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SUMMARY The emerging pathogen Candida auris has been associated with noso-
comial outbreaks on five continents. Genetic analysis indicates the simultaneous
emergence of separate clades of this organism in different geographical locations.
Invasive infection and colonization have been detected predominantly in patients in
high-dependency settings and have garnered attention due to variable antifungal
resistance profiles and transmission within units instituting a range of infection pre-
vention and control measures. Issues with the identification of C. auris using both phe-
notypic and molecular techniques have raised concerns about detecting the true scale
of the problem. This review considers the literature available on C. auris and highlights
the key unknowns, which will provide direction for further work in this field.

KEYWORDS Candida auris, emerging infection, nosocomial transmission

INTRODUCTION

Candida auris, a novel Candida species first reported in Japan in 2009, is an emerging
pathogen that has been isolated on five continents (1). There are separate clonal

strains displaying distinct mechanisms of antifungal resistance. C. auris is associated
with nosocomial outbreaks in intensive care settings, and transmission despite the
implementation of enhanced infection prevention and control (IPC) measures is a
particular concern. Variable antifungal susceptibility profiles and the development of
resistance following antifungal exposure have been observed. In addition, difficulties in
identification using conventional phenotypic and molecular techniques, the unknown
population prevalence, the uncertain environmental niches, and the unclear mecha-
nisms of spread have hindered control.
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The increasing prevalence of colonization and infection with non-albicans Can-
dida species in recent years is thought to be driven largely by the increasing use of
prophylactic antifungal agents such as fluconazole (2). Previously, invasive candi-
diasis was caused predominantly by Candida albicans. As a result of the shift toward
non-albicans Candida species with various susceptibility patterns, including
multidrug-resistant species, fluconazole can no longer be the mainstay of empirical
antifungal treatment. C. auris, with its propensity to spread rapidly in critically ill
patients, has the potential to become a dominant opportunistic pathogen in these
populations.

Given these uncertainties, we performed a literature review to identify the current
state of knowledge on a variety of parameters such as epidemiology, genetics, identi-
fication, cell biology, and management, including prevention and control strategies. We
also highlight the key unknowns and identify targeted areas for further work.

METHODS
We performed a search of the literature between January 2000 and September 2017

for data on C. auris using Medline, Embase, Scopus, NICE Evidence Search, Global
Health, and CINAHL, limited to publications in the English language. The search terms
Candida auris and C. auris were used. Abstracts were analyzed by two researchers
(A.J.-S. and C.S.B.). Articles were deduplicated and excluded if there was no, or passing,
reference to C. auris and if they did not contain information on epidemiology, diag-
nosis, treatment, or resistance patterns. Gray literature and international guidelines
were included in a separate search based on discussions with international colleagues
relating to public health responses.

RESULTS

After deduplication, 84 results were available until September 2017. Seventeen
results were deemed to be not relevant. The findings were thematically grouped and
are presented below.

Epidemiology and Genomic Analysis

The Candida species Candida auris, so named as it was first described as an isolate
from the ear canal of a patient in Japan in 2009, has subsequently been isolated from
several body sites of patients in multiple countries on five continents (Fig. 1) (1).
Infection and colonization have been detected mainly in critical care patients and affect
both pediatric and adult populations (3, 4). Information regarding patients from whom
C. auris has been isolated has now been reported globally from South Korea, India,
Pakistan, Kuwait, Israel, Oman, South Africa, Colombia, Venezuela, the United States,
Canada, and Europe, including the United Kingdom, Norway, Germany, and Spain
(3–17). In addition, there have been a number of phenotypic and genotypic charac-
terization studies comparing isolates from different regions, including samples from
Brazil, Kenya, and Malaysia, which show distinct geographic clades (6, 18–20).

The haploid genome of C. auris is approximately 12.5 Mb, with a guanine-cytosine
content of nearly 45% (21–23). Genome analysis suggests that there are between 6,500
and 8,500 protein-coding sequences, with a number of these genes coding for proteins
characterized as virulence factors in other Candida species, such as biofilm formation
(23). In addition, multiple transporter genes and protein kinases, which may facilitate
the acquisition of drug resistance, have been identified (22).

C. auris may be responsible for a significant proportion of Candida infections in
regions where it has been recognized for some time. A prospective multicenter study
from India reviewing cases of candidemia acquired from an intensive care unit (ICU)
found that C. auris was isolated in in 19 out of 27 ICUs, representing 5.2% of cases.
There was a difference in prevalences in private (3.2%) versus public (8.2%) hospitals
(24).

Genetic analyses have shown a striking divergence of C. auris from some Candida
species, while it remains more closely related to C. lusitaniae and C. haemulonii (Table 1).
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There is also widespread variation between geographic clades, with thousands of single
nucleotide polymorphism (SNP) differences. At present, C. auris is separated into four
geographic clades: the South Asian, South African, South American, and East Asian
clades (6, 23, 25). In India, clonal isolates have been detected over very widespread

FIG 1 Countries that have reported detection of C. auris (shown in red). C. auris has been detected in mainland Norway and Canada, a single Brazilian hospital,
and the continental United States, excluding Alaska.

TABLE 1 Percent nucleotide identities of various yeast species compared to Candida auris
(South Asian clade), calculated over the 285-bp D1-D2 portion of the C. auris 28S
ribosomal DNA gene

Organism % identity

Candida auris (South Asian clade) 100
Candida auris (South African clade) 99
Candida auris (East Asian clade) 99
Candida lusitaniae 82
Candida haemulonii 82
Candida guilliermondii 80
Candida ciferrii 80
Candida pseudohaemulonii 79
Candida duobushaemulonii 79
Candida tropicalis 79
Candida kefyr 79
Candida pelliculosa 78
Saccharomyces cerevisiae 77
Candida utilis 76
Candida famata 75
Candida parapsilosis 70
Candida magnoliae 46
Candida albicans 43
Candida krusei 43
Candida glabrata 42
Candida inconspicua 42
Candida norvegensis 42
Candida rugosa 39
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geographic regions (26). Within each geographic clade, however, there are minimal
genetic differences (6).

Whole-genome sequencing (WGS) of U.S. isolates indicated links to two geographic
clades: the South Asian clade, with fewer than 60 SNPs, and the South American clade,
with fewer than 150 SNPs. The isolates linked to these different geographic clades in
the United States showed minimal variation, with between 10 and 70 SNP differences
(9). Further WGS analysis comparing isolates from the four geographic regions con-
firmed clade differences and the striking genetic similarity of isolates within regions (6).
Fewer than 16 SNPs differentiated isolates from the South American clade, and fewer
than 70 SNPs differentiated isolates from the South African clade. Interestingly, within
the South Asian clade, a cluster within one hospital consisted of strains with fewer than
2 SNP differences, whereas isolates from the same patient have demonstrated up to 10
SNP differences (6).

C. auris was discovered to have been misidentified from a historical sample from a
South Korean patient with fungemia, originally taken in 1996 (5). A previously unrec-
ognized Pakistani isolate of C. auris from 2008 has also been identified (6). However, a
review of the SENTRY isolate collection, with thousands of Candida isolates from four
continents, did not reveal the presence of other misidentified C. auris samples prior to
2009 (6).

Identification and Typing

C. auris can often be misidentified in conventional diagnostic laboratories using
biochemical typing (27–29). Several studies have examined the accuracy of phenotypic
diagnostics in comparison with molecular techniques for the identification of Candida
species. Chowdhary et al. recently tabulated the reported misidentifications of C. auris
by different commercial methods (18).

With phenotypic and biochemical methods, including API 20C, Vitek 2 (bioMérieux),
Phoenix (BD), and MicroScan (Beckman Coulter, Pasadena, CA), C. auris isolates have
been misidentified as a range of other Candida species. Most commonly, these isolates
have been misidentified as C. haemulonii, a rare cause of infection in humans, but also
C. famata, C. sake, Rhodotorula glutinis, Rhodotorula mucilaginosa, and Saccharomyces
species. Rarely, C. auris has been identified as C. catenulate, C. lusitaniae, C. guilliermon-
dii, or C. parapsilosis or only to the Candida species level (Table 2) (3, 5, 7–9, 27, 29–32).

C. auris is phylogenetically closely related to the C. haemulonii species complex.
These organisms were similarly rarely identified previously as causes of invasive infec-
tion but are being increasingly isolated. In particular, C. haemulonii complex species
have been associated with deep-seated soft tissue and bone infections in diabetic

TABLE 2 Misidentification of C. auris by different diagnostic methods

Diagnostic method (manufacturer) Misidentification example(s) (reference[s])

Biochemical
API 20CAUX Rhodotorula glutinis (5, 31, 33)

C. sake (3, 15, 34)
Unidentified (35)

API Candida C. famata (12)
Phoenix (BD Diagnostics) C. haemulonii, C catenulate (31)
Vitek C. haemulonii (3–5, 7, 12, 14, 15, 26, 27, 33–36)

C. lusitaniae (15)
C. famata (3, 27)

MicroScan (Beckman Coulter) C. famata, C. lusitaniae, C. guilliermondii, C.
parapsilosis, C. albicans, C. tropicalis (12, 31)

MALDI-TOF MS
Vitek MS (bioMérieux) C. albicans, C. haemulonii (29)

Not identified (28, 36)
MALDI Biotyper (Bruker Daltonics) Neisseria meningitides serogroup A, Pseudomonas

rhizosphaerae (29)a

aSubsequently, samples were identified as containing C. auris by ITS sequencing of ear swab samples; the
bacteria isolated by MALDI-TOF MS likely represent colonizing bacteria.

Jeffery-Smith et al. Clinical Microbiology Reviews

January 2018 Volume 31 Issue 1 e00029-17 cmr.asm.org 4

http://cmr.asm.org


patients and candidemia in immunosuppressed patients with prior antifungal exposure
(33, 34). C. haemulonii complex species are less frequently detected than C. auris,
although inaccuracies with the molecular identification of less common Candida spe-
cies result in difficulties in characterizing the prevalences of these infections (24, 27). It
is also possible that some of the reported isolates of C. haemulonii are misidentified as
C. auris. The use of chromogenic agar to differentiate between C. auris and C. haemu-
lonii isolates using growth characteristics has been suggested as a low-cost method to
circumvent identification problems of commercial phenotypic assays (35). Although
there are advantages to molecular techniques for microbiological identification, dis-
crepancies can arise. Matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI-TOF MS) compares spectra acquired for a sample to a database of
spectra inputted for known isolates. Accurate identification is reliant on the spectra for
the sample organism being present in the database. This has resulted in the misiden-
tification of C. auris as C. haemulonii and C. albicans, among others, by MALDI-TOF MS
(Table 2) (28, 29). Once spectra are obtained and added to the MALDI-TOF MS database,
the identification of C. auris to the species level appears to be accurate, although
differentiation between geographic strains is variable and relies on the number of
spectra for different clades in the library (10, 20, 27, 28, 31, 36–39). Laboratories should
check with the manufacturer regarding the presence of the C. auris reference strain
spectra in their database. Confirmation of the laboratory detection capacity could then
be tested by obtaining reference strains.

More recently, the development of PCR assays specific for C. auris and for C.
auris-related species using cultured colonies has shown promise for the rapid and
accurate identification of C. auris, which could prove particularly useful in outbreak
situations (40). Confirmation of the sensitivity of these assays for the different clades of
C. auris is warranted.

Sequencing of genetic loci, including D1/D2, RPB1, RPB2, and internal transcribed
spacer (ITS) domains of the rRNA, has proven useful in the identification of C. auris, but
it is not routinely used for the investigation of Candida species isolates and is unlikely
to be available outside reference laboratories (3, 8, 21). However, the ability to easily
differentiate between geographic clades has been demonstrated with this technology
in the United Kingdom (19). Typing by amplified fragment length polymorphism (AFLP)
analysis suggested that isolates from one United Kingdom hospital are somewhat
distinct from those of previously identified geographical clades (10), although RNA
sequencing places them within the South Asian clade, the East Asian clade, and the
South African clade, indicating multiple introductions (19).

A range of molecular techniques, including AFLP analysis, pulsed-field gel electro-
phoresis (PFGE), M13 DNA fingerprinting, and sequencing of genetic loci, have been
used for the typing of C. auris isolates. The utility of AFLP analysis in demarcating the
geographical clusters of C. auris has been demonstrated (10, 20, 38, 41). One study
discriminated both geographical clades and clusters of isolates in an outbreak inves-
tigation (37). AFLP analysis was used to demonstrate clonal outbreaks in critically ill
patients in Venezuela and India. However, the clonality of temporally and spatially
distinct isolates from India from hospitals hundreds of miles apart emphasizes the
difficulty in using this technique to discriminate between separate introductions of the
organism in possible outbreak situations (4, 26).

In South Korea, PFGE examination of 15 C. auris isolates from ear specimens of
patients at three hospitals showed a variety of PFGE patterns and suggested clonal
transmission in some of these cases (42). M13 DNA PCR analysis of C. auris candidemia
samples from two hospitals in India showed that the Indian samples had a profile that
was distinct from those of isolates from Japan and South Korea. Ten of the 12 samples
had identical fingerprint patterns, indicating a single genotype (3).

While sequencing of genetic loci has proven useful in the differentiation of C. auris
from other Candida species, its ability to discriminate between strains appears to be
limited (21). Analysis of South African isolates showed 99% and 98% homologies to
Kuwaiti and Indian isolates, respectively, when analyzing the ITS and D1/D2 alignments
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(8). In India, ITS sequencing of one C. auris isolate demonstrated 100% homology to an
epidemiologically unrelated isolate and 98% homology to isolates from Japan and
South Korea. Large ribosomal subunit sequences showed 100% homology to an
unrelated isolate (3).

Cell Biology

C. auris forms pink to beige colonies on chromogenic agar Candida medium and
grows well at 42°C but with variable growth at higher temperatures and no growth in
the presence of 0.01% cycloheximide (1, 3, 10, 27, 43; A. Borman and E. M. Johnson,
unpublished data). It forms oval or elongated yeast cells, which can occur singly, in
pairs, or in groups. Importantly, no hyphal or pseudohyphal forms have been noted (1,
3, 27, 35, 43, 44). Carbon assimilation patterns on an analytical profile index (API) have
varied, with isolates from South Africa and India, but not those from Japan or South
Korea, showing assimilation of N-acetylglucosamine (1, 3, 8, 27).

An in vivo model comparing the pathogenic effects of C. auris isolates from the
United Kingdom with other pathogenic Candida species in the invertebrate Galleria
mellonella provided insights into the pathogenicity of this organism (44). That group
found that C. auris isolates could behave differently, with some forming aggregates and
others not. Non-aggregate-forming isolates demonstrated greater pathogenicity in
larvae than did aggregate-forming isolates, to a level comparable to that of C. albicans.
This was not linked to the formation of hyphae or pseudohyphae, which are not
produced by C. auris except occasionally in a very rudimentary form.

Another group reviewed a range of virulence factors of C. auris isolates through
comparison with C. albicans (45). Of the 16 C. auris isolates tested, 6 demonstrated
phospholipase activity, and 9 showed secreted proteinase activity, in a strain-
dependent manner. One C. auris isolate had phospholipase activity comparable to that
of C. albicans.

The strong association of this organism with intensive care settings, especially
patients with central venous catheters (CVCs) and long-term urinary catheters, suggests
a potential role for biofilm formation (9, 10, 24). In one in vitro model, C. auris did not
form biofilms, unlike the closely related species C. haemulonii and C. pseudohaemulonii
(42). Recently, however, biofilm formation has been demonstrated with non-aggregate-
forming strains and, to a lesser degree, aggregate-forming strains of C. auris (45, 46). C.
auris biofilms demonstrated reduced biomass when compared with those of C. albicans
but greater biomass than those of C. glabrata.

Resistance Profiles and Treatment

At present, there are no antifungal clinical breakpoints reported for C. auris. Studies
examining the susceptibility of this organism to antifungals have used a variety of
methods, including Clinical and Laboratory Standards Institute (CLSI) broth microdilu-
tion, Etest, and the Vitek 2 yeast susceptibility system. MICs obtained for C. auris isolates
have been compared to the breakpoints determined for other Candida species (CLSI
and EUCAST clinical breakpoint tables) (47–50). This approach appears to be supported
by pharmacodynamic/pharmacokinetic (PK/PD) data from a C. auris candidemia mouse
model, although a correlation with clinical outcomes is yet to be established (51).
Increased fluconazole MICs, in a high proportion of cases (�64 mg/liter), have been
demonstrated to be present in all geographic clusters (7, 8, 10, 20, 22, 27, 41, 43), but
resistance is not ubiquitous (5, 6, 9). Treatment failure with fluconazole has been
reported for fluconazole-sensitive isolates in the United States (9). Reduced suscepti-
bility to other triazole antifungals, including voriconazole, itraconazole, and isavucona-
zole, has also been demonstrated (26, 41, 52, 53). In addition, there is variability in the
susceptibilities of isolates to amphotericin B (4, 6, 8, 9, 17, 20, 22, 23, 30, 52, 54, 55).

The concern about resistance to triazole antifungal agents and amphotericin B has
led to the recommendation for the use of echinocandins as empirical treatment prior
to the availability of specific susceptibility testing results, as with invasive candidiasis in
general in some regions (30, 56, 57–59). Micafungin demonstrated the highest efficacy
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in comparison to fluconazole and amphotericin B in a PK/PD study of C. auris candi-
demia in mice (51). However, as echinocandin use is becoming more widespread, C.
auris isolates with reduced susceptibility to this class of drugs have been reported (6,
9, 22, 26).

In vitro investigations into the synergistic use of antifungal agents have resulted in
initial promising data for the use of combination treatment of micafungin and vori-
conazole for multiresistant isolates. This was not reflected in other combinations of
azole and echinocandins (60).

The site of infection plays a critical role in the choice of antifungal agent for invasive
infections. Echinocandins have limited penetration into a number of sites, including
cerebrospinal fluid, due to their high molecular weight, and very little active drug can
be recovered from urine (61, 62). Therefore, other medications should be used for
central nervous system (CNS) or renal tract infections with Candida species. The use of
amphotericin B preparations with the possible addition of 5-flucytosine has been
suggested for urinary tract infections (62). For CNS disease, as with other Candida
species infections, empirical amphotericin B and 5-flucytosine have had some success,
with optimization of therapy as informed by sensitivity testing (59).

Data regarding the MICs of 5-flucytosine are minimal. Early reports from India and
a recent study of United Kingdom isolates reported susceptibility of C. auris isolates to
5-flucytosine (10, 54). However, as with the other antifungal classes, there are also
reports of isolates with raised MICs (26, 41). A number of isolates of C. auris have
demonstrated raised MICs of multiple classes of antifungal agents, raising the possi-
bility of pandrug resistance (6, 27).

The new 1,3-�-D-glucan synthesis inhibitor SCY-078 has in vitro and in vivo activity
against a variety of Candida species and has oral bioavailability. Potent activity against
C. auris isolates has been demonstrated in vitro, against all geographic clades, with
exposed cells failing to divide (45, 63).

A study examining biofilm formation compared the effects of antifungal and
disinfectant agents on planktonic cells and sessile cells of biofilms by measuring
metabolic activity (46). Sessile cells were susceptible to only liposomal amphotericin B
and amphotericin B, both at higher concentrations than those for planktonic cells, with
the former being up to 16 mg/liter and the latter being 4 mg/liter. Echinocandins were
ineffective against biofilms, although planktonic cells were susceptible. Both planktonic
and sessile cells had raised MICs for fluconazole and voriconazole. Chlorhexidine was
demonstrated to be active against both planktonic and sessile cells at concentrations
below those used topically for disinfection (46). The significant reductions in the
metabolic activity and thickness of C. auris biofilms in the presence of SCY-078 highlight
the future potential of this new therapy (45). The current understanding of the C. auris
genome gives insight as to how reduced susceptibility to multiple antifungal agents
has arisen. Mutations in Erg11 associated with the development of fluconazole resis-
tance in C. albicans have also been detected in C. auris isolates (6). Mutations conferring
reduced susceptibility to fluconazole are strongly associated with geographic clades,
adding support to the theory of separate genetic evolution (64). Although only a small
proportion of the genome has been functionally annotated, a number of gene families
encoding virulence factors and proteins associated with mechanisms of resistance
orthologous to those of C. albicans have been suggested. Importantly, genes for
enzymes such as protein kinases and transport proteins involved in efflux pumps,
including the ATP-binding cassette (ABC) and major facilitator superfamilies (MFS), have
been identified, and these may facilitate the acquisition of drug resistance (22, 23).

Colonization and Infection

British Society for Medical Mycology best-practice guidelines detail recommenda-
tions for the laboratory testing of samples (65). However, hospital practice policies for
the investigation of isolates of Candida species vary globally. In the absence of a unified
case definition for C. auris infection, and variable screening practices for Candida
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species, colonization rates and the significance of colonization in terms of the devel-
opment of invasive infection are difficult to characterize.

Colonization with C. auris has been detected at multiple body sites, including nares,
groin, axilla, and rectum, and has been isolated for 3 months or more after initial
detection in spite of negative screens and echinocandin treatment in the intervening
period (9, 10). These uncertainties suggest the need for multiple screens with ongoing
patient isolation after treatment and upon readmission to health care facilities (57).

Risk factors for colonization include contact with patients known to harbor C. auris
or their environment (66). The contact time for the acquisition of C. auris from a
colonized patient or environment is suggested to be as little as 4 h (10), and invasive
infections have been acquired within 48 h of admission to intensive care settings (54).
The use of empirical antifungal therapy would need to be considered if a patient
colonized with C. auris subsequently deteriorates.

C. auris has been associated with a variety of invasive fungal infections. The majority
of the reported data regarding patient infections and outcomes have come from India,
but there are also reports from small numbers of patients affected in South Korea,
Venezuela, South Africa, the United Kingdom, the United States, Colombia, and Canada
(Table 3) (4, 5, 8, 10, 12, 14–17, 26, 27, 67, 68). Invasive C. auris infection has been
associated with candidemia to a high degree, including cases associated with CVC use,
but also with pericarditis and respiratory tract and urinary tract infections (3–5, 9, 10, 26,
27, 64, 69). In the majority of cases, invasive infection with C. auris occurs in critically ill
patients, i.e., those in intensive care facilities and undergoing invasive procedures (4, 5,
9, 24). These patients are generally those with serious underlying medical conditions,
including hematological malignancies and other conditions resulting in immunosup-
pression (7, 10, 54). One report detailed a case of donor-derived C. auris infection
following lung transplantation (70). Yeast was identified on bronchoalveolar lavage
samples pre- and postimplantation, which was initially misidentified by both biochem-
ical and molecular testing.

As might be expected, the majority of patients with invasive C. auris infections have
received broad-spectrum antimicrobial agents and, in some cases, antifungal agents
prior to the development of invasive candidiasis (6, 68). An association with medical
devices such as CVCs and urethral catheters has also been reported, as anticipated for
this patient group (3, 5, 9). A subgroup analysis of C. auris candidemia in Indian
intensive care units indicated an association with lower acute physiology and chronic
health evaluation II (APACHE II) scores, vascular surgery, and longer ICU stay prior to
diagnosis than with other candidemias (68).

Mortality rates have varied significantly among geographic regions (64). Reports
from Asia, the Far East, and the United States have detailed mortality rates of over 50%
for those with invasive infections (5, 9, 54). This is in contrast to Venezuela, where the
30-day survival rate following candidemia was 72%. Similarly, in Colombia, the 30-day
mortality rate associated with a delayed diagnosis of C. auris was 35.2% (12). However,
the literature does not comment on the background case fatality rates in these cohorts

TABLE 3 Candida auris infection cases by disease type reported in the literature

Type of disease or location of isolationb No. of cases (reference[s])

Candidemia 291 (3–5, 7, 8, 10, 12, 14–16, 26, 27,
57, 58, 70, 71)

Central venous catheter tip 2 (70)
CNS 1 (12)
ENT 21a (1, 17, 58, 70, 72)
Respiratory tract 18 (26, 27, 36, 70)
Urogenital system 17 (12, 27, 56)
Abdominal 13 (12, 27, 70)
Skin and soft tissue, including surgical wounds 12 (3, 10, 27, 70)
Bone 2 (12, 70)
aTwo associated with otomastoiditis and 19 from ear swabs of patients with otitis externa.
bCNS, central nervous system; ENT, ear, nose, and throat.

Jeffery-Smith et al. Clinical Microbiology Reviews

January 2018 Volume 31 Issue 1 e00029-17 cmr.asm.org 8

http://cmr.asm.org


of patients, many of whom have multiple comorbidities. As such, the overall attribut-
able mortality rate is unclear. In the United Kingdom, all cases were reviewed, and no
deaths were considered directly attributable to C. auris for 22 patients requiring
antifungal treatment following the isolation of C. auris (4, 10). The number of deaths
attributable to candidemia, as opposed to an underlying medical condition, may be
difficult to quantify.

Infection Prevention and Control

Observations of rapid acquisition, an association with high mortality rates, and high
levels of antifungal resistance highlight the importance of rapid implementation of IPC
measures to curb transmission. Guidance has been released in the United Kingdom, the
United States, Europe, and South Africa, with recommendations regarding the isolation
of patients, contact precautions, and cleaning of equipment and environments in
contact with affected patients (Table 4) (11, 57, 71–73). Due to the limited data on this
emerging pathogen, much of this guidance is empirical, based on extrapolation from
other resistant organisms, including methicillin-resistant Staphylococcus aureus (MRSA)
and carbapenem-resistant Enterobacteriaceae (CRE).

At present, PHE recommends the development of screening policies based on risk
assessment within local units. It is recommended that patients transferred from affected
units within the United Kingdom and abroad should be screened, as would be the case
for MRSA and CRE. All patients known to be infected or colonized with C. auris should
be isolated, preferably in en suite facilities. Screening to determine longitudinal carriage
should be undertaken, including screening of all previously positive patients upon
readmission to the hospital (57). With evidence of recurrent colonization subsequent to
negative screens and antifungal use, there remains a significant issue around the
question of deisolation. The CDC currently recommends that patients with at least two
negative screens over a week apart, while not receiving antifungals, can be moved out
of isolation (72). PHE has suggested that patients with a sample positive for C. auris
should not be deisolated, apart from those in units with experience in managing C.
auris (Table 4) (57).

One unit implemented a bundle of measures to reduce the spread of C. auris,
including decolonization of patients with chlorhexidine gluconate body washes, chlo-
rhexidine mouthwashes, and chlorhexidine-impregnated pads for CVC exit sites (10).
Data on the inhibition of growth of C. auris with chlorhexidine body washes at contact
times and concentrations representative of hand washing have shown that there is a
several-log difference in inhibition compared to that of C. albicans. Povidone iodine, in
contrast, appears effective at levels below those used for antiseptic preparations (46,
74, 75). The impact of skin disinfection measures on colonization and shedding is yet
to be established.

Environmental screening is problematic because of probable transient, sporadic
contamination and difficulties with the interpretation of results. One study did not
detect any environmental contamination (54). Others found C. auris to be associated
with samples from multiple patient contact areas, including mattresses, furniture,
windowsills, and air settle plate sampling (9, 10, 67).

C. auris has been demonstrated to survive on a range of surface types, including dry,
moist, and plastic surfaces, with organisms being viable for up to 14 days on plastic. The
rate of recovery of C. auris over a period of 7 days was higher than that of C. albicans
on both moist and dry surfaces, indicating the potential significance of environmental
contamination (76, 77). A synthetic polymer with antimicrobial properties designed for
potential use in medical devices showed promise against a number of organisms but
did not demonstrate any efficacy against C. auris (78).

In a comparison of the efficacies of a range of disinfectants against Candida species
and MRSA, sodium hypochlorite and hydrogen peroxide resulted in the greatest
reduction in C. auris CFU. Acetic acid, ethyl alcohol, and quaternary ammonium
compounds, in contrast, showed less of a reduction in CFU, far below that observed for
MRSA (79).
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Postdischarge environmental decontamination of patient areas with high-concentration
chlorine solutions in combination with hydrogen peroxide vapor or UV light appears to
effectively eliminate the organism (9, 10, 67). United Kingdom experience has also
highlighted the importance of thorough terminal decontamination of patient contact
items, such as pulse oximeter probes and axillary temperature probes (10, 66, 74, 80).

Where possible, it is recommended that the same isolation, contact, and cleaning
precautions be utilized for patients being cared for in community settings. Where single
rooms with en suite facilities are not available, it is advised that patients colonized with
C. auris should not share facilities with those known to be immunosuppressed (Table 4)
(73).

The possible role of health care workers (HCWs) in the transmission of organisms
between patients is difficult to evaluate given the emotive, social, and financial
implications. At one United Kingdom hospital, concerns over the continued detection
of C. auris in spite of IPC measures led to the voluntary screening of 258 HCWs in
contact with critical care settings. Multiple body sites, including hands, nose, throat,
and groin, were screened, with only one individual being found to have a sample
positive for C. auris, from a nose swab. Chlorhexidine washes, nasal ointment, and oral
nystatin for 5 days resulted in successful decolonization, which was confirmed by
repeat negative screens. The HCW involved was known to have cared for a patient who
was heavily colonized with C. auris and was not implicated in any onward transmission
(10).

Costs

It is important to understand the wide-ranging impact that outbreaks of emerging
infections, such as C. auris infections, can have on those affected. As with any outbreak
situation, costs can quickly increase, but these costs are not merely financial. With an
emerging infection, there are the added costs associated with the development of
diagnostics and research strategies to increase the understanding of the biology,
pathogenicity, and transmission of the organism. These costs have not yet been
quantified for C. auris outbreaks.

DISCUSSION

Our review highlights the considerable range of questions that remain to be
answered regarding C. auris. This is often the case with emerging pathogens, where the
initial priority is the local control of the organism. C. auris is being isolated from patients
from an increasingly widespread geographical area, and it is probable that the number
of patients affected is significantly higher than the literature suggests. Identification
remains problematic: some countries may be unable to detect C. auris due to a lack of
available laboratory technology. It is also likely that there are significant nonpublished
data that could inform current practice and assist in the development of strategies for
the management of C. auris. In the early stages of emerging infection situations, both
informal and formal notification networks prove vital for the spread of information and
to ensure awareness among the wider medical and public health communities.

The simultaneous detection of C. auris on multiple continents, the clonality of
isolates from different regions, and the various geographic resistance mechanisms
suggest independent clonal expansion and evolution. This could theoretically have
occurred if C. auris has been circulating unrecognized, with historical separation from
a common ancestral strain. However, this seems unlikely, as there are only two
instances where the organism has been retrospectively identified from historical iso-
lates, and a review of thousands of stored isolates from four continents did not identify
any C. auris isolates prior to 2009 (5, 6). Further review of stored isolates may help
elucidate this.

Another possibility is the development of a common environmental niche. The use
of broad-spectrum antimicrobials and antifungal therapy for prophylaxis and treatment
continues to increase in certain patient groups, including those who are immunosup-
pressed due to chemotherapy or HIV and those in intensive care settings. The natural
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flora of these patients is being dramatically altered. Fluconazole use in particular may
alter the balance toward colonization and infection with non-albicans Candida species,
contributing to the greater variety of Candida species now associated with invasive
infections (2). The contribution of possible animal reservoirs to the recent emergence
of C. auris should also be considered and investigated, given the range of growth
characteristics observed.

Awareness of the difficulties in the identification of C. auris has resulted in the
development and validation of MALDI-TOF MS in geographical areas currently known
to be affected. In addition, the development of C. auris-specific PCR will aid in rapid,
accurate diagnosis. However, the availability of these technologies may be limited.
There are large parts of the globe without the infrastructure or facilities to perform
testing and where health priorities are such that any funding available has to be
diverted to other areas. This will impede the epidemiological understanding of C. auris,
and it is likely that the number of other organisms that C. auris is misidentified as will
continue to increase.

Differentiating geographic clades of C. auris strains with thousands of nucleotide
differences between them can be achieved with molecular typing techniques. How-
ever, different methods give various results that are not comparable. WGS has dem-
onstrated that within geographic clades, there is minimal genetic variation among
strains. Therefore, discrimination between a novel introduction and the transmission of
the same strain between patients in outbreak situations is unlikely to be achieved by
using techniques that are reliant on distinguishing strains by molecular weight or
differences within a small part of the genome. Clade-specific PCR for C. auris is in
development and may be useful for the rapid identification of samples of C. auris in the
future.

Invasive infection and colonization have been identified almost exclusively in pa-
tients in high-dependency areas with the highest degree of medical intervention.
Prevalence studies will help clarify whether C. auris is associated mainly with this
environment or whether there is widespread hospital and community carriage. Screen-
ing at one United Kingdom hospital over a period of 2 months suggested that C. auris
is not widespread within the community or hospital setting in that area (K. Jeffery,
unpublished data). Establishing prevalence is vital to the development of appropriate
screening and control strategies; a point prevalence survey of hospitals serving multi-
ethnic populations is currently being performed in the United Kingdom (81). It is
important to establish sites of endogenous carriage through systematic screening for C.
auris. Possibilities include colonization with C. auris in the gastrointestinal (GI) tract and
subsequent overgrowth onto the skin under environmental pressure from antimicrobial
and antifungal use. Alternatively, C. auris may predominantly be a skin dweller with
transmission routes similar to those of MRSA, with axilla and groin carriage, as reported
by many centers. Irrespective of the location of initial carriage, it appears that certain
patients shed large amounts of this organism from their skin, contaminating the
environment and resulting in onward transmission (10). As a consequence, effective
strategies for environmental cleaning of patient areas following discharge are needed.

For data to be comparable, the utilization of universal case definitions for invasive
candidiasis is necessary (59). Unlike for other Candida species, which are not usually
associated with outbreaks, detection of colonization and differentiation from invasive
infection are vital for effective infection control. It is important to gain a greater
understanding of the impact of different treatments and decolonization regimens on
carriage and whether lifelong carriage is likely. The impact of skin cleansers, including
soap and water, quaternary ammonium compounds, alcohol gel, and surgical skin
preparation solutions, on C. auris viability requires evaluation.

Understanding the contribution of different transmission routes, including airborne
spread via skin particles, HCW contact, and fomites in the patient microenvironment, is
pivotal to preventing hospital outbreaks. Investigating the role of environmental
contamination and the impact of decontamination measures will further inform IPC
policies. However, the regional clonality of strains and the lack of discrimination
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between individual isolates by using a range of typing methods mean that it may be
impossible to accurately determine where transmission has occurred.

The institution of broad-ranging IPC care bundles appears, from limited available
data, to be effective at reducing the number of invasive infections (10). Effects on
colonization, however, are unclear, as is the need to decolonize patients prior to
surgical procedures and whether invasive infections can be prevented or at least
significantly reduced with IPC measures. An increased understanding will also inform
the development of guidance regarding the management of patients colonized with C.
auris transferred into community environments.

Genomic analyses demonstrated the presence of a number of genes associated with
virulence factors and reduced antifungal susceptibility in other Candida species. The
possibility of the development of further antifungal resistance remains a significant
concern and highlights the need for the development of novel antifungal agents (82).
Further genome analysis to understand the development of resistance mechanisms
and the impact upon the fitness of the organism is important to help in the develop-
ment of appropriate antifungal recommendations for at-risk populations. Echinocan-
dins are the recommended first-line therapy, as for other candidemias. New options on
the horizon include SCY-078 and the use of combinations of antifungals in patients with
multiresistant organisms.

The significance of C. auris as a human pathogen remains unclear. Mortality rates
from initial studies were concerning, although C. auris-attributable mortality cannot be
established from those studies. Underlying medical conditions and the availability of
antifungal therapies will clearly have a heavy impact on outcomes, especially in
developing countries, where infection control practices may not be able to prevent
transmission, detection methods may be lacking, and echinocandin availability may be
limited. Data from the United Kingdom are more reassuring and raise the possibility of
differing pathogenicities among strains.

As for other emerging pathogens, laboratory costs associated with our increasing
understanding of C. auris include those associated with increased sample throughput
and the greater use of reference laboratory testing for confirmation and susceptibility
testing. In affected hospitals, members of staff from multiple disciplines are required to
deal with the evolving situation, with consequent effects on routine workflows. The
need for the implementation of urgent infection prevention and control measures can
have wide-ranging effects, from single-use equipment to increased cleaning and
decontamination requirements. In addition, this can cause delays in patient investiga-
tions and procedures and extend hospital stays. Where there is a limited understanding
of the mechanisms of transmissibility, as with C. auris, competing priorities of oppor-
tunity cost and alterations to service will need to be balanced against possible risks of
spread.

CONCLUSION

With its predilection for the most vulnerable patients and concerns regarding
antifungal resistance, C. auris has the potential to significantly impact morbidity,
mortality, and health care infrastructure and finance. There are multiple unan-
swered questions regarding the natural environment of C. auris, the origin of its
sudden emergence, population prevalence, environmental contamination, trans-
mission dynamics, acquisition of antifungal resistance, effectiveness of IPC mea-
sures, and impact on patient mortality. It remains unclear as to whether this
organism will continue to be a cause for global concern or if it will decline as quickly
as it seems to have appeared. The increased number of cases detected in an ever
larger number of countries suggests that the latter possibility is unlikely. The
identification of increasingly resistant isolates is particularly concerning. Current
research has the potential to have a significant impact on future outcomes for
patients and institutions worldwide.
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