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Abstract

In complex real-world scenes, image content is conveyed by a large collection of intertwined

visual features. The visual system disentangles these features in order to extract information

about image content. Here, we investigate the role of one integral component: the content of

spatial frequencies in an image. Specifically, we measure the amount of image content car-

ried by low versus high spatial frequencies for the representation of real-world scenes in

scene-selective regions of human visual cortex. To this end, we attempted to decode scene

categories from the brain activity patterns of participants viewing scene images that con-

tained the full spatial frequency spectrum, only low spatial frequencies, or only high spatial

frequencies, all carefully controlled for contrast and luminance. Contrary to the findings from

numerous behavioral studies and computational models that have highlighted how low spa-

tial frequencies preferentially encode image content, decoding of scene categories from the

scene-selective brain regions, including the parahippocampal place area (PPA), was signifi-

cantly more accurate for high than low spatial frequency images. In fact, decoding accuracy

was just as high for high spatial frequency images as for images containing the full spatial

frequency spectrum in scene-selective areas PPA, RSC, OPA and object selective area

LOC. We also found an interesting dissociation between the posterior and anterior subdivi-

sions of PPA: categories were decodable from both high and low spatial frequency scenes

in posterior PPA but only from high spatial frequency scenes in anterior PPA; and spatial fre-

quency was explicitly decodable from posterior but not anterior PPA. Our results are consis-

tent with recent findings that line drawings, which consist almost entirely of high spatial

frequencies, elicit a neural representation of scene categories that is equivalent to that of

full-spectrum color photographs. Collectively, these findings demonstrate the importance of

high spatial frequencies for conveying the content of complex real-world scenes.

Introduction

Everything that our visual system processes begins as collections of low-level features, such as

contrasts, colors, orientations, and spatial frequencies. Collectively, these features represent all
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of the visual information contained in the image. However, semantically meaningful, higher-

level concepts, such as the category, identity or affordance of a scene are not directly accessible

at the early stages of visual processing. The image information must undergo further neural

computations in order to make such semantically complex aspects of the stimuli explicit. As

such, one of the primary goals of vision research is to elucidate these computational mecha-

nisms by which the brain utilizes low-level image features in order to extract high-level mean-

ing. Behavioral, neuroimaging and computational modeling studies have made great progress

illuminating the roles of color [1, 2], spatial frequency spectra [3, 4], and contours and their

junctions [5, 6] with regard to natural scene perception.

In the last few years, several studies have sought to expound upon the neural representa-

tions of high-level visual concepts in scene-selective brain regions by reducing them to low-

level features [7–10]. For instance, Watson et al. (2014) [9] showed that representations of

scene categories in the parahippocampal place area (PPA) can be reduced to a set of oriented

filter banks, concluding that there is no true categorical representation in that region. Most

recently, Watson et al. (2016) [10] reported that the neural activity of a large visual ROI that

included scene-selective regions could discriminate between high and low spatial frequencies

in an image better than between natural and man-made image content. When restricting the

analysis to only the PPA, they found the opposite pattern of results.

Here, we take a different theoretical approach to probing the role of low-level features in

visual perception. Rather than juxtaposing representations of low-level visual features with

high-level content, we probe the visual system by asking how much image content is carried by

different low-level features. Specifically, we investigate information about scene categories

encoded by high versus low spatial frequencies. Behavioral studies have shown that when

viewing a scene, low spatial frequency content of the image is processed prior to higher spatial

frequencies [11]. This phenomenon is referred to as the coarse-to-fine hypothesis of visual per-

ception [12]. A logical explanation for this finding is that low spatial frequencies provide the

coarse description of the global attributes present in an image, therefore providing a sufficient

amount of information for scene recognition. Characteristics such as edges, contours and

other sharper details captured by high spatial frequencies are processed later in order to refine

the initial coarse estimate of the image into a more detailed representation that includes local

properties of the image. The coarse-to-fine hypothesis encapsulates the role of both low and

high spatial frequency information in scene perception but strongly emphasizes the impor-

tance of global features captured primarily by low spatial frequencies [13].

The peripheral field bias observed in parahippocampal cortex lends neuroscientific support

to the importance of low spatial frequencies for scene perception [14, 15]. According to this

bias, PPA should show greater sensitivity to low spatial frequencies based on the fact that high

spatial frequency tuning in early visual areas decreases at larger eccentricities [16]. On the

other hand, recent observations show that high-spatial frequency contours that are preserved

in line drawings of natural scenes [17] and, in particular, junctions of these contours [5, 6] play

a critical role in scene categorization. Moreover, neuroimaging studies have shown that scene-

selective brain regions are more strongly activated by high than low spatial frequencies [8, 18,

19]. Furthermore, Nasr et al. (2014) report that the PPA responds particularly to the presence

of right angles [20], although this rectilinear edge selectivity has been found to be insufficient

to explain category selectivity of the PPA [21].

Crucially, most of the aforementioned studies only compare overall activation levels,

and do not address how much information about image content is conveyed by different

spatial frequencies. One exception is Watson et al. (2016), who used a multivariate pattern

analysis (MVPA) approach to analyze neural activation patterns elicited by high- and low-

spatial frequency versions of indoor and natural images [10]. However, their approach was
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to contrast decoding of spatial frequency (high or low) with decoding of image content

(indoor or natural), rather than comparing the amount of image content conveyed by each

spatial frequency channel (i.e., decoding of image content for high versus low spatial fre-

quency images).

To address the unresolved question “How much scene content is conveyed by different spa-

tial frequencies in scene-selective visual cortex?” we presented participants with images of fre-

quency-filtered scenes and compared how well scene categories could be decoded from fMRI

activation patterns in each of the frequency conditions. Images from four different natural

scene categories (beaches, forests, cities, and highways) were presented in three spatial fre-

quency conditions (low spatial frequency filtered, high spatial frequency filtered, and unfil-

tered). We measured decoding accuracy in four brain regions involved in scene processing,

the PPA (including its anatomical subdivisions—see below), the retrosplenial cortex (RSC),

the occipital place area (OPA), and lateral occipital cortex (LOC).

Recent evidence suggests that rather than considering the PPA to be functionally homoge-

nous, it should be thought of as anatomically differentiated. For instance, the PPA has been

shown to overlap with several visual field maps [22] and disparate functional deficits have

been observed in individuals with lesions in different locations of PPA [23]. These findings

introduce the possibility that PPA is composed of multiple sub-regions that are functionally

distinct, particularly along the anterior-posterior axis. Perhaps the most convincing work sup-

porting this notion comes from Baldassano et al., (2013) who found differential functional

connectivity along the anterior-posterior axis of PPA to distinct cortical networks [24]. They

showed that posterior PPA (pPPA) has stronger connectivity with occipital areas including

LOC and OPA, whereas anterior PPA (aPPA) has stronger connectivity with RSC and ventral

prefrontal cortex. In the current study we first analyze our data in the PPA as a single ROI

(along with OPA, RSC, and LOC), and then we subdivide PPA into aPPA and pPPA to test for

differences along the anterior/posterior axis.

Finally, to illustrate the importance of scene content conveyed by these images, we contrast

activation by frequency-filtered scenes with semantic-free filtered noise stimuli. Even though

the filtered noise stimuli do not activate scene-selective brain regions to the extent that scenes

do, they serve as an important control for explicit neural representations of spatial frequencies.

Methods

Participants

Data were analyzed from 10 subjects with normal or corrected-to-normal vision, between 18

and 26 years old (mean age: 20.8; 7 female). All participants were compensated financially for

their time in the experiment. The experiment was approved by the Institutional Review Board

of The Ohio State University, and all participants gave their written informed consent. Six

other subjects participated but were disqualified because ROIs could not be delineated using

their functional localizer data. An initial set of 10 subjects was collected using a TE = 22 ms,

which was discovered after data collection. Low TEs can enhance anatomical signal but some-

times result in lower functional BOLD signal [25]. To assess functional data quality for these

subjects, we examined data collected from the (independent) functional localizer task. Six of

these subjects did not have sufficient signal quality to localize PPA and LOC from this standard

functional localizer, so we did not analyze their data from the main experiment. We replaced

them with 6 new subjects, who were naïve to the stimulus set, and collected their fMRI data

with a TE = 30 ms. There was no difference in main experiment results as a function of TE for

the included subjects.
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Stimuli

In order to investigate the spatial-frequency specific response to naturalistic stimuli, we used

grayscale photographs from four different natural scene categories: beaches, forests, cities and

highways [26]. We generated three versions of each image (80 images per scene category): a

full-spectrum (FS), unfiltered version; a low spatial frequency (LSF) version containing only

spatial frequencies below 0.75 cycles per degree (cpd), corresponding to 17 cycles per image

(cpi), low-pass filtered using a second-order Butterworth filter to avoid aliasing; and a high

spatial frequency (HSF) version containing only spatial frequencies above 6 cpd, correspond-

ing to 136 cpi, high-pass filtered with a second-order Butterworth filter. (Note that the com-

mon practice of deriving HSF images by subtracting a blurred version of the image from the

original image results in ringing artifacts and spurious negative values in the HSF image. This

is avoided by multiplying a properly tapered HSF filter with the Fourier amplitude spectrum of

the image, while keeping the phase spectrum unchanged.) At no point during the experiment

were any images repeated. Contrast polarity of the HSF images was chosen to depict dark

edges on a light gray background. Following frequency filtering, the contrast of each set of

images (meaning the FS, HSF, and LSF versions of a given scene image) was jointly normal-

ized. To this end, the pixel values in each of the three versions of an image were adjusted to

zero mean and unit standard deviation (z-scoring) and then linearly transformed jointly to the

dynamic range [0,1]. As a result of this procedure, all three versions of an image had equal con-

trast and luminance (Fig 1A). Equating contrast and luminance between different filtered ver-

sions of the images is critical for eliciting comparable neural responses [19].

Additionally, we designed frequency-filtered noise stimuli in order to examine neural

responses elicited by different spatial frequencies in the absence of semantically relevant infor-

mation. These unstructured stimuli were constructed by band-pass filtering a uniform ampli-

tude spectrum using a Butterworth filter at narrowly defined spatial frequency bands centered

around 0.75, 1.5, 3 and 6cpd, corresponding to 17, 24, 68, and 136 cpi. This specially con-

structed amplitude was combined with a random phase spectrum and inverse-Fourier trans-

formed into image space (Fig 1B). A total of 60 different filtered noise stimuli at each of the

specified spatial frequencies were created and normalized to the same contrast and luminance.

Experiment design

The experiment consisted of eight runs, each lasting approximately five minutes and thirty sec-

onds. Every run contained 16 blocks, one per condition. The 16 different conditions were: 12

blocks of scene stimuli (one for each combination of the four scene categories and three spatial

frequency conditions), and four blocks of the spatial frequency-filtered noise stimuli (one per

frequency band). The order of the 16 blocks was randomized across runs and subjects. Each

block lasted 8s and was followed by a 12s fixation period to allow the BOLD response to return

to baseline.

Each block contained a sequence of 8 different images of the same stimulus condition (Fig

1C). Images were shown for 800 ms, followed by a 200 ms inter-stimulus interval consisting of

a gray, mean-luminance background. Images were centered on the screen and covered 22.7 x

17 degrees visual angle. A fixation cross spanning approximately 0.7 degrees of visual angle

was present at the center of the display throughout the entirety of each run. Participants were

instructed before the start of each run to maintain fixation on the center cross and to simply

view the scenes and stimuli displayed. Since we did not measure gaze location in the experi-

ment, we relied on participants’ compliance with the fixation instructions. There were no

explicit tasks required of the participants throughout the duration of the main experiment

besides paying attention to the various scene and filtered noise stimuli.
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fMRI data acquisition

All scans were performed at the Center for Cognitive and Behavioral Brain Imaging (CCBBI)

at The Ohio State University. Images were acquired using a 3-Tesla Siemens Total Imaging

Matrix (TIM) Trio MRI scanner with a 32-channel head coil. For every subject, a high-resolu-

tion T1-weighted MPRAGE sequence was used to acquire structural images with 1x1x1mm

voxels, two repetitions, TR = 1900 ms, and TE = 4.44 ms, lasting 6 minutes 50 seconds.

Functional data was obtained using a gradient echo, echo-planar sequence with 2x2x2 mm

voxels, without gap, a partial coverage FOV consisting of 31 slices obliquely oriented to maxi-

mize coverage of occipital and occipito-temporal areas of cortex with a 67˚ flip angle for the

main experiment and a 75˚ flip angle for the localizers. To assist in the co-registration of the

Fig 1. Examples of experiment stimuli and design. (A) Examples of a beach scene that was jointly contrast

normalized across each spatial frequency condition: full spectrum (FS), low spatial frequencies (LSF) and high

spatial frequencies (HSF). The four scene categories were beaches, highways, forests, and cities. (B) Examples

of the noise stimuli at each of the four spatial frequencies included in the experiment. (C) Sample experiment

sequence. Each of the eight runs consisted of 16 blocks of images (blue boxes; one per stimulus condition).

Each block contained a sequence of eight different images of that condition.

https://doi.org/10.1371/journal.pone.0189828.g001
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partial coverage obliquely scanned functional data to the whole-brain anatomical data, a

whole-brain gradient echo echo-planar sequence consisting of a single acquisition 25 seconds

in length and oriented identically to the other functional runs was performed. For the main

experiment a TR of 2000 ms was used, and for the face-place-object localizer a TR of 3000 ms

was used. TE was 22 ms for four subjects and 30 ms for six subjects.

Data analysis

FMRI data underwent standard preprocessing procedures using the fMRI analysis package

AFNI [27]. Functional scans were motion corrected and co-registered to the anatomical

MPRAGE in a single step in order to eliminate the need for multiple interpolations of the func-

tional data. Data were spatially smoothed with a Gaussian kernel of 4 mm FWHM for all uni-

variate analyses, including localizer scans, and 2 mm FWHM for all multivariate analyses.

Functional data were normalized to percent signal change relative to fixation periods for each

run.

Univariate analyses of the main experiment runs were performed on individual subject data

using a standard general linear model (GLM). Incorporated into the full model were regressors

for each of the four spatial frequency-filtered noise conditions (0.75, 1.5, 3 and 6 cpd), the FS,

HSF, and LSF scenes (collapsed across scene categories), and fixation (no stimulus present).

Nuisance variables for subject motion and low-frequency scanner drift were also included in

the model. Regressors were convolved with a canonical hemodynamic response function (cor-

responding to the length of time each series of images was presented within each block), and a

GLM analysis was performed using AFNI’s 3dDeconvolve, resulting in beta coefficients for

each voxel.

For the multi-voxel pattern analysis (MVPA), we performed the following steps: Following

motion correction, alignment to each subject’s anatomical volume and 2 mm spatial smooth-

ing, fMRI data was subjected to a GLM analysis containing only nuisance regressors for subject

motion as well as scanner drift. Residuals of this GLM analysis were extracted with a lag of 4

seconds to approximate the hemodynamic delay. For each participant, 512 functional volumes

were extracted (8 runs x 16 blocks x 4 acquisitions per block). The four acquisitions obtained

per block were subsequently averaged, resulting in 128 volumes per subject that were used for

various decoding analyses.

A linear support vector machine classifier (SVM) [28] was trained to assign labels of either

1.) the scene category of the stimulus (4-way) or 2.) the spatial frequency of the stimulus

(binary classification of high or low spatial frequency). For each participant, the classifier was

trained on 7 of the 8 main experiment runs and tested on the left-out eighth run. This proce-

dure was repeated eight times, leaving out each of the eight runs in turn (a leave-one-run-out,

LORO, cross validation procedure). Due to the high dimensionality and low number of train-

ing exemplars, the training data are bound to be linearly separable. We therefore chose a low

value for the C parameter (5�10−6) of the SVM, thereby favoring large margin decision bound-

aries, which lead to better out-of-sample generalization.

The scene category classification was performed separately for the FS, HSF, and LSF condi-

tions. In each case, classification accuracy was calculated as the measure of interest; classifica-

tion accuracy was compared to chance (25%) with planned, one-tailed t-tests. Comparison

between conditions was performed using planned, two-tailed t-tests. Effect size was measured

using Cohen’s d.

The spatial frequency classification was performed separately for scene stimuli (collapsing

across scene categories), and for filtered noise stimuli (averaging across the 0.75 and 1.5 cpd

conditions for LSF and the 3 and 6 cpd conditions for HSF). Classification accuracy was
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compared to chance (50%) using planned, one-tailed t-tests. Accuracy was compared between

conditions with planned, 2-tailed t-tests. Effect size was measured using Cohen’s d.

Regions of interest (ROI) localization

In addition to the main experiment, two runs (approximately 7 minutes and 30 seconds each)

of an independent face-place-object localizer were performed. Participants were asked to per-

form a one-back task while viewing blocks of images of faces, scenes, objects and grid-scram-

bled objects. Images were sized 11.3 x 11.3 degrees (400 x 400 pixels) and centered on the

screen; scene images were presented as FS and selected from a different database than the

main task. Data underwent standard preprocessing, spatially smoothed using a 4 mm FWHM

Gaussian kernel. Scene-selective areas (PPA, RSC and OPA) were defined on an individual

subject basis using a linear contrast of neural activation elicited by scenes vs. faces and objects

[29–32]. LOC was defined for each individual using a contrast of activation to objects vs.

scrambled objects [33]. ROIs were delineated as contiguous clusters, using a threshold of

p< 0.05, corrected for multiple comparisons at the cluster level. A stricter threshold was used

where necessary to isolate clusters. PPA, OPA, and LOC were localized in both hemispheres

for all participants. RSC was localized bilaterally in 9 participants and only on the left in one

participant.

For the separation of PPA into anterior and posterior sub-regions, regions were spatially

divided along the anterior-posterior axis such that the number of voxels was approximately

equal in aPPA and pPPA.

Behavioral experiment

We additionally performed a separate behavioral experiment to assess behavioral categoriza-

tion performance for the same filtered and normalized scene images. Twenty undergraduate

students from The Ohio State University (18–22 years old, mean 19.4; 11 female) participated

in the experiment for partial course credit and gave written, informed consent. The experi-

ment was approved by the Institutional Review Board of The Ohio State University. Partici-

pants were unfamiliar with the image set and had not participated in the fMRI experiment.

Images were shown on a CRT monitor with a refresh rate of 60 Hz, attached to a standard

PC running Python using the Vision Egg package [34]. Participants were seated approximately

57 cm from the screen, and images subtended approximately 23˚ x 18˚ of visual angle.

In the experiment, participants were asked to categorize briefly presented images into one

of four categories (beaches, forests, cities and highways) by pressing a key on a standard key-

board. Assignment of keys (‘s’,’d’,’j’,’k’) was randomized for each participant and learned dur-

ing an initial practice phase. Images were immediately followed by a perceptual mask for 500

ms. During practice, the image-to-mask stimulus onset asynchrony (SOA) was fixed to 250

ms. Once participants achieved 90% accuracy, the SOA was staircased with a target perfor-

mance of 70% correct using the QUEST staircasing algorithm [35]. Final SOAs ranged from

16.7 to 83.3 ms (M = 36.1 ms; SD = 13.1 ms). Two subjects’ data were excluded from the analy-

sis because of low performance during staircasing (SOA > 150 ms).

Participants received acoustic feedback during practice and staircasing when they made an

error. A set of 48 images was set aside for use in practice and staircasing, and only full-spec-

trum, unfiltered images were used.

During the test phase, a set of 240 new images was used; 20 images were presented in each

combination of category (beaches, forests, cities, or highways) and experimental conditions

(FS, HSF, or LSF). Assignment of images to the conditions was counter-balanced across partic-

ipants, and the order of images in the experiment was randomized for each participant. SOA
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was fixed to the final value of the staircasing procedure for all conditions. No feedback was

given. Response accuracy was calculated separately for the FS, HSF and LSF conditions, and

accuracy was compared to chance (25%) using one-tailed t-tests and between conditions using

2-tailed t-tests.

Results

Decoding of scene category

Our primary question of interest was how much information regarding scene categories is

conveyed by HSF and LSF scenes in the aforementioned regions. It has previously been shown

that scene-selective areas of cortex (PPA, RSC and OPA) not only show greater relative levels

of activation in response to places and buildings compared with faces and objects [29–32], but

that the distributed patterns of activity elicited by different types of scenes contain scene con-
tent information, such that an image’s specific scene category (beach, highway, etc.) can be

decoded from these regions [17, 26]. Accordingly, we performed multivariate decoding analy-

ses in order to test whether spatial frequency content affects this category-specific information

known to be present in these regions.

The decoder was trained and tested in a LORO cross-validation procedure to discriminate

between four categories (beaches, forests, highways and cities). For unfiltered, full-spectrum

images, decoding of scene categories was significantly above chance in all of the tested ROIs

(PPA: t(9) = 4.93, p< 0.001, d = 1.56; OPA: t(9) = 2.39, p = 0.02, d = 0.76; LOC: t(9) = 2.69,

p = 0.01, d = 0.85), except for RSC, where it was marginal (t(9) = 1.65, p = 0.07, d = 0.52). These

results reproduce previous results showing neural representations of scene categories in these

ROIs [26]. Of particular importance was testing how the spatial frequency content of the low-

and high-pass filtered sets of scenes would impact the accuracy of the decoder in comparison

to full-spectrum scenes. As illustrated in Fig 2A, scene categories were not decodable above

chance (25%) when only low spatial frequency information was present in the image (PPA:

t(9) = 1.37, p = 0.10, d = 0.43; RSC: t(9) = -0.68, p = 0.74, d = -0.22; OPA: t(9) = -0.90, p = 0.80,

d = -0.28; LOC: t(9) = 0.66, p = 0.26, d = 0.21). On the other hand, it was possible to decode

the categories of the HSF scenes above chance for all of the tested scene-selective ROIs (PPA:

t(9) = 2.68, p = 0.013, d = 0.85; RSC: t(9) = 4.67, p< 0.001, d = 1.48; OPA: t(9) = 3.31, p = 0.005,

d = 1.05), as well as object-selective area LOC (t(9) = 4.40, p< 0.001, d = 1.39). In fact, accuracy

for HSF scenes was not significantly different from full-spectrum scene decoding accuracy

in these ROIs (PPA: t(9) = 1.20, p = 0.26, d = 0.38; RSC: t(9) = 0.57, p = 0.58, d = 0.18; OPA:

t(9) = 1.15, p = 0.28, d = 0.36; LOC: t(9) = 1.15, p = 0.28, d = 0.36). Planned comparisons

between the LSF and HSF conditions showed that decoding accuracy was significantly higher

for HSF scenes than LSF scenes in RSC (t(9) = 2.95, p = 0.016, d = 0.93), OPA (t(9) = 3.68, p =
0.005, d = 1.16) and LOC (t(9) = 2.59, p = 0.029, d = 0.82). In the PPA, the effect went in the

same direction, although not significantly (t(9) = 1.86, p = 0.096, d = 0.59). See S1 Table for full

results of individual participants.

Might the marginal effect in PPA reflect an anterior-posterior differentiation? HSF scenes

were decodable above chance from both the posterior and anterior sub-divisions of PPA (t(9) =

5.47, p< 0.001, d = 1.73 and t(9) = 5.04, p< 0.001, d = 1.60, respectively), but, interestingly,

LSF scene categories were only decodable in pPPA (t(9) = 2.28, p = 0.024, d = 0.72), and not

aPPA (t(9) = 0.09, p = 0.47, d = 0.03). Moreover, decoding of scene categories was significantly

more accurate for HSF than LSF scenes in the aPPA (t(9) = 3.66, p = 0.005, d = 1.16) but not the

pPPA (t(9) = 1.06, p = 0.317, d = 0.335). This suggests that anterior and posterior PPA differ in

the scene content carried by low versus high spatial frequencies.
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Decoding spatial frequency

As a secondary analysis, we also tested whether spatial frequencies themselves can be decoded

from patterns of activity measured in these ROIs (Fig 2C; individual results in S2 Table). For

this analysis, the same LORO cross-validation procedure was used for a binary discrimination

between LSF and HSF, ignoring scene categories. The spatial frequency of the scene stimuli

could be decoded above chance from PPA (t(9) = 4.30, p< 0.001, d = 1.36), OPA (t(9) = 3.45,

p = 0.004, d = 1.09) and LOC (t(9) = 11.05, p< 0.001, d = 3.49) but not from RSC (t(9) = 0.63,

p = 0.27, d = 0.20). Decoding of spatial frequency for scenes succeeded for both subdivisions of

PPA (pPPA: t(9) = 3.70, p = 0.002, d = 1.17, aPPA: t(9) = 3.22, p = 0.005, d = 1.02, Fig 2D).

Does this mean that the spatial frequencies of the stimuli are directly accessible in these

brain regions, independent of image content and structure? To answer this question we also

attempted to decode spatial frequency from the filtered noise stimuli. For this analysis we

Fig 2. Multivariate decoding results. (A) Decoding of scene categories (4-way classification) is as accurate for HSF as for FS scenes. LSF

scenes, on the other hand, cannot be decoded above chance. (B) Dividing the PPA along the A-P axis, reveals similar decoding accuracy for

HSF and LSF scenes in posterior PPA, but significantly higher accuracy for HSF than LSF in anterior PPA. (C) Decoding of high versus low

spatial frequencies from scene stimuli succeeded in PPA, OPA, and LOC but not the RSC. Decoding of spatial frequency from filtered noise

stimuli succeeded only in RSC. (D) Decoding of spatial frequency was more accurate from the posterior than the anterior subdivision of the

PPA. This difference was statistically significant for noise images but not for scenes. Error bars represent standard errors of the mean.

*p < 0.05, **p < 0.01, ***p < 0.001; N = 10.

https://doi.org/10.1371/journal.pone.0189828.g002
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grouped together the two lowest spatial frequencies (0.75 and 1.5 cpd) and the two highest spa-

tial frequencies (3 and 6 cpd). Spatial frequency of the filtered noise stimuli could be decoded

significantly above chance from RSC (t(9) = 3.42; p = 0.004; d = 1.08) and PPA (t(9) = 1.91,

p = 0.044, d = 0.61), marginally from LOC (t(9) = 1.77, p = 0.06, d = 0.56), but not from OPA

(t(9) = 1.25, p = 0.12, d = 0.39; Fig 2C). We also found an interesting dissociation between the

anterior and posterior subdivisions of PPA. We could decode the spatial frequency of the fil-

tered noise stimuli significantly above chance from pPPA (t(9) = 3.84; p = 0.002; d = 1.22) but

not aPPA (t(9) = 0.59; p = 0.29; d = 0.19; Fig 2D), and the difference in decoding accuracy

between pPPA and aPPA was statistically significant (t(9) = 2.29; p = 0.048; d = 0.72). This

result implies that spatial frequencies are explicitly represented in posterior PPA but are acces-

sible in anterior PPA only when they are associated with a scene image.

Univariate analyses

We conducted a univariate analysis testing whether the different scene-selective ROIs (PPA,

RSC, and OPA, along with LOC) exhibited an overall preference for high versus low spatial fre-

quency images (Fig 3A). HSF scenes tended to elicit a higher response in these ROIs compared

to LSF scenes. This effect was significant in OPA (t(9) = 3.08, p = 0.013, d = 0.97) and marginal

in PPA, RSC, and LOC (t(9) = 1.89, p = 0.091, d = 0.60; t(9) = 1.99, p = 0.077, d = 0.63; and t(9) =

2.10, p = 0.065, d = 0.66; respectively). We found no significant difference in mean activation

elicited by HSF vs. LSF scenes in the anterior PPA (t(9) = 1.02, p = 0.335, d = 0.32), but pPPA

responded significantly more to HSF than LSF scenes (t(9) = 2.58, p = 0.030, d = 0.82; Fig 3B;

individual results in S3 Table).

High vs. low spatial frequency comparisons within each ROI for the filtered noise stimuli

(where the two lowest spatial frequencies and two highest spatial frequencies were collapsed)

yielded no significant differences (PPA: t(9) = 0.82, p = 0.43, d = 0.26; RSC: t(9) = 0.53, p = 0.61,

d = 0.16; OPA: t(9) = 1.76, p = 0.11, d = 0.56; LOC: t(9) = 0.89, p = 0.40, d = 0.28; pPPA: t(9) =

0.92, p = 0.38, d = 0.29; aPPA: t(9) = 0.63, p = 0.55, d = 0.20). These null findings are likely due

to the fact that the filtered noise stimuli did not activate scene-selective areas very much.

Fig 3. Percent signal change in visual ROIs. (A) Univariate activation of high-level visual ROIs by spatial frequency-

filtered scenes and noise stimuli. (B) HSF scenes activate pPPA more strongly than LSF scenes. This difference does not

persist in aPPA. Error bars are standard errors of the mean. *p < 0.05.

https://doi.org/10.1371/journal.pone.0189828.g003
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Behavioral experiment

In the behavioral experiment, participants categorized the scenes in all three conditions clearly

above chance (FS: 78.2%, t(17) = 22.4, p< 0.001; HSF: 69.0%, t(17) = 15.6, p< 0.001; LSF:

41.3%, t(17) = 11.8, p< 0.001; for full results see S4 Table). Performance was significantly lower

in the two modified conditions than in the full-spectrum condition (HSF versus FS: t(17) = 6.2,

p< 0.001; LSF versus FS: t(17) = 23.1, p< 0.001)., Behavioral performance was also signifi-

cantly less accurate in the LSF condition than in the HSF condition (t(17) = 11.4, p< 0.001).

Discussion

Here we took a novel approach to the question of how visual cortex constructs representations

of scene content, specifically asking whether activity patterns in scene-selective cortex are

more sensitive to scene content conveyed by high or low spatial frequency information. Previ-

ous studies have compared overall activation levels to high versus low spatial frequency images

[8, 18, 19], or have compared decoding of low-level information (spatial frequency) to decod-

ing of high-level information (scene category) [10]. By contrast, the current study tests whether

decoding of high-level scene content is preferentially driven by certain spatial frequencies.

This approach is similar to the recent proposal of investigating “feature diagnosticity” for

scene perception [36].

We suggest that such an approach to exploring the tuning properties of high-level visual

areas is better suited for uncovering how image content and low-level image features relate

than juxtaposing these two aspects of visual information. Pitching measurable low-level visual

features of the images against high-level image content such as scene categories and object

identities (e.g., [7, 9, 10]) implies that in principle the two are separate. We instead advocate

for a model of perception in which image content is tightly intertwined with low-level features.

That is, image content cannot exist independently of low-level features, even though it can be

conveyed by a variety of features. Thus, we should seek to understand which features in what

combination can convey how much information about image content. In doing so here, we

have found that the content of scenes in these areas of human visual cortex are predominantly

represented through high spatial frequency channels. Additionally, we show the nature in

which spatial frequency is processed in the aforementioned areas, and perhaps most interest-

ingly, an important functional distinction of pPPA and aPPA in how spatial frequency infor-

mation is processed.

Our primary finding is that decoding of scene category information was more accurate for

high spatial frequency compared to low spatial frequency images. This finding runs counter to

a long held mantra regarding the importance of low spatial frequencies in scene perception,

notably that low spatial frequencies contain more information about scene gist [11,37] as well

as global attributes of scenes such as openness and expansiveness [3, 4, 38]. This also raises the

question of how well our HSF and LSF images conveyed scene category at a behavioral/percep-

tual level. We directly tested this question in an additional behavioral experiment, in which

participants saw briefly-presented backward-masked HSF and LSF images and reported the

scene category of each image. While categorization was possible from both versions of the

images, categorization using HSF images was significantly more accurate than categorization

using LSF images. We do not argue against the sentiment that low spatial frequency informa-

tion plays a role in scene perception, but perhaps it is not as fundamental in these occipito-

temporal areas of cortex—and for analogous perceptual tasks—as the high spatial frequency

components contained in a scene. This idea is consistent with recent neuroimaging studies

showing that scene-selective brain regions are more strongly activated by high than low spatial

frequencies [8, 10, 18, 19]. Critically, here we go further by showing that representations of
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scene content are also more strongly conveyed by high than low spatial frequencies. This idea

has been hinted at in less direct ways, e.g., by several recent behavioral and neuroimaging stud-

ies highlighting the importance of edge features that define the geometric structure of scenes

[17, 20, 39] and demonstrating that information contained in edge-only line drawings of

scenes carries category-specific information that matches human behavior [5] as well as the

neural representation of scene categories in PPA [6].

One explanation for this HSF advantage is that the clearer representation of objects and sur-

faces as well as their spatial relations in HSF scenes is advantageous for conveying scene con-

tent. However, attention may also play a role, since attentional engagement may be higher for

HSF scenes that contain clearly distinguishable object information than for LSF scenes with

blurred, apparently washed-out object information. We cannot discriminate between these

two interpretations based on the current empirical results, and both factors may underlie the

perceptual advantage of HSF scenes to some extent.

The importance of HSF information in the PPA also appears to be at odds with findings of

over-representation of the peripheral visual field in the PPA [14, 15, 22]. Low spatial frequency

information tends to be more dominant in peripheral areas, which would predict the opposite

pattern to our findings. High spatial frequencies are also posed to be filtered out by early-level

neurons due to hierarchy and eccentricity [40], which raises the question of where the PPA’s

HSF information originates. One possible resolution would be to call upon feedback signals

from higher up in the visual processing hierarchy, which would deliver detailed information

about shape and structure to the PPA. High spatial frequency information might also reach the

PPA via other visual pathways bypassing early visual cortex [24]. Another possibility is that the

PPA’s reported preference for high eccentricities is rooted in its defining preference for places

over objects; in other words, that more eccentric stimuli provide more place-like structure and

may be processed as more scene-like by the PPA.

The second main contribution of this study is the dissociation between posterior and ante-

rior portions of the PPA. Previous studies have found differential functional connectivity

along the anterior-posterior axis of PPA, suggesting that they form distinct cortical networks

[24]. Recent work also suggests that the posterior region of PPA plays a significant role in pro-

cessing low-level visual properties (e.g. spatial frequencies, contrast, color and luminance) and

the anterior region of PPA is relatively less important regarding these image properties [20,

24]. Our results generally support this view: spatial frequency information could be decoded

from both scenes and semantic-free noise stimuli in pPPA, but only from the scene images in

aPPA. This distinction is important because scenes inherently contain structure and contex-

tual meaning beyond low-level visual features. By testing the noise stimuli designed to have

equivalent luminance and contrast along with no semantically relevant scene information, we

showed that pPPA carries explicit spatial frequency representations and that aPPA does not.

The finding of more spatial frequency information in pPPA is compatible with results showing

a retinotopic map in two areas in the posterior parahippocampal cortex [22]. Because we did

not conduct retinotopic mapping here, we cannot be certain that those areas correspond to

our pPPA, yet retinotopic organization of these areas could underlie a decodable representa-

tion of spatial frequencies, since the periphery would preferentially respond to LSF and foveal

regions to HSF.

We also found that pPPA responded significantly more to HSF scenes than LSF scenes in

the univariate analysis, consistent with Rajimehr et al. (2011) [8]. Interestingly, the other area

that showed a significant univariate difference for HSF greater than LSF was the OPA; Baldas-

sano et al.’s (2013) functional connectivity analysis showed that pPPA has stronger connectiv-

ity with occipital areas including LOC and OPA, whereas aPPA has stronger connectivity with

RSC and ventral prefrontal cortex [24].
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In our experiments, scene content could be decoded from HSF scenes in all visual areas

tested (PPA, pPPA, aPPA, RSC, OPA, and LOC), but the scene categories of LSF scenes could

only be decoded above chance from neural activation patterns of the pPPA. Several theories

state that information flows from coarse to fine [12, 13] or simple to complex [32, 41] when

moving from posterior scene areas (e.g. OPA) to more anterior PPA and then RSC. Our results

do not entirely fit within this framework given the lack of LSF scene decoding in OPA. This

might be explained by a different division of labor, with OPA performing a different function

in scene perception, such as navigation [42].

Our findings open up other interesting questions for future study. For example, here we

examined only low SF filtered (� 0.75 cpd) versus high SF filtered (� 6 cpd) scene images—it

would be interesting if the spatial frequencies that best convey scene content followed a poste-

rior-to-anterior gradient in PPA if more frequency channels were tested. Note that HSF infor-

mation of the kind used here (>6 cpd) is only available at or near the fovea. Accessing the full

image content beyond the initial fixation will therefore require eye movements, which should

be addressed in future work. It will also be important to extend this experimental design to

testing the contributions of other types of low-level information, such as color, texture, or

motion, to representing stimulus content. In combining the jigsaw pieces from such tests, a

clearer image will emerge of how the human visual system transforms collections of low-level

features so that high-level concepts become directly accessible.
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