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Summary

Identifying factors associated with increased medical cost is important for many micro- and 

macro-institutions, including the national economy and public health, insurers and the insured. 

However, assembling comprehensive national databases that include both the cost and individual-

level predictors can prove challenging. Alternatively, one can use data from smaller studies with 

the understanding that conclusions drawn from such analyses may be limited to the participant 

population. At the same time, smaller clinical studies have limited follow-up and lifetime medical 

cost may not be fully observed for all study participants. In this context, we develop new model 

selection methods and inference procedures for secondary analyses of clinical trial data when 

lifetime medical cost is subject to induced dependent censoring. Our model selection methods 

extend a theory of penalized estimating function to a calibration regression estimator tailored for 

this data type. Next, we develop a novel inference procedure for the unpenalized regression 

estimator using perturbation and resampling theory. Then, we extend this resampling plan to 

accommodate regularized coefficient estimation of censored lifetime medical cost and develop 

post-selection inference procedures for the final model. Our methods are motivated by data from 

Southwest Oncolocy Group Protocol 9509, a clinical trial of patients with advanced nonsmall cell 

lung cancer, and our models of lifetime medical cost are specific to this population. But the 

methods presented in this article are built on rather general techniques and could be applied to 

larger databases as those data become available.
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1. Introduction

Many institutions, including governments, hospitals, and private businesses, have great 

interest in factors associated with increased medical costs. For example, countries with state-
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run medical insurance programs aim to provide state-of-the-art medicine to their citizens 

while moderating the financial burden on the economy. In our motivating study, the 

Southwest Oncology Group (SWOG) clinical trial 9509, Huang (2002) showed that while 

patients following either one of two competing treatment regimens for nonsmall cell lung 

cancer had similar survival, one treatment led to significantly lower medical costs compared 

to the other treatment. In this paper, we seek to identify systematically other predictors 

associated with differential medical costs in SWOG 9509, estimate their association and 

draw valid statistical inference on the final estimates. The analysis is complicated because 

clinical studies have limited follow-up and lifetime medical costs is not fully observed for all 

study participants.

Suppose Y is lifetime medical cost measured at the end of life, say at time T, and z = (z1, …, 

zd)T is a d-vector of independent regressors. We assume the natural logarithm of lifetime 

medical cost is linearly related to the independent variables though the regression model,

(1)

where β = (β1,…, βd)T are unknown coefficients and the error εY comes from an unknown 

distribution. The primary scientific interest lies in the coefficient vector β but estimation is 

challenging because lifetime cost Y is observed only for uncensored observations, i.e. T ≤ C, 

where C be a censoring random variable. It is well-known that naïve estimators of β, e.g. 

least squares estimation on uncensored medical costs, work only under restrictive 

assumptions on the data-generating mechanism and are not, in general, consistent for β (e.g. 

Lin et al., 1997; Huang and Louis, 1998; Huang, 2002; Jain and Strawderman, 2002). Thus, 

the statistical objective is to estimate β consistently under reasonably general conditions 

with the observed data (δY, X, δ, z), where X = min(T, C) and δ = I(T ≤ C).

A principal challenge in estimating β in the presence of censoring is the potential non-

identifiability of the conditional distribution [Y|z] when δ = 1 (e.g. Zhao and Tsiatis, 1997; 

Huang and Louis, 1998). Two estimation strategies that accommodate both the identifiability 

of [Y|z] and the induced censoring include inverse weighting (Zhao and Tsiatis, 1997; Lin, 

2000; Bang and Tsiatis, 2000; Jain and Strawderman, 2002; Tsiatis, 2006) and bivariate 

modeling of time and cost together (Huang, 2002). Due to space limitations, a detailed 

review of these strategies is not given here and we refer the interested reader elsewhere in 

the literature (Huang, 2009). Briefly, the inverse weighting strategy overcomes identifiability 

concerns by redefining the outcome as time-restricted cost such that the new outcome is 

identified by definition and overcomes censoring by weighting the uncensored observations 

in an uncensored least-squares estimator, for example, by the inverse probability of 

censoring via P(C > t|z), t ≥ 0. Alternatively, Huang (2002) suggested modeling cost and 

time together, for example, by parameterizing the conditional distribution [(Y,T)|z] as [T|z] 

and [Y|(T,z)]. Compared with inverse weighting, Huang's (2002) technique models cost 

outcome Y rather than time-restricted medical cost and estimates nuisance parameters 

through the conditional distribution [T|z] rather than [C|z]. Nevertheless, both estimation 
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strategies regard cost-scale inference as the primary analytic goal and other aspects of the 

statistical model as secondary.

Our estimator is based on an extension and application of a theory of penalized estimating 

function applied to Huang's (2002) calibration regression estimator. If β(β) is a consistent 

estimating function for β, then Johnson et al. (2008) defined the penalized estimating 

function

(2)

where sgn(β) = (sign(βj), j = 1, …, d), qλ(|β|)sgn(β) is the element-wise product and qλ(|β|) 

is a penalty function satisfying conditions that we state in Section 2. A root to the estimating 

function β,λ(β) is both sparse and satisfies an oracle property (Fan and Li, 2001; Zou, 

2006; Johnson et al., 2008). In our medical cost application, there are secondary parameters 

that must be estimated and, naturally, one might expect that different estimation strategies at 

this level will have consequences on the cost-scale estimator. We investigate the operating 

characteristics of two different approaches in this paper.

Variable selection procedures for censored medical cost are given in Section 2. This includes 

a method that estimates secondary parameters via unregularized estimation and another 

method that attempts to select variables and estimate parameters in [Y|(T, z)] and [T|z] 

simultaneously; the former method is our preferred approach and was detailed in an 

unpublished technical report (Johnson et al., 2012) while the latter method is new and given 

for comparison purposes. New inference procedures for the unregularized and regularized 

calibration estimators are given in Section 3. For the regularized case, we adapt the post-

selection inference procedures by Minnier et al. (2011) to calibration estimator for lifetime 

medical cost. We re-analyze the medical cost data from SWOG 9509 in Section 4 and report 

on our simulation studies in Section 5.

2. Variable Selection for Lifetime Medical Cost

2.1 Regularization in Cost-scale Only

Using a theory of counting processes (Andersen et al., 1993; Kalbfleisch and Prentice, 

2002), the weighted log-rank estimating function for inference in the accelerated lifetime 

model (Tsiatis, 1990; Wei et al., 1990; Ying, 1993), and results for marked processes (Huang 

and Louis, 1998), Huang (2002) proposed the coefficient estimator for (β, ϑ) in the bivariate 

regression model

(3)

as a root to the system of equations, op(n1/2) = (θ) ≡ { β(θ), ϑ(θ)},
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(4)

(5)

where (δiYi, Xi, δi, zi) is the observed data for the i-th individual, γ(t, ϑ) is a non-negative 

weight function, ψ(·) is a strictly monotone function,  is the 

at-risk process,  is the counting process, and z̄(u, ϑ) = 

ΣjzjRj(u, ϑ)/ΣjRj(u, ϑ). The statistic ϑ(θ) is the weighted log-rank estimating function 

(Tsiatis, 1990; Wei et al., 1990) and does not depend on the cost-scale coefficients β. For 

arbitrary weight function γ(u, ϑ), the estimating function ϑ(θ) is known to be non-

monotone, contain multiple roots, some of which may be inconsistent (Fygenson and Ritov, 

1994). Under conditions (A)–(E) in Huang (2002), the joint coefficient estimator 

 is consistent and asymptotically normal with mean θ0 and covariance 

n−1{Γ−1Ω(Γ−1)T}, where Γ = ∇{limn n−1 (θ0)}, n−1/2 (θ0) →d N(0, Ω), and 

. The asymptotic covariance is not directly estimable because the 

asymptotic slope matrix Γ depends on the hazard functions of the errors (εY, εT) in (3). This 

point makes statistical inference for θ̂0, and hence β̂0, challenging.

The calibration estimator β̂0 consistently estimates the mark-scale regression coefficients β 
in (3) but does not perform variable selection. To simultaneously select and estimate cost-

scale coefficients, we propose the system of estimating functions,

(6)

where β,λ(θ) = β(θ) − nqλ(|β|)sgn(β) is the penalized estimating function, analogous to 

(2), and qλ(|β|) = (qλ,1(|β1|), …, qλ,d(|βd|))T satisfies the following two conditions: for fixed 

β > 0,

A1. limn→∞ n1/2qλ(|β|) = 0 and limn→∞(∂/∂β)qλ(|β|) = 0;

A2. For any K > 0, limn→∞n1/2 inf|β|<Kn−1/2 qλ(|β|) → ∞.

Conditions A1–A2 are sufficient to define a cost-scale coefficient estimator, say β̂λ, that 

achieves an oracle property. In words, the oracle property implies the coefficient estimator is 

consistent and asymptotically normal, and sets the coefficient estimate exactly to zero for 

unimportant variables with probability tending to one. The asymptotic properties of β̂λ are 

given in Web Appendix A. Note, the system of equations λ(θ) regularizes the cost-scale 
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estimating function but not the time-scale estimating function; we revisit this point in 

Section 2.2.

The role of ψ(·) in (4) is to moderate the influence of extremely large observations on the 

mark-scale. But setting ψ(y) = y leads to a computationally efficient estimator and an exact 

solution to the system of penalized estimating functions. In the sequel, the identity weight 

function ψ(·) is assumed throughout. Then, one can show that the penalized estimating 

function β,λ(β, ϑ0) in λ(θ) is the quasi-gradient of the objective function,

(7)

with (∂/∂βj)pλ,j(βj) = qλ,j(|βj|)sign(βj), V(ϑ) = {AT(ϑ)}−1w(ϑ), A(ϑ) is the Choleski 

decomposition of M(ϑ), and , and 

. The expression ℚβ,λ(β, ϑ0) is a 

surrogate loss function depending on the unknown time-scale coefficient ϑ0. Thus, β̂λ 
minimizes ℚβ,λ(β, ϑ̂

0).

2.2 Simultaneous Regularization on Cost- and Time-scale Coefficients

An alternative approach to model selection for censored medical cost data would be to 

perform estimation and variable selection over cost- and time-scale coefficients 

simultaneously. First, there may be a scientific reason to regard both time- and cost-scale 

coefficients as primary parts of the statistical model. Second, one might hope to achieve a 

better cost-scale coefficient estimator by removing unimportant time-scale regressors or 

otherwise regularizing the time-scale parameters. We show one method of joint 

regularization using effectively the same techniques as in Section 2.1. By replacing β with θ 
in (6), we define the penalized estimating function

(8)

where qλ(·) is defined through Conditions A1–A2. Under regularity conditions in Huang 

(2002, Appendix), Theorem 1 in Johnson et al. (2008) says that a root to 𝕊̃λ(θ) possesses an 

oracle property. Hence, both approaches via (6) and (8) result in sparse coefficient estimates 

on the cost-scale but only (8) results in sparse estimates on the time-scale.

Unfortunately, solving 𝕊̃λ(θ) using ordinary methods, e.g. local quadratic approximation, is 

difficult because Γ is not directly estimable. Wang and Leng (2007) proposed an indirect, but 

asymptotically equivalent, method to finding roots of penalized estimating functions. It is 

easy to show that under standard conditions on parametric families of distributions, a local 

approximation to the likelihood is the quadratic function (θ − θ0)Tℐn(θ − θ0), where ℐn is 

the information matrix evaluated at θ0. Under technical regularity assumptions on estimating 
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functions (θ), including the asymptotic linearity of (θ), Wang and Leng (2007) showed 

this idea extends to general M- and Z-estimators by replacing ℐn with the inverse sandwich 

matrix. Thus, a penalized local quadratic loss function for our problem is

(9)

where Σ = Γ−1Ω(Γ−1)T and pλ,j were defined in (7). In practice, Σ is unknown and must be 

estimated; see Section 3.

2.3 Algorithmic and Practical Notes

In the sequel, we consider two weight functions, the Gehan weight function, 

 and the log-rank weight function, γ(u, ϑ) = 1. To compute the 

Gehan estimate of the time-scale coefficient ϑ, we use the linear programming technique by 

Jin et al. (2003) to compute the Gehan estimates. Then, we compute the log-rank estimate 

through their iteratively reweighted Gehan estimate using 5 iterations. The unregularized 

mark-scale estimate is the solution to a linear system (Huang, 2002). To compute the 

regularized mark-scale estimates for general penalty function, Johnson et al. (2012) 

investigated several algorithms for non-concave penalized least squares. Due to space 

limitations, we refer interested readers to our technical report for details. The results in 

Sections 4-5 use a multi-stage local linear approximation algorithm.

The regularization parameter λ is determined by minimizing data-dependent information 

criteria. We define the quadratic function , where Ωn(θ0) is a 

consistent estimator of the asymptotic covariance matrix Ω(θ0),

v⊗2 = vvT for the vector v and A ⊗ B is the kronecker product of matrices A and B. 

Following similar arguments to Wei et al. (1990), one can show that D(θ̂λ) converges to a χ2 

random variable as n → ∞ with degrees of freedom equal to the number of zero coefficients 

in θ̂λ. Thus, our BIC-type criterion is BIC(λ) = D(θ̂λ)+log(n)d̂(λ), where d̂(λ) is the 

cardinality of θ̂λ, and an AIC-type criterion is AIC(λ) = D(θλ) + 2d̂(λ).

3. Inference Procedures

Similar to Minnier et al. (2011), our resampling procedure is based on perturbation theory. 

Let (ζ1, …, ζn) be independent and identically distributed random variables, completely 

independent of the observed data, such that E(ζ1) = var(ζ1) = 1. Without loss of generality, 

let β̂* and ϑ̂* be resampled estimates for β and ϑ, respectively. Suppose that β̂ has influence 

curve ICi(β, ϑ) such that E{ICi(β0, ϑ0)} = 0 and
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(10)

If we can show that

(11)

then we conclude that, conditional on the observed data, n1/2(β*̂ − β̂) has the same 

asymptotic distribution as n1/2(β̂ − β). Regardless of the tools one employs, the basic goal is 

to establish (10)–(11); see also, Kosorok (2008, Theorem 10.4). This point guides our 

investigation below.

3.1 Statistical Inference for β̂

In our resampling scheme, we consider the effect of estimating first the nuisance parameters 

that are used to calibrate and define the estimating function of interest β(θ0). Here, we 

proceed along the lines of Jin et al. (2006), who proposed a two-stage least-squares-type 

coefficient estimator in the accelerated lifetime model.

Let ℱobs = σ{(δiYi, Xi, δi, zi), i = 1,…, n}, , and define the perturbed 

Gehan estimator for the time-scale parameters,

(12)

Subsequently, define the perturbed mark-scale Gehan-type coefficient estimate β̂* as the 

solution to the system of equations, , with . Recall, 

when ψ(y) = y, the estimator β̂* is exactly a solution to a perturbed linear system, i.e.

 and γ*(u, ϑ) was defined earlier. Using 

arguments similar to Jin et al. (2006), one can show that conditional on ℱobs, n1/2(β̂* − β̂0) 

has the same asymptotic distribution as n1/2(β̂0 − β0). Then, a confidence interval is 

Johnson et al. Page 7

Biometrics. Author manuscript; available in PMC 2017 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constructed by repeatedly generating (ζ1, …, ζn) and solving for β̂* a large number of times, 

then using the percentiles from the empirical distribution of resampled estimates. 

Analogously, if ( ) are the perturbed coefficient vectors obtained from perturbing 

the data B times, then  is an estimator for Σ/n. Small sample studies to 

evaluate the resampling procedures for variance estimation are given in Web Appendix B.

3.2 Statistical Inference for βλ̂

Similarly, let  be a root to the perturbed penalized estimating function , where 

ϑ̂* is the perturbed time-scale coefficient estimate, e.g. see (12) for Gehan weight, and

However, when ψ(y) = y,  is the quasi-gradient of

V*(ϑ) = {A*T(ϑ)}−1w*(ϑ), A*(ϑ) is the Choleski decomposition of M*(ϑ), and

Therefore, . Let  = {j|β0j ≠ 0}, β  = {β0j|j ∈ }, β̂  = 

{βλ̂,j|j ∈ }, and . By adapting the arguments of Minnier et al. (2011) to 

the substitution estimator here, under the conditions given in Web Appendix A, one can 

show that conditional on ℱobs,  has the same asymptotic distribution as 

n1/2(β̂  − β ). Furthermore, . As stated in Remark 3 

of Johnson et al. (2008) as well as Zou and Li (2008), conditions A1-A2 apply to many 

penalty functions including bridge penalty (Frank and Friedman, 1993), hard thresholding 

(Antoniadis, 1997), scad (Fan and Li, 2001), adaptive lasso (Zou, 2006), and logarithmic 

penalty (Zou and Li, 2008; Johnson et al., 2008). Thus, at a minimum, the distributional 

result for n1/2(βℱ̂ − β ) applies to these regularized coefficient estimators.

To improve the finite sample perform of the variance estimators and for comparison 

purposes, we consider resampling plans similar to those described in Minnier et al. (2011). 

We consider four different types of confidence intervals based on resamples of the 

regularized estimates, three of which were considered in Minnier et al. (2011). Let B be the 
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user-defined total number of resamples and define π̂
0j = #{β̂λ,j = 0}/B, the empirical 

estimate that βj = 0 based on the bootstrap resamples for j = 1, …, d. For asymptotically 

normal confidence intervals, , we considered the centered intervals: β̂λ,j ± z1−α/2σ̂j,  is 

the bootstrap estimate of the sampling variance, . To be 

consistent with the procedures in Minnier et al. (2011), we set  if π̂0j ≥ p̂high, p̂high 

is an upper threshold such that p̂high → (1 − α). The percentile interval  defines upper 

and lower endpoints through the (1 − α/2)-sample quantiles of the bootstrap resamples.

In addition to normal and percentile method, we also implemented two versions of highest 

density intervals (Minnier et al., 2011). Write the conditional density of  as the 

mixture density , where  is the probability density function 

of  provided that it is non-zero. Then, the confidence interval is defined piecewise as 

follows:

(13)

where , ℛ(κ1) = (1 − α − π̂
0j)/(1 − π̂

0j), ℛ(κ2) = (1 − α) + 

α(π̂
0j + p̂low), ℛ(κ3) = (1 − α), p̂low → 0 and p̂high → (1 − α). The rules proposed by 

Minnier et al. (2011) for determining strong and weak evidence depended on the proportion 

π̂
0j and the thresholds, p̂high and p̂low: (a) π̂

0j ≥ p̂high, (b) p̂low ≤ π̂
0j < p̂high, (c) α ≤ π̂

0j < 

max(α, p̂low), and (d) π̂
0j < α. The four cases in  are initially based on the mixture 

distribution of , but Minnier et al. (2011) inflate or deflate the region of each case to 

improve finite sample performance of the interval estimator. For example, when the evidence 

is strong for βj = 0 or βj ≠ 0, one ignores the mass in the continuous  or the atom at 

zero, respectively. The interval estimator is inflated when there is weak evidence of a non-

zero effect in case (c). The exception is when p̂low ≤ π̂
0j < p̂high in case (b) where the 

interval estimator follows directly from the definition of a highest density region for a 

mixture distribution.

This leads to a second definition of highest density region that reflects the mixture density 

 as is, without artificially manipulating the region for weak 

effects. Note that case (b) in (13) follows directly from the definition of bivariate mixture for 

a level-α region while cases (a) and (d) are ∊-approximations to the mixture density since 

π̂
0j is very close to one or zero, respectively. So, case (c) in (13) for weak effects is the only 

one that deviates substantially from the mixture density. By combining cases (b)–(c) of , 

we take a more agnostic approach to interval estimation for any effect that lacks strong 
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evidence as an important or unimportant variable. The simple HDR confidence interval is 

given by

(14)

where case (b) is in effect if α ≤ π̂
0j < p̂high. Since the confidence interval  in (14) is 

defined identically for cases (a), (b), and (d) from  in (13), then we can evaluate directly 

the effect of artificially inflating the region of weak effects in case (c) of .

4. Analysis of Medical Expenditures in SWOG 9509

The randomized Southwest Oncology Group (SWOG) 9509 trial was designed to investigate 

Paclitaxel plus Carboplatin versus Vinorelbine plus Cisplatin therapies in untreated patients 

with advanced nonsmall cell lung cancer. The primary study endpoint was survival time 

(Kelly et al., 2001) and subsequent secondary analyses considered lifetime medical costs 

(Huang and Lovato, 2002; Huang, 2002). For each of 408 eligible study participants, the 

lifetime medical cost endpoint was computed from resource utilization metrics, including 

medications, medical procedures, different treatments on- and off-protocol, and days spent 

in the outpatient or inpatient clinic. The cost incurred for each type of resource used was 

computed using national databases and were standardized to 1998 US dollars (Huang, 

2002). Resource utilization was measured at 3, 6, 12, 18, and 24 month clinic visits. Both 

time and cost are modeled on the natural logarithmic scale.

Our analysis merges the cost data from Huang (2002) with another data set of demographic 

and clinical variables. In all, we considered 18 baseline variables as main effects in the 

bivariate accelerated failure time model (3). The regressors are treatment arm (tx, 

1=Paclitaxel plus Carboplatin, else 0), gender (sex), progression status (prog.stat.), 

performance status (ps), clinical stage (stage), IIIB by pleural effusion, weight (kg), height 

(cm), creatinine (creat), albumin (g/dl), calcium (mg/dl), serum lactate dehydrogenase (ldh, 

U/l), alkaline phosphatase (alkptase), bilirubin (mg/dl), white blood cell count (wbc, cells/

microliter), platelet count (platelet, cells/microliter), hemoglobin level (hgb, g/dl), and age 

(years). Serum lactate dehydrogenase (ldh), alkaline phosphatase (alkptase), and bilirubin 

are all derived binary random variables, with one indicating that the patient's measurement 

exceeded the upper limit of normal (ULN). After missing data was removed, we were left 

with a final sample size of n = 343. Gehan weight function γ(u, ϑ) was used throughout.

Table 1 presents coefficient and standard error estimates for the full model using all 18 

covariates. We immediately see that in addition to treatment, there are a number of 

covariates that are important for one of time or cost but not both. Progression status, 

performance status, albumin, calcium, bilirubin, and white blood cell count are important for 

both time and cost. Height, serum lactate dehydrogenase, alkaline phosphatase, and 

hemoglobin are important for time but not cost while treatment is important for cost but not 
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time. Sex and age are weak predictors for cost and time, respectively, but are not statistically 

significant at the nominal level. In subsequent analyses using penalized estimating functions, 

we standardized each of 18 baseline variables to have mean zero and unit variance. This 

explains why, in Table 1, we present coefficient and standard error estimates for both 

standardized and non-standardized covariates.

The results of our model selection procedures using the BIC-type criterion are presented in 

Table 2. Of the 18 variables, we found that when we regularize the cost-scale estimating 

function only, 6-7 variables are associated with medical cost, including treatment, sex, 

progression status, performance score, albumin, white blood cell count, and hemoglobin 

level. Hemoglobin level is a weak effect and adaptive lasso sets the coefficient estimate 

exactly to zero. We also performed variable selection using the joint regularization approach 

and found that the best fit model included 13 or 10 cost-scale predictors for lasso or adaptive 

lasso, respectively. Hence, the models found via joint regularization are approximately 

40-50% more complex in the cost-scale than models found via cost-scale regularization 

only. This point is further explored in Section 5 through simulation studies.

The results of the inference procedures are displayed in the columns of π̂
0js in Table 2 and 

in Figure 1. Progression status was the only predictor among the 18 in our data set that was a 

very strong predictor of lifetime medical cost. Of 1000 resampled data sets, neither the 

adaptive lasso nor lasso set the coefficient estimate for progression status to zero for any 

resampled data set. On the other hand, treatment, sex, performance score, albumin, white 

blood cell count, and hemoglobin level were weak effects. For each coefficient, Figure 1 

displays the 95% confidence intervals using normal (dashed), percentile (light gray), and 

highest density methods (black). Progression status is the only strong effect and therefore the 

only HDR interval that does not contain the singleton {0}. Note that for weak effects, the 

normal confidence intervals cross zero whereas the percentile method and HDR intervals do 

not. Adaptive lasso coefficient estimates for sex, performance score, albumin, white blood 

cell count, and hemoglobin level are extremely close to zero and the confidence intervals, or 

lack thereof, reflect this fact. Finally, because there was only modest differences between 

two versions of HDR confidence interval, only HDR(M) from Section 3 was presented in 

Figure 1.

5. Simulation Studies

5.1 Comparison of Point Estimators

In the first numerical example, we compare variable selection procedures that regularize in 

the cost-scale only versus simultaneous regularization of time- and cost-scale parameters 

altogether. As part of this numerical study, we also evaluate the sensitivity of β̂λ to the 

choice of calibration vector ϑ. The results here can be used to assess the potential loss in 

efficiency and predictive ability of β̂λ when using the time-scale coefficient estimate derived 

from the full model.

We start by simulating d = 8 predictors as standard normal random variables z = (z(1), …, 

z(8)) such that corr(z(j), z(k)) = 0.5|k−j|, for j, k = 1, …, 8. Then, we simulated bivariate 

normal errors, where var(εY) = var(εT) = σ2 and corr(εY, εT) = 0.5 and subsequently defined 
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(Y,T) according the joint model in (3). The non-zero time-scale coefficients are ϑ1 = ϑ5 = 

ϑ8 = 1, the non-zero cost-scale coefficients are β1 = 3, β2 = 3/2, and β5 = 1 while all other 

time- and cost-scale coefficients are zero. Note, just as in the SWOG data example, some 

predictors are important for time only, some are important for cost only, while other 

predictors affect both cost and time. The censoring random variable C was uniformly 

distributed Un(0, 6) and the observed data defined accordingly. The data generating process 

was repeated independently for n observations.

We evaluate the procedures using three summary statistics: median model error, false 

positive and false negative rates. The cost-scale model error is defined ME = (βλ̂ − 

β0)TE(zzT)(βλ̂ − β0), the false negative rate is the average number of non-zero coefficients 

incorrectly set to zero, and the false positive rate is average number of coefficients whose 

true value is zero but estimate is non-zero. We refer to Huang's (2002) coefficient estimators 

as unregularized estimators and the oracles use regressors from the true subset of non-zero 

regression coefficients in time- and then cost-scale. In addition to computing the estimators 

described in Section 2, we also compute two similar but hypothetical estimators. The two 

hypothetical estimators are computed in exactly the same way as β̂λ except that they 

calibrate with the true time-scale coefficient ϑ0 or oracle estimator ϑ . Adaptive lasso 

penalty is used for all regularized estimators and tuning via BIC-type criterion. To gauge the 

success of the combined estimator θλ̃ in selecting important time-scale variables, we 

computed the regularized coefficient estimator in the accelerated lifetime model (Johnson, 

2009). Table 3 presents simulation results over 100 Monte Carlo datasets.

The first observation is that calibrating β,λ(θ) in (6) with the full model coefficient 

estimator ϑ̂
0 is an effective variable selection strategy if evaluated with cost-scale metrics. If 

we calibrated with the true value ϑ̂
0 or oracle estimator ϑ̂ , the cost-scale model error, 

false positive and negative rates are so similar that they are within error of the Monte Carlo 

study. Even for n = 90 with modest censoring, the estimator βλ̂ possesses operating 

characteristics close to the oracle β̂ . Our second observation is that joint regularization 

reduces model error and false positive rate in both time- and cost-scale. But, to accomplish 

this task, the joint variable selection procedure balances good performance across both 

scales and, hence, the cost-scale performance of βλ̃ is somewhat less than that of β̂λ in Table 

3. For example, the median model error of β̃λ is about twice that of β̂λ at n = 90 and σ = 1. 

At the same time, ϑ̃λ reduces model complexity and model error in the time-scale which is 

obviously not the case with the unregularized time-scale coefficient estimator ϑ̂0.

5.2 Comparison of Interval Estimators

To examine the operating characteristics of different interval estimators, we conducted 

numerous simulation studies in the context of our application. We simulated data according 

to the bivariate accelerated failure time model in (3), with standard normal regressors that 

followed a first-order Markov model corr(z(j), z(k)) = (0.5)|j−k| and errors that followed a 

bivariate normal distribution with mean zero, unit variance and covariance cov(εY, εT) = 0.5. 

The time-scale regression coefficients were all equal to one whereas the mark-scale model is 

chosen to have varying levels of complexity (Tibshirani and Knight, 1999). For each of four 
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different designs, the true regression coefficients are clustered in two groups as described in 

the following two steps.

1. Set the initial coefficients to β7+k,h = β14+k,h =(h − k)2, |k| < h, h = 1,…, 4;

2. Scale the initial coefficient values to yield a theoretical R2 = 0.75, where we 

define .

Censoring times were independently generated from Un(0, 6) distribution. For all scenarios, 

observed data are generated for a random sample of size n = 75. The simulation scenarios 

are designed after numerical studies proposed by earlier authors (Tibshirani and Knight, 

1999; Wu et al., 2007; Johnson, 2008), however, none of these earlier works focused on 

interval estimation and none considered induced censoring.

In the current simulation studies, we considered the four interval estimators discussed earlier 

in Section 3 for several penalty functions discussed in the literature. These penalty functions 

include bridge (Frank and Friedman, 1993), lasso (Tibshirani, 1996), hard thresholding 

(Antoniadis, 1997), scad (Fan and Li, 2001), adaptive lasso (Zou, 2006), and logarithmic 

penalty (Zou and Li, 2008; Johnson et al., 2008). Due to space limitations, part of the 

simulation results are given in Table 4 while most results have been moved to 

Supplementary Material. As in Minnier et al. (2011), we used the hdrcde package in R to 

implement the highest density regions. Here, we used an Epanechnikov kernel for density 

estimation with Silverman's rule-of-thumb bandwidth. Otherwise, default settings of the 

hdr() function were used. Although Minnier et al. (2011) proposed thresholds for adaptive 

lasso based on the Gaussian linear model with orthonormal design, it is not clear the same 

definitions should apply uniformly across the class of penalty functions considered here. For 

this reason, we adopted static cutoffs of p̂high ≡ phigh = 0.95 and p̂low = 0.49, the upper 

bound in the definition proposed by Minnier et al. (2011, p. 1374). Note, that our static 

definition of pl̂ow does not satisfy p̂low → 0 and so the interval α ≤ π̂0j < max(α, p̂low) that 

defines weak evidence of βj ≠ 0 in  may be too liberal. However, our definition of the 

simple interval estimator  effectively sets p̂low = α = 0.05 and allows for an indirect 

investigation into the effects of our proposed static rule for p̂low in .

In Table 4, we present the empirical coverage probabilities (ECP) and interval lengths of 

95% confidence intervals averaged over coefficients belonging to the active and inactive 

sets. Due to the construction of the simulation scenarios, the cardinality of the active set 

ranges from 2 to 14 in Models 1 and 4, respectively, and the cardinality of the inactive set is 

defined as the difference from d = 21. Results for all methods are based on 1000 resamples 

for each of 100 Monte Carlo data sets. The average length of the confidence intervals in the 

inactive set was longest for HDR(M) and shortest for HDR(S). In the active set, the normal-

type interval estimator had the ECP close to the nominal coverage across all four models, the 

ECP of HDR(M) was similar to the percentile method, and HDR(S) had the worst coverage 

among the four intervals estimators considered. Compared to the percentile method with 

similar coverage, the HDR(M) intervals were longer in Models 2–4 and shorter in Model 1. 

In general, we found that the simple interval estimator HDR(S) had shorter intervals than 

HDR(M) but also substantially worse coverage probabilities. These observations led us to 
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conclude that inflating the confidence region for weak effects as proposed by Minnier et al. 

(2011) results in measurable improvement over a literal interpretation of the mixture 

distribution of  to guide the HDR interval estimator as in . Finally, although the 

resampling methods are only a heuristic for the lasso, we found that, on the active set, the 

normal and HDR(M) confidence intervals cover the true value close to the nominal level for 

Models 2–4, on average, while the percentile method under covers by about 5 percentage 

points.

6. Discussion

In this paper, we proposed model selection and inference methods for censored lifetime 

medical cost by applying a theory of penalized estimating function to Huang's (2002) 

calibration estimator. We regarded β and ϑ as the primary and secondary parts, respectively, 

of a statistical model (Boos and Stefanski, 2013, 1.2) and, as such, estimated ϑ as simply as 

possible that led to an estimator β̂λ with the desired asymptotic properties. At the request of 

two anonymous reviewers, we also investigated joint regularized estimation of time- and 

cost-scale parameters together using penalized estimating functions via least-squares 

approximation (LSA). In theory, both β̂λ and β̃λ will possess the oracle property but our 

simulation studies suggest that β̂λ is superior to β̃λ in finite samples if evaluated with cost-

scale metrics as in Table 3. But if we consider the combined model error and complexity 

across both cost- and time-scales, then joint regularization is better. A third alternative to 

what was presented in Section 2 is to consider a richer class of methods that has separate 

regularizations on the cost- and time-scale. Tuning such a procedure could be accomplished 

using D(θ) defined in Section 2.3 and information criteria defined analogously. But, in this 

case, the optimal regularization parameters would be computed by minimizing the 

information criteria over a 2-dimensional surface of regularization parameters rather than 

over a line, as we proposed via LSA. Thus, although the point estimate from two separate 

regularizations in time and cost may not be expensive to compute, tuning such a procedure 

would be significantly more complex computationally than our joint regularization method 

and post-selection inference would consequently be more laborious as well.

Finally, we investigated post-selection inference procedures by Minnier et al. (2011) applied 

to our regularized calibration estimator. Although the penalized calibration regression 

estimator does not, strictly speaking, belong to the class of estimators considered in Minnier 

et al. (2011), the post-selection inference technique operates exactly the same way after the 

resampling plan is justified. For adaptive lasso, scad, and similar penalty functions, we 

found that confidence intervals based on the normal approximation performed surprisingly 

well. Confidence intervals based on percentiles and HDR performed well when the signal-

to-noise ratio was high and not as well when the signal-to-noise ratio was low. Based on the 

construction of our simulation studies, this conclusion can be read another way. When the 

signal is composed of many weak predictors as opposed to a few strong predictors, the 

coverage probability of percentile and HDR confidence intervals on the active set decreases 

below the nominal level. As stated in Minnier et al. (2011), limitations of HDR can partly be 

attributed to difficulty in accurately identifying the active set  in finite samples. At the 

same time, we found that HDR performed well in finite samples when there are small 
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number of strong predictors. The real difficulty arises when there are many weak effects, and 

this may be a deficiency of the coefficient estimator rather than HDR itself (Pötscher and 

Schneider, 2009, 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
95% confidence intervals for the penalized cost-scale regression coefficient estimates. Each 

coefficient estimate has three interval estimates based on methods from Section 3: normal 

(dashed), percentile (light gray), and HDR (dark gray). Coefficient numbers across the x-

axis are annotated in Tables 1–2.
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Table 1

Mark- and time-scale coefficient and standard error estimates from full model fit to 18 covariates from SWOG 

9509. All regularized estimation procedures standardize predictors to have mean zero and unit variance. All 

table entries are multiplied by 100.

Name

Standardized X Unstandardized X

Time Cost Time Cost

1. tx -2.28 (6.09) 16.98 (4.91) -4.56 (12.16) 33.68 (9.85)

2. sex 3.79 (8.98) 14.73 (9.21) 8.21 (19.47) 31.94 (20.14)

3. prog.stat 45.93 (11.24) 35.13 (5.15) 157.69 (38.57) 123.55 (18.52)

4. ps -23.01 (5.58) -9.67 (5.00) -47.73 (11.57) -20.38 (10.45)

5. stage -11.16 (10.82) 7.81 (9.54) -34.72 (33.68) 25.63 (29.85)

6. pleural -3.39 (11.49) 2.59 (9.66) -13.80 (46.84) 10.54 (39.74)

7. weight 4.67 (6.76) 5.18 (5.88) 0.28 (0.41) 0.33 (0.36)

8. height -17.42 (8.60) -10.72 (8.12) -1.70 (0.84) -1.06 (0.80)

9. creat 6.30 (13.62) 4.37 (8.50) 13.12 (28.34) 9.14 (17.36)

10. albumin 17.53 (6.89) 12.71 (4.94) 22.15 (8.70) 16.06 (6.28)

11. calcium -15.02 (6.32) -9.84 (5.37) -17.54 (7.37) -11.26 (6.22)

12. ldh -21.62 (5.54) -3.74 (4.86) -44.44 (11.39) -6.13 (10.06)

13. alkptase -12.95 (5.71) -3.96 (5.43) -28.14 (12.40) -7.57 (11.89)

14. bilirubin 8.93 (3.76) 8.17 (4.57) 63.05 (26.58) 51.25 (33.10)

15. wbc -20.60 (6.80) -14.47 (5.15) <0.01 (<0.01) <0.01 (<0.01)

16. platelet 2.88 (6.07) -2.71 (5.41) <0.01 (<0.01) <0.01 (<0.01)

17. hgb 15.26 (5.98) 6.36 (5.57) 8.41 (3.30) 3.43 (3.06)

18. age -9.48 (5.97) -1.32 (5.17) -1.02 (0.64) -0.10 (0.57)
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