Further
investigations of pairing genes” section for more details),
a few interesting exceptions do exist. One such example is
ST6GAL1, which is the pairing gene for MCM6. This gene
encodes a type II membrane protein that is a member
of the glycosyltransferase family, is known to be a breast
cancer biomarker that is associated with carcinoma differ-
entiation [32], drug resistance [33], and tumor-associated
carbohydrate antigens (TACA) in breast cancer [34].
Given the fact that the mean expression level of ST6GAL1
is high in both the pCR and RD groups and is not differ-
entially expressed, this gene is likely to be active in both
subgroups. It has a (super-delta based) t-statistic of
1.347 and adjusted p-value of 0.274. A recent study [35]
revealed that CD8+ T cells derived from normal donors



Liu et al. BMC Bioinformatics (2017) 18:582

Page 6 of 13

Number of significant genes/probe sets (11141 in total)

superdelta

medIQR

Fig. 1 Venn diagram of significant genes (numbers in figure are numbers of genes)

are capable of recognizing TACA expressed in carcino-
mas and responded with high efficiency to glycopeptides
in vitro, which has the potential for the design of vaccines
for cancer prevention.

Next, we conduct functional enrichment analysis (also
known as gene set enrichment analysis, GSEA) using
Database for Annotation, Visualization and Integrated
Discovery (DAVID version 6.7, [36]) with a focus on
KEGG pathways [37]. There are 14 significant KEGG
pathways selected by super-delta; three other meth-
ods (global, quantile, medIQR) identified 13 sig-
nificant pathways and loess identified 16 pathways.
The first impression of these results are the similari-
ties between them: 12 pathways are identified by all five
methods. Almost all of them, such as mismatch repair
(KEGG hsa03430), PPAR signaling (KEGG hsa03320), P53
signaling (KEGG hsa04115), Glycolysis/Gluconeogenesis
(KEGG hsa00010), are known to be associated with
cancer. We would also like to point out that blad-
der cancer and small cell lung cancer pathways were
also significant for all five methods, largely because
generic oncogenes such as HRAS and FGFR3, and generic
tumor suppressors such as pl4ARF, p53, and Rb are
identified.

Two pathways are uniquely significant for super-
delta: Biosynthesis of unsaturated fatty acids (KEGG
hsa01040) and Type II diabetes mellitus (KEGG
hsa04930). Unsaturated fatty acids are known to stimulate
the proliferation of human MDA-MB-231 breast cancer
cells [38—40], and there is a strong link between diabetes
mellitus and the risk of breast cancer [41-43].

Compared to super-delta, other methods also
identified some unique significant pathways: Pathogenic
Escherichia coli infection pathway (KEGG hsa05130, by
quantile and loess); Valine, leucine and isoleucine
degradation pathway (KEGG hsa00280, by both global
and medIQR). Both of them seem to have only weak and
indirect link to breast cancer. Calcium signaling path-
way (KEGG hsa04020) and Pathways in cancer (KEGG
hsa05200) are identified only by 1oess. While Pathways
in cancer is apparently related to breast cancer, Calcium
signaling pathway represents an ubiquitous cellular activ-
ity that is not necessarily induced by cancer. Detailed
results of GSEA can be found in Additional file 4.

Further investigations of pairing genes

As mentioned previously, pairing genes play an impor-
tant role in super-delta procedure. A pairing gene
can be considered as the empirically defined best house-
keeping gene of a particular gene. Here “best” means that
among all possibilities, normalizing the original gene by
its pairing gene can produce an adjusted ¢-statistic that
approximates the oracle ¢-statistic the best. Its role is com-
parable to the mean of all genes in global normalization,
the medians and IQR’s in median-IQR normalization, and
the average distribution quantiles in quantile normaliza-
tion. A critical difference is that, a pairing gene is found
uniquely for each gene in any given range, either all or part
of the genes being analysed. Therefore, super-delta
does not depend on large number of genes recorded and
the reliability of using pairing genes is justified by the
asymptotic properties stated in Theorem 1.
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One interesting fact is that many genes are paired to
multiple genes. In fact, only 3149 genes (28.26% of all
genes) were selected as pairing genes. Table 1 summa-
rizes the pairing frequency of 743 (6.67%) genes that were
identified as pairing genes for more than 5 times (we call
them “candidate house-keeping genes’, Table 1, Additional
file 5). Collectively, they were paired to a total of 6510
(58.43%) genes.

Annotations of top pairing genes show that most of
them have basic functions that are involved in many
biological processes. An example is NDUFS2 (paired 29
times), which encodes a protein that is a subunit of
mitochondrial membrane respiratory chain NADH dehy-
drogenase. GO annotations related to this gene include
ubiquitin protein ligase binding, which is a very fun-
damental biological function that are essential for a
variety of biological processes. Other notable examples
include FAMS8A1 (paired 26 times), MYL12A (paired 25
times), and RRP9 (paired 24 times). Interestingly, we also
noticed that a significant subset of pairing genes have
a direct or indirect relationship with immunity. Exam-
ples in this category include GNAI2 (paired 29 times)
and STAT5B (paired 15 times). GNAI2 is a member of
the chemokine signaling pathway that is known to affect
the organization of lymphocytes and the movement of
CD4 T cells in lymphoid organs [44, 45]. STATS5B is
a key player in multiple biological processes, including
ERBB signaling, chemokine signaling, and JAK-STAT sig-
naling pathways, among others. STAT5B deficiency is
linked to immunological aberrations such as allergic dis-
eases, immunodeficiencies, autoimmunities, as well as
cancers [46].

We then conducted a functional enrichment analysis
based on these top pairing genes and found 11 significant
pathways. About half of them are related to basic bio-
logical functions, such as Ribosome, Hematopoietic cell
lineage, Axon guidance, and Regulation of actin cytoskele-
ton. The other half are related to immune responses, such
as Primary immunodeficiency, Natural killer cell mediated
cytotoxicity, Viral myocarditis, Autoimmune thyroid dis-
ease, Antigen processing and presentation, Allograft
rejection, and Leukocyte transendothelial migration. The
full list of these 743 top pairing genes and the 11

Table 1 A summary table of high-frequency pairing genes
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significant KEGG pathways associated with them are pro-
vided in Additional file 5.

Rank difference analysis

A rank difference analysis was conducted to help under-
stand what kind of genes is likely to be significant after
being processed by a certain normalization procedure.

In this analysis, we focused on comparing super-
delta with quantile, since it is the most widely
used approach among all three normalization proce-
dures. For both approaches, we rank the genes from
the most significant to the least significant, based
on the descending order of the absolute values of
t-statistics.

Using the top 1000 most significant genes from one list
as reference, we computed the rank differences of these
genes with the other list. Large rank difference associ-
ated with a gene suggests that this gene is considered
much less significant in the second approach. This analysis
was performed in both directions. We plotted the orig-
inal and normalized expression levels of 10 genes with
the largest rank differences in both directions in Figs. 2
and 3 and Additional file 6. Judging from the shape of the
distribution, it’s clear that super-delta preserves the
pattern of raw gene expressions better than quantile.
Furthermore, DE genes detected by super-delta have
wider separations of the distributions between two groups
than those detected by quantile, which suggests that
they may have stronger differential expressions than
those selected by quantile. One possible explanation
is that although quantile is a relatively robust proce-
dure, it is a non-linear transformation that can impose
a distortion to the data, especially when the skewness of
distribution of two groups differ significantly. The refer-
ence quantiles are obtained from an assumed common
underlying distribution across all genes and all sam-
ples. This assumption is only partially true in reality
because not all genes/samples share the common dis-
tribution under possibly very different biological condi-
tions. On the other hand, super-delta has a robust
trimming method that removes questionable genes from
the normalization step, which keeps as much original
expression pattern of a gene as possible. For complete

Times being paired 29 27 26
Number of genes 2 1 1
Times being paired 20 19 18
Number of genes 7 4 9
Times being paired 12 11 10

Number of genes 25 33 49

25 24 23 22 21
1 2 1 4 4
17 16 15 14 13
9 19 20 21 18
9 8 7 6 5
60 67 91 127 168
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information of this rank difference analysis please see
Additional file 6.

Simulation studies

Three related simulation strategies were designed to
investigate the power and type I error rate control of all
procedures covered in this study. To achieve verisimilitude
of the simulation, we estimated all model parameters from

the real biological data. Specifically, we estimated the per-
sample random effect term variation 7 = 0.873 and the
random error term variation 6 = 0.617 (signal-to-noise
ratio is 1.41). These parameters were used for the simu-
lation study. We sorted the absolute values of log2 fold
changes and selected the first 1000 (363 up and 637 down
regulations) to be considered as true signal (mean group
difference). The simulation design is presented as follows.
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Fig. 3 Gene BIRCS5 is selected as DE gene by super-delta but not by quantile normalization. Annotations are the same as Fig. 2
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SIM1: Number of genes is 10,000. True signals are 363
up and 637 down regulations.

Number of genes is 5000. True signals are 363 up
and 637 down regulations. Compared with SIM1,
the only difference is that total number of genes is
reduced by a half, which makes the proportion of
DE genes doubled.

Number of genes is 5000. True signals include
only the 637 down regulations and all up
regulations are removed. Compared with SIM2,
SIM3 has a more extreme and unbalanced DE
structure.

SIM2:

SIM3:

For each simulation study, three sample sizes (number of
slides in each group) were used: n=50, 75, 100. One more
scenario of unequal sample size n; = 50,1, = 100 was
also included.

Although the use of MFTM in conjunction with
super-delta is recommended, we included two alter-
native methods, untrimmed mean and median, of
selecting representative statistic in super-delta in
simulation studies for comparison. Details of these two
methods can be found in “Super-delta” section.

Table 2 summarizes results for the case in which the
sample size of both groups is n = 50. It clearly demon-
strates that in all cases, super-delta with MFTM
is about the same or more powerful than other meth-
ods. This advantage is more prominent when the DE
structure is strong (SIM2) and/or highly unbalanced
(SIM3). More importantly, in all cases, super-delta
with MFTM controls type I error rate much better than
the other procedures. Overall, the statistical performance
of super-delta with MFTM is much closer to that of
using the oracle data than all other methods.

Among the other two variants of super-delta, using
the untrimmed mean resulted in excessive type I error rate
in the most extremely unbalanced case (SIM3); but even

Table 2 A summary table of three simulation scenarios
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in this case, the numbers of false discoveries are slightly
smaller than that of the four traditional methods. Overall,
the performance of super-delta with the untrimmed
median estimator is also very good, with the exception
of SIM3, in which case it is unquestionably inferior to
super-delta with MFTM but still much better than
the four classical methods. Simulation results of other
sample size combinations are provided in Additional file 7.
Repeating for 50 times also demonstrates the robust-
ness of this simulation design. In the meantime, we also
recorded the time consumed by super-delta and quan-
tile normalization. We used the option of automatically
selected 1000 baseline genes (which practically would
lead to similar results as using all baseline genes) of
super-delta and found that super-delta takes about
15- 20% longer time than quantile normalization does. We
believe that this small increase of computational cost is
acceptable in practice.

Discussion

Traditional normalization procedures calculate the
normalized expression levels in one step by borrowing
information from both DE and NDE genes to remove
sample-specific variation. Such practice can introduce
nontrivial bias when the effects of up- and down-
regulated genes to normalization are not exactly the
same. In comparison, super-delta first normalizes
every gene by all other genes, which generates thousands
of normalized values that can help adjust the ¢-statistic
for this gene. Because we use subtraction as a means to
remove per-sample variation, the § step can be considered
as a multivariate extension of the global normalization. In
fact, if we take the mean of all ¢, for i/ # i, as the rep-
resentative statistic for the ith gene, the results are very
similar to that of the global normalization (see columns
“global” and “mean” in Table 2). On the other hand, the
multivariate nature of the § step enables us to apply a

Classical Super-delta

Oracle Global medIQR Quantile Cyclic-loess Mean Median MFTM
SIM1
Power 88.82(1.02) 88.17(1.08) 87.84(0.99) 87.71(1.00) 87.61(1.01) 88.48(1.04) 88.89(1.13) 88.85(1.00)
Type | error 0.46(0.07) 0.49(0.08) 0.50(0.07) 0.51(0.08) 0.52(0.07) 0.44(0.08) 0.41(0.08) 0.40(0.07)
SIM2
Power 92.11(0.81) 90.94(0.89) 90.37(0.95) 90.17(0.93) 89.94(0.95) 91.26(1.01) 91.79(0.94) 92.09(0.77)
Type | error 0.93(0.14) 1.08(0.17) 1.25(0.22) 1.26(0.19) 136(0.23) 1.03(0.22) 0.85(0.15) 0.83(0.15)
SIM3
Power 89.18(1.49) 76.67(1.51) 77.28(1.84) 76.20(1.63) 76.51(1.59) 77.16(1.89) 86.05(1.70) 88.55(1.62)
Type | error 0.61(0.11) 1.53(0.19) 142(0.20) 1.55(0.20) 1.52(0.20) 1.46(0.26) 0.61(0.14) 0.54(0.12)

Sample size is 50 for both groups. All p-values are Benjamini-Hochberg adjusted; Power: Approximate statistical power; Type I error: Approximate Type | error rate. All
these measurements are calculated by averaging over 50 replicates. Numbers within parentheses are standard deviations. All numbers are pertentage rates
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robust trimming algorithm to filter out certain percent-
ages of extremely large or small statistics that are likely to
cause bias to the subsequent inference. This filter reduces
false discoveries significantly and improves statistical
power at the same time when the gene expression pattern
is relatively strong and highly unbalanced (SIM3).

It is worth noting that the predecessor of super-
delta, the original delta-sequence method (henceforth
denoted as delta-seq) had poorer statistical power
and more false positives than the traditional meth-
ods in many realistic situations [7, 8]. So why does
super-delta perform much better? We believe the rea-
son is twofold. First, delta-seq was designed to be
a method to select significant gene pairs, not individual
significant genes [11]. It relies on an imperfect ad hoc
method to “break the pairs” and identify significant genes
from significant gene pairs [10, 12]. Unlike delta-seq,
super-delta is designed to identify significant genes,
not gene pairs. It does not rely on the pair-breaking
method that leads to excessive type I error. Second, we
conduct theoretical derivations to justify the use of coef-
ficient /2 in the adjusted ¢-test, which greatly enhances
the statistical power of super-delta. As a matter
of fact, in most simulation studies, the performance of
super-delta in terms of power/type I error rate is very
close to the “oracle” method and is much better than its
competitors.

In real data analysis, we find that super-delta is
largely consistent with other methods (in terms of large
proportion of common DEGs) but is slightly more pow-
erful. Functional enrichment analyses reveals that all
four methods identified similar biological processes; and
super-delta selects two unique pathways that are rel-
evant to breast cancer (Additional file 4).

One under-appreciated but important advantage which
super-delta inherited from delta-seq is that we
can identify pairing genes (a.k.a. empirical house-keeping
genes) by data-driven methods. Biological data anal-
ysis shows that these pairing genes either have very
broad biological functions thus are good candidate for
house-keeping genes; or they play direct or indirect roles
in immunity. Further investigations are needed to fully
understand the interplay between the main DEGs and
those immunity-related pairing genes. A related advan-
tage is that like delta-seq, super-delta is a “local”
normalization method which makes it especially suitable
for real-world applications.

Imagine that for the reason of saving the cost and pro-
cessing time, we are only allowed to use a handful of
top DE genes as biomarkers in a commercialized portable
diagnostic device with very limited computational power.
We will not be able to faithfully reproduce the differ-
ential expression results as defined by the traditional
normalization methods because we don’t have enough
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genes to calculate per-sample mean or median accu-
rately, much less a “reference quantile curve” Commercial
diagnostic devices based on gene expression biomarkers
usually rely on polymerase chain reaction (PCR) based
platforms, which are more economic and convenient,
to measure the expressions for a very small set of pre-
specified genes. Biomarker discoveries using traditional
normalization methods on microarray or next genera-
tion sequencing data cannot be directly translated into
these PCR based platforms because the same normal-
ization procedure cannot be performed on PCR plat-
forms. This may be an important reason that accounts
for the poor success rate when these biomarkers were
tested clinically. On the other hand, for super-delta,
top p1 DE genes need at most p; pairing genes in
the § step. Empirical evidences show that most pair-
ing genes are reused by more than one other gene
(see “Further investigations of pairing genes” section),
so the actual number of pairing genes needed to repro-
duce the results obtained from super-delta faithfully
may be even less than p;. While thorough investiga-
tions in a prospective study are required to understand
the full impact of pre-processing procedures to predic-
tive models based on gene expressions, we conducted
a “proof of concept” simulation study described as fol-
lows. We generated an independent training set and
test set based on SIM1 (10,000 genes in total, 1000
true signals, marginally unbalanced DE structure). Sam-
ple size are n = 50 for both groups. Quantile nor-
malization and super-delta + MFTM are compared.
We randomly select {10, 20, 50, 100} genes from the
top 1,000 genes returned by DE analysis in the train-
ing set as features to build a support vector machine
(SVM) classifier, and then apply it to the test set.
To be fair, for super-delta, we only select half
number of genes with their pairing genes and use
their differences (deltas) as predictors. The whole pro-
cess is repeated 50 times. Mean and standard devia-
tion of prediction accuracy are recorded. Quantile
has slightly higher prediction accuracy when only 10
genes (compared with 5 deltas) are used. But it is sur-
passed by super-delta when 20 genes are used.
With 50 and 100 genes, advantage of super-delta
becomes more prominent in terms of higher accuracy and
smaller variability. When most significant genes ranked
by p-values are used as features, both procedures pro-
duce near perfect classifications, and super-delta is
noticeably better than Quantile in all four cases. Details
of this simulation study can be found in Additional
file 7.

We believe super-delta can be easily extended to
solve other inferential problems such as one-way ANOVA
and linear regression. All we need to do is to prove sim-
ilar asymptotic properties as in Theorem 1 for those
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problems. Another extension to super-delta is also
possible but may need much more investigation: to cre-
ate a multivariate-version of the quantile normalization.
However, it is not obvious to map the quantile normal-
ization to a local computation just between two genes.
One possible solution is to use a first step quantile nor-
malization as a rough guide and then use either weighted
linear combination or even a nonlinear transformation for
local normalization. A thorough theoretical and empiri-
cal study in this direction could be very rewarding in the
future.

Finally, we would like to discuss the applicability of
super-delta to expression data generated by RNA-
seq technology [47, 48]. Although raw RNA-seq reads
are discrete random variables that are generally modeled
by non-normal distributions such as negative binomial
distribution [49, 50], it is a common practice to apply
non-specific filtering to remove genes with very low reads
and then use log-transformation to stabilize variance.
These pre-processing steps reduce the granularity of the
RNA-seq data and make the distribution much more nor-
mal. In fact, some recent comparative studies [51-53]
showed that differential expression analysis tools designed
for continuous data can achieve comparable, sometimes
even slightly better, performance than those based on dis-
crete models. Based on these considerations, we believe
that with appropriate adaptations, super-delta can be
made applicable for pre-processed RNA-seq data. That
being said, a thorough investigation in this direction
would be an interesting topic for a future comparative
study.

Conclusions

In summary, we proposed a differential gene expression
analysis pipeline that consists of a multivariate exten-
sion of the global normalization method (the § step) to
remove sample-specific variation; an adjusted two sam-
ple Welch ¢-test (the test step) that takes the variation
of both genes of interest and their pairs into consid-
eration; and a robust trimming algorithm (the summa-
rizing step) to select one overall statistic to represent
the empirical distribution of §s pertain to every gene.
Once these representative statistics (thFTM) are calcu-
lated, unadjusted and adjusted p-values can be obtained
by standard inferential practice. As a new pipeline, super-
delta provides new insights to the area of differential
gene expression analysis. Solid theoretical foundation
supports its asymptotic unbiasedness and technical noise-
free properties. Implementation on real and simulated
datasets demonstrates its decent performance compared
with state-of-art procedures. It also has the poten-
tial of expansion to be incorporated with other data
type and/or more general between-group comparison
problems.
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Additional files

Additional file 1: Theoretical proofs and justifications. This file contains a
series of theorem/lemma/proposition/corollary proofs that form the
theoretical foundation of super-delta method. (PDF 236 kb)

Additional file 2: Full significant gene lists. This file lists all the significant
genes detected by all five methods, each list in a separate worksheet.
(XLSX 223 kb)

Additional file 3: Top 30 significant genes’ annotation. This file includes
biological annotation of the 30 most significant genes, detected by each
method, sorted by the magnitude of t-statistics. (XLSX 39 kb)

Additional file 4: Gene set enrichment analysis. This file lists all the
significant KEGG pathways obtained by the significant gene lists in
Additional file 1. This gene set enrichment analysis was implemented in
DAVID. (XLSX 15 kb)

Additional file 5: A Comprehensive investigation of pairing genes. This
file contains full information of the pairing genes of super-delta,
including the gene set enrichment results of the pairing gene list of the
significant genes in Additional file 1. (XLSX 152 kb)

Additional file 6: Rank difference analysis. This file contains information of
most differently ranked significant genes between super-delta and
quantile normalization. (XLSX 852 kb)

Additional file 7: Simulation study. This file contains the simulation result

tables similar to Table 2 of the main text, for all the sample size
combinations used. (XLSX 3229 kb)
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