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Quantum Hall states observed in thin films of Dirac
semimetal Cd3As2
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A well known semiconductor Cd3As2 has reentered the spotlight due to its unique electronic

structure and quantum transport phenomena as a topological Dirac semimetal. For

elucidating and controlling its topological quantum state, high-quality Cd3As2 thin films have

been highly desired. Here we report the development of an elaborate growth technique of

high-crystallinity and high-mobility Cd3As2 films with controlled thicknesses and the

observation of quantum Hall effect dependent on the film thickness. With decreasing the film

thickness to 10 nm, the quantum Hall states exhibit variations such as a change in the spin

degeneracy reflecting the Dirac dispersion with a large Fermi velocity. Details of the

electronic structure including subband splitting and gap opening are identified from the

quantum transport depending on the confinement thickness, suggesting the presence of a

two-dimensional topological insulating phase. The demonstration of quantum Hall states in

our high-quality Cd3As2 films paves a road to study quantum transport and device application

in topological Dirac semimetal and its derivative phases.
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Topological materials, which are characterized by a non-
trivial electronic band topology, have great potential for
unprecedented quantum transport phenomena1–5. Among

them, the topological Dirac semimetal (DSM) has attracted bur-
geoning attention as emergence of Dirac fermions in three-
dimensional (3D) materials1,2,6–14. The 3D DSM state is parti-
cularly intriguing as a parent phase of exotic topological phases
such as 3D topological insulator3, Weyl semimetal4, and two-
dimensional (2D) topological insulator5,6, which are realized by
symmetry breaking in DSM1,2,7. As crystalline materials of 3D
DSM, Cd3As2 and Na3Bi have been theoretically suggested6,8, and
their key electronic structures have been directly confirmed by
angle-resolved photoemission and scanning tunneling spectro-
scopy7,9–12. A classification scheme of DSM in terms of the
crystal point group symmetry has also been developed13.

In this context, fabrication of DSM thin films is of crucial
importance for exploring its potential as prototypical topological
materials. Unlike other topological materials, however, it has been
highly challenging to prepare high-quality DSM films. While
Cd3As2 has been known as a stable II–V type semiconductor from
the early period, its film quality has been limited due to the
necessity of low-temperature growth for resolving its high vola-
tility (Fig. 1a)15–19. Its electronic structure consists of conduction
bands (CB) and valence bands (VB) with inverted orbital char-
acter, touching to form a 3D Dirac dispersion centered at the
Dirac points ±kD (Fig. 1b). So far most of the transport studies
including surface transport have been reported for bulk
samples20–25. Tailoring confined Cd3As2 films with the Dirac
dispersion thus opens up new avenues for research of quantized
transport in this novel Dirac system such as by gate
modulation26.

Here we report the development of a growth technique to
prepare high-quality Cd3As2 films and the observation of
thickness-dependent quantum Hall effect. The films are epitaxi-
ally grown on an oxide substrate with accurately controlled
thicknesses, yielding better crystallinity as compared to bulk
single-crystals. As theoretically predicted for DSM6, successive
topological phase transitions to the 2D topological insulator and
trivial insulator should occur through the quantum confinement
(Fig. 1c, d), if the system becomes 2D in rather thick films. Owing
to the large Fermi velocity of the Dirac dispersion, 2D quantum
Hall states are actually observed up to such a thick (~23 nm) film.

Results
Epitaxial Film Growth. High-quality Cd3As2 single-crystalline
thin films are fabricated by combining pulsed laser deposition
and solid phase epitaxy techniques (for details see Methods and
Supplementary Figs. 2, 4, and 5). High-temperature annealing
made possible by an optimized combination of double capping
layers (Si3N4/TiO2) and substrate (SrTiO3) significantly improves
the crystallinity and the electron mobility of the films. The film
triangular lattice is epitaxially grown on the substrate square
lattice with aligned in-plane axes, owing to a good match of their
projected lattice distances. As confirmed in the transmission
electron microscopy image (Fig. 1e, f), the Cd and As atoms are
periodically arranged to form the low-temperature Cd3As2
structure without any discernible crystallographic defects. In the
typical x-ray diffraction pattern (Fig. 1g), Bragg peaks of the
(112)-oriented Cd3As2 film are observed with clear Laue oscilla-
tions consistent with the designed film thickness. The rocking
curve of the film peak has a full width at half maximum of 0.02
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Fig. 1 High-crystallinity and high-mobility Cd3As2 thin films. a Experimental trend of electron mobility versus sheet carrier density. Among our films (filled
circle) prepared with pulsed laser deposition (PLD), high-quality ones obtained by high-temperature annealing are highlighted with bigger symbols. The
mobility reaches a maximum of μ= 3 × 104 cm2/Vs even at a thickness of t= 30 nm, rivaling mobility values for bulk thinned plates (diamond22) and
nanostructures (triangle23 and inverted triangle24), while it intrinsically decreases with reducing to two dimensions. Other films (circle) grown by
molecular beam epitaxy (MBE)18,19, thermal evaporation (TE)15, or pulsed laser evaporation (PLE)16 techniques are also plotted for comparison. Inset
shows the primary cubic structure of Cd3As2. b–d Schematic illustration of the electronic structure evolution from the 3D DSM state. With decreasing the
film thickness, subbands are formed due to the quantum confinement, giving rise to two-dimensional topological insulating (2D TI) and trivial insulating
(2D I) states depending on the number of inverted subbands6. e Cross-sectional image of a 14 nm Cd3As2 film sandwiched between Si3N4/TiO2 cap and
SrTiO3 substrate. The length of the scale bar is 10 nm. f Atomically resolved element map of the boxed region in e, shown with the cross-sectional view of
the crystal structure. g In the x-ray diffraction θ–2θ scan, Bragg peaks of the (112)-oriented Cd3As2 film are observed with clear Laue oscillations. The
SrTiO3 substrate peaks are marked with an asterisk
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degrees, which is sharper than typical values (~0.08 degrees)
reported for Cd3As2 single-crystals20.

Quantum Transport Measurement. Figure 2 summarizes high-
field magnetotransport for a set of films with the same carrier
density (n = 1 × 1018 cm−3) and different thicknesses (t = 12, 14,
16, and 23 nm). Shubnikov-de Haas (SdH) oscillations and cor-
responding plateau-like structures are resolved from a few teslas
in longitudinal resistance Rxx and Hall resistance Ryx. As the field
increases, integer quantum Hall states clearly emerge down to the
quantum limit with filling factor ν = 2. Rxx is further suppressed
and finally becomes zero. Simultaneously, Ryx exhibits quantized
values over wide field ranges, which are expressed as 1/Ryx = −ν
(e2/h) = −sn(e2/h), with the degeneracy factor s and a non-
negative integer n. A swell around the quantized values confirmed
for thinner films is probably an artifact typically appearing in
pulsed field measurements of such high resistance samples27.
Although such deformations of transport data taken in pulsed
fields were corrected by calculating the effective current through
the sample as detailed in Methods and Supplementary Fig. 6, they
cannot be completely removed so far. Absence of the half-integer
plateaus suggests that a gap starts to open under the quantum
confinement. Furthermore, the degeneracy factor s shows a dra-
matic change depending on the film thickness, governing the
appearance of the quantum Hall effect. It is altered from s = 2 to 1
when the thickness increases only by 2 nm from t = 14 to 16 nm.
For clarifying the origin of this change, we analyze the quantum
transport in detail.

The temperature dependence of the SdH oscillations was
analyzed for the whole series of Cd3As2 films, in order to extract
effective masses and also quantum scattering times using the
Dingle expression28. For the 12 nm film, as a typical example, the
oscillation amplitude gradually decreases with elevating tempera-
ture but remains finite up to about 100 K (Fig. 3a). Its temperature
dependence is suitably fitted to the standard Lifshitz-Kosevich
formula (Fig. 3b), giving the effective mass of m* = 0.042m0. This
light effective mass originating from the Dirac dispersion is in
good agreement with values reported for bulk Cd3As220–25.

A Landau-level fan diagram is plotted by following maxima
and minima in the SdH oscillations (Fig. 3c). The slope dominant
in the low-field region corresponds to the primary oscillation

from the main Fermi surface as detailed later. In the thicker 16
and 23 nm films, on the other hand, the slope reduces almost by
half above the critical field Bc, indicating a change in the
degeneracy from s = 2 to 1. This change is attributed to spin
splitting, not to the lifting of other degeneracies, e.g., of valley or
surface states. Quantum confinement is predicted to cause a
change in the g factor depending on the confinement thickness. In
bulk Cd3As2, spin splitting of the oscillations is observed above B
~ 10 T25, as in the thick 23 nm film, and the g factor is estimated
at g ~ 1512,25,29. Reflecting the existence of other neighboring
bands, the g factor varies in inverse proportion to quadratic
expression of the band gap Eg, according to the Roth equation
derived in the second-order k ⋅ p perturbation theory30. The
observed thickness dependence of the degeneracy can be thus
understood from the rapid opening of the gap due to the
confinement. Additionally, the Berry’s phase ϕB can be estimated
from the intercept in the fan diagram, based on the expression of
the oscillating term28. The intercept γ is typically about −0.3,
which corresponds to a non-trivial Berry’s phase of ϕB ~ 0.4π,
indicating the presence of relativistic Dirac fermions in the
confined dispersion.

From the Fourier transformation of the SdH oscillations,
further information about the 2D Fermi surface can be extracted
(Fig. 3d). By applying the Onsager relation AF = (4π2e/h)BF to the
primary oscillation frequency BF,1, the Fermi surface area AF is
calculated to be AF = 3.3 × 10−3 Å−2 for the 12 nm film, for
example. The dimensional change is also reflected in a clear field-
angle dependence of the oscillation and magnetoresistance, as
shown in Supplementary Figs. 8 and 10. The Fermi energy EF,
measured from the Dirac points, is estimated to be EF = 116 meV
by using kF ¼

ffiffiffiffiffiffiffiffiffiffiffi
AF=π

p ¼ 0:032 Å−1 and vF = ħkF/m* = 8.9 × 105

m/s in the following reported hyperbolic dispersion with an onset
energy of E0 = 50 meV and an energy difference between the
conduction band bottom and the Dirac points of ECB = 35
meV6,12.

EF ¼ �hvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þ ðE0=�hvFÞ2

q
� E0 � ECB ð1Þ

For the thicker 16 and 23 nm films, another peak BF,2 is
detected at lower frequencies, which is ascribed to the subband
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Fig. 2 Quantum Hall effect observed in Cd3As2 films. a, b High-field magnetotransport for thin films (t= 12 and 14 nm) measured at T= 1.4 K. The numbers
of the horizontal bars represent the filling factor ν. The degeneracy factor s is determined to be s= 2 from the increment of the plateau values. c, d Same
scan for slightly thicker films (t= 16 and 23 nm). By contrast, the degeneracy factor is altered to s= 1 in these thicker films at high fields. Inset depicts a
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splitting due to the quantum confinement. The subband
electronic structure is also evaluated assuming the same Fermi
velocity and onset energy.

Discussion
The various quantum Hall states appearing in the Cd3As2 films
can be comprehensively explained by considering a confinement
effect on the original Dirac dispersion as schematised in Fig. 4a, b.
For a more quantitative understanding, electronic band structures
along the in-plane momentum direction (k⊥[112]) and the film
normal direction (k||[112]) are summarized in Fig. 4c, d. In Fig. 4c,
kF and EF determined from the above analysis of the SdH oscil-
lations using the dispersion relationship are plotted along the in-
plane momentum direction. Here the band edge positions are
interpolated from previous calculations17. The band gap Eg is also
almost consistent within the error bars with estimations from the
g factor change (for details see Methods).

The quantum confinement condition along the film normal
direction is given by the following formula31,

2kjj½112�ðEÞt þ δðEÞ ¼ 2πnc ð2Þ

or

kjj½112�ðEÞ ¼ ð2πnc � δðEÞÞ=2t: ð3Þ

Here t is the film thickness, nc is an integer numbering the
confined subband, and δ(E) is the total phase shift at the

interfaces (for details see Methods). In the structural plot
expressing this relationship in Fig. 4d, the crossing point of the
original dispersions (k||[112] (E)) and the quantization condition
curves ((2πnc − δ(E))/2t) determines energy and momentum of
the bottom of the subbands for each thickness. This agrees rather
well with the experimental trends including the appearance of the
second subband (nc = 2) above 16 nm. Reflecting the large Fermi
velocity of the Dirac dispersion, the band gap sharply opens when
the confinement thickness decreases below 23 nm, giving rise to
the dramatic g factor change observed in the quantum Hall effect.
The band character inversion, which occurs when crossing pro-
jected kD, is also confirmed between t = 12 and 23 nm, as denoted
by the CB character change from blue (Cd 5s) to pink (As 4p). In
the case of the thick films where the subband is located inside the
projected kD, the gap energy and g factor become nearly
unchanged.

Novel topological phases derived from the 3D DSM state can
be expected for the high-quality Cd3As2 films. As illustrated in
Fig. 1b–d, for example, topological phase transitions to 2D
topological (quantum spin Hall) insulator and trivial insulator, as
proposed in the original theoretical work of topological states in
Cd3As26, should be induced by the confinement as long as the
system remains 2D. Surprisingly, the two dimensionality is
maintained up to 23 nm, where the orbital character only of the
first subband (nc = 1) is inverted, suggesting the presence of a 2D
topological insulating phase at this thickness. Below this thick-
ness, another topological phase transition to a trivial insulating
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phase occurs associated with the sharp change in the g factor as
confirmed in the thickness-dependent quantum Hall states. Since
a magnetic field destroys the 2D topological insulating state by
breaking time-reversal symmetry, nonlocal transport and scan-
ning probe microscopy measurements are highly desirable for its
further investigation. Applying electric gating, heterostructure
fabrication, and chemical doping to such high-quality Cd3As2
films will open possibilities for further studying quantum trans-
port and device application by tuning Fermi level, hybridization
gap, and magnetic interaction in this system.

Methods
Epitaxial Film Growth. While Cd3As2 has been known as a high-mobility semi-
conductor over half a century32, its high-quality thin film growth has been quite
challenging. In the 1970s and 80s, rather thicker films than 1 μm were grown by
evaporating bulk Cd3As2 with a heater15,33–36 or a high-repetition-rate laser16,37, as
plotted in Supplementary Fig. 1. More recently, since the topological Dirac

semimetal state has been proposed for this system6, a more elaborate approach
using molecular beam epitaxy (MBE) has realized the epitaxial growth of single-
crystalline thin films17–19,38. Compared to bulk Cd3As2, however, their crystallinity
and mobility are still limited due to the low-temperature growth. In this situation,
we have developed and improved a high-temperature annealing technique with
combining pulsed laser deposition (PLD), and obtained high-crystallinity and high-
mobility epitaxial thin films comparable to bulk quality. The mobility reaches
maximum of μ = 3 × 104 cm2/Vs for n = 1 × 1018 cm−3, while it intrinsically
decreases with reducing dimensions (thickness) from three (≳80 nm) to two (≲40
nm).

Cd3As2 films and TiO2/Si3N4 capping layers were deposited using KrF excimer
laser. Optimization of the capping materials and their combinations has enabled
high-temperature annealing of the film, while the idea of adopting a protective
layer was already tried for Cd3As2 growth15. A Cd3As2 polycrystalline target was
prepared by mixing 6N5 Cd and 7N5 As shots at a ratio of 3:2, keeping the mixture
at 950 °C for 48 h in a vacuum-sealed silica tube, grinding and pelletizing the
compound, and then resintering it at 250 °C for 30 h. The three layers were
successively deposited on (001) SrTiO3 single-crystalline substrates, at room
temperature and below a base pressure of 10−7 Torr. Typical laser conditions
(fluences, repetition rates) were (0.6 J/cm2, 10 Hz), (4 J/cm2, 20 Hz), and (4 J/cm2,
20 Hz), for Cd3As2, TiO2, and Si3N4, respectively. The shape of the Hall bar, as
shown in the inset of Fig. 2d, was defined by employing a stencil metal mask for the
successive deposition of the Cd3As2 and TiO2 layers, while the Si3N4 layer was then
deposited on the entire substrate to cover the Hall bar edges. After annealing the
sample at 600 °C in air, an (112)-oriented Cd3As2 film is formed through epitaxial
crystallization.

Supplementary Fig. 2 demonstrates the annealing effect probed by x-ray
diffraction (XRD). A sample consisting of Cd3As2 (14 nm) and TiO2 (30 nm)/Si3N4

(200 nm) layers shows only the SrTiO3 substrate peaks before annealing. After
annealing the sample at 600 °C in air, in stark contrast, (112)-oriented Cd3As2 film
peaks become clearly evident through epitaxial crystallization. Three different
periodic components from the respective layers remain observed in both the
Kiessig fringes. Many combinations of other substrates (Al2O3, BaF2, CaF2, InP,
CdTe, mica) and capping materials (Cr:Al2O3, SiO2, MgO, CaF2, Si) were also
tested, but they resulted in chemical reaction to substrates, cracking of capping
layers, or poor crystallinity of the films. As shown in Supplementary Fig. 3, TiO2/
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Table 1 Parameters of electronic structures for Cd3As2 films
of various thicknesses.

t (nm) m* (m0) EF (meV) kF (Å−1) g Eg (meV)

12 0.042 116 0.032 ≲5 ≳110
14 0.038 129 0.032 ≲5 ≳110
16 0.038 114 0.031, 0.023 ~9 ~55
23 0.035 143 0.032, 0.026 ~15 ~30
100 (bulk) 0.049 134 0.037 ~15 0
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Si3N4 capping layer conduction, which is probably due to slightly oxygen-deficient
TiO2 deposited under the high vacuum, is more dominant at high temperatures
above about 100 K, particularly for thinner Cd3As2 films with higher resistance. At
low temperatures, on the other hand, the capping layers become highly insulating
and only the Cd3As2 film conduction remains, ensuring intrinsic quantum
transport measurements of the Cd3As2 films.

Detailed XRD data of the obtained epitaxial film, confirming its high
crystallinity and flatness, are summarized in Supplementary Fig. 4. A magnification
around the (224) film peak shows clear Laue oscillations consistent with the
designed thickness. A rocking curve of the peak has a full width at half maximum
(FWHM) of 0.02 degrees, which is sharper than the typical value (0.08 degrees)
reported for bulk Cd3As2 single-crystals20. A ϕ scan with twelve-fold symmetry
reveals that the in-plane [110] axis is exactly aligned with the [100] or [010] axes in
the substrate, depending on two possible stacking patterns of the six-fold triangular
lattice on the substrate square lattice. One reason of the successful epitaxial growth
is probably that the projected lattice distance of the Cd3As2 layer (3.88 Å) has a
good match with the SrTiO3 one (3.91 Å). The domain size is estimated at about a
few tens of microns from the STEM observations on various areas, which are
comparable to the channel length scale (~60 μm) but much larger than the
magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffi

�h=eB
p

(~26 nm at 1 T).
Atomic-scale images of the Cd3As2 single-crystalline film are displayed in

Supplementary Fig. 5, taken with cross-section high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) and energy
dispersive x-ray spectrometry (EDX). Cd and As atoms are periodically arranged
without any clear crystallographic defects over a wide area. A shift of Cd atoms
present in the low-temperature phase is also detected in the magnified image. From
this view direction, it is difficult to determine whether the originally proposed
(I41cd)39 or the recently corrected (I41/acd)40 structure is formed in the film, while
both have the similar electronic structure.

Quantum Transport Measurement. Transport measurements up to 55 T were
performed using a nondestructive pulsed magnet with a pulse duration of 37 ms at
the International MegaGauss Science Laboratory at the Institute for Solid State
Physics of the University of Tokyo. Longitudinal resistance Rxx and Hall resistance
Ryx were measured on the 60 μm-width multi-terminal Hall bar with flowing a DC
current of I = 5 μA. In this Hall bar configuration, unexpected effects on the
transport such as the current jetting effect in high-mobility semimetals are avoided.
Aluminum electrode wires were connected to the Hall bar edges by using an
ultrasonic bonding machine and then their connections were reinforced by
applying silver paste. Small deformations of transport data taken in the pulsed
magnetic fields were corrected based on a simple classic model27. In general, when
measuring a resistive sample in pulsed fields, a small capacitive component con-
nected parallel to the sample is slightly charged or discharged depending on the
resistance change, leading to non-negligible time variation of an effective current
through the sample. With the increase in the sample resistance Rxx, the effective
current ix deviates more from the original set current I, and the deformations
become more serious. By numerically solving the following differential equation
detailed in ref.27 with a capacitance of C = 4–9 nF, we could calculate the exact
current ix and obtain data showing negligibly small hysteresis between forward and
backward field sweeps, as exemplified in Supplementary Fig. 6.

dix
dt

¼ I � ixð1þ CdRxx=dtÞ
RxxC

ð4Þ

Supplementary Fig. 7 demonstrates Rxx for the 12 nm Cd3As2 film, measured
from 1.4 to 50 K in the pulsed high fields. Rxx minima at the ν = 2 quantum Hall
state slowly increase from zero with elevating temperature, which can be well fitted
with the standard Arrhenius plot. Obtained high activation energy of Δ = 19 K is
ascribed to the unusually high Fermi velocity in Cd3As2.

At low fields, Rxx and Ryx were measured using a Quantum Design Physical
Properties Measurement System cryostat equipped with a 9 or 14 T
superconducting magnet. Supplementary Fig. 8 plots the data in the low-field
region for films of various thicknesses, showing clear Shubnikov-de Haas (SdH)
oscillations and Hall plateaus from a few teslas. The degeneracy factor s in the
quantization formula can be extracted from the increment of the plateau values.
Change of the degeneracy from s = 2–1 is observed for the 23 nm film at low fields,
indicating that spin splitting of oscillations occurs above about 12 T. Apparent
degeneracy of s = 4 observed for the 16 nm (from ν = 16–12) and 23 nm (from ν =
20–16) films is ascribable to subband crossing. Corresponding beating pattern due
to the existence of another subband can be also confirmed in Rxx for the 16 and 23
nm films. In contrast to the films below 23 nm, the Hall plateaus in Ryx become
much less pronounced in the 37 nm film and almost completely disappear for the
100 nm film. This suggests that the system gradually changes from two-
dimensional (2D) to three-dimensional (3D) around 40 nm.

Supplementary Fig. 9 compares temperature dependence of the SdH oscillations
and their analysis to extract effective mass (m*) and quantum scattering time (τq)
following the Dingle expression28.

ΔRxx

R0
/ 4ζ

sinh ζ
e�π=ωcτq ; ζ ¼ 2π2kBT

�hωc
ð5Þ

Here ΔRxx/R0 is the oscillation amplitude normalized by the zero-field resistance
and ωc = eB/m* is the cyclotron frequency. To investigate the main conduction
band, the analysis is performed assuming a single band, although the oscillation
amplitude at each Landau index is affected by the existence of other subbands for
the 16 and 23 nm films. The effective mass is slightly decreased with decrease of the
confinement thickness, probably due to the dispersion curvature change associated
with the gap opening.

Supplementary Fig. 10 shows angular-dependent SdH oscillations in Rxx,
measured also with a conventional superconducting magnet. When the applied
magnetic field is tilted from out-of-plane (θ = 0°) to in-plane (90°) direction in the
23 nm film, the oscillation period as well as the amplitude is substantially reduced.
A gradual dimensional change from a cylindrical (2D) Fermi surface to a spherical
(3D) Fermi surface is observed between 23 and 100 nm, consistent with the
thickness dependence of Hall plateaus in Supplementary Fig. 8. For the 37 nm film,
a cylindrical but corrugated (quasi-2D) Fermi surface is confirmed in the beginning
of the dimensional change. Weak corrugation can be confirmed also for the 23 nm,
but the 23 nm film rather closer to 3D shows much higher second frequency BF,2
than the 16 nm one, eliminating the possibility of the neck orbit as a cause of BF,2.
Along with this dimensional change, considerably large negative magnetoresistance
probably due to so called chiral anomaly14 is also observed for the B || I
configuration (θ = 90°) on the Hall bar.

Landau-level fan diagrams magnified around the origins are shown in
Supplementary Fig. 11 for all the thicknesses. The Berry’s phase ϕB can be
estimated from the intercept γ − δ in the fan diagram, on the basis of the following
expression of the oscillating term in ΔRxx28.

ΔRxx

R0
/ cos 2πðBF=B� γ þ δÞ½ � ð6Þ

Here BF is the SdH oscillation frequency, γ is the phase factor expressed as
γ = 1/2 − ϕB/2π, and δ is the phase shift being zero in two dimensions. For the 12
and 14 nm films, the intercept is about −0.3, which corresponds to the non-trivial
Berry’s phase of ϕB ~ 0.4π. In Cd3As2, the Berry’s phase extracted from the
intercept has been highly scattered and controversial17,20,21,24,25,41–43.
According to the recent theoretical calculation43, when the Fermi energy is
located above the saddle point of the two Dirac dispersions as in the cases
of the previously reported carrier densities, the non-trivial phases at ±kD are
canceled out ϕB ¼ ϕB;þkD þ ϕB;�kD ¼ 0

� �
. In our two-dimensional case,

however, the non-trivial Berry’s phase remains finite without the cancellation
within the confined subband, indicating the presence of the relativistic Dirac
fermions therein. For the 16 and 23 nm films, modulated behavior due to
formation of the other subbands makes it difficult to evaluate the intercept
accurately.

Further low-temperature quantum transport was also measured using a dilution
refrigerator. In Supplementary Fig. 12, Rxx and Ryx taken at 40 mK for the 12 nm
film are compared to 2 K ones, showing no major difference between them. So far,
no more fine structures such as fractional quantum Hall states are confirmed in the
present samples even at this ultra-low temperature up to 14 T.

Construction of electronic structure. The band gap Eg is also estimated from the
g factor change in the following Roth equation, which is derived in the second
order of the k ⋅ p perturbation theory30.

g ¼ 2� 2
3

EpΔ
EgðEg þ ΔÞ ð7Þ

Here Δ is the spin–orbit splitting energy (0.27 eV)29 and Ep is the energy equivalent
of the principal interband momentum matrix element (−0.68 eV). Eg is estimated at
≳110, ≳110, ~55, and ~30 meV for the 12, 14, 16 and 23 nm films, by using the
above parameters and respective g factors (≲5, ≲5, ~9, and ~15). These electronic
structures parameters are summarized in Table 1.

The total phase shift at both interfaces was estimated as a function of
the binding energy EB by assigning band gap values Eg and chemical
potential differences Δϕ of SrTiO3, TiO2, and Cd3As2 to the following empirical
formula44.

δðEÞ ¼ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg;SrTiO3�ΔϕSrTiO3 ;Cd3As2

�EB
Eg;SrTiO3

q

þ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg;TiO2�ΔϕTiO2 ;Cd3As2

�EB
Eg;TiO2

q
� 2π

ð8Þ

Data Availability. The data supporting the plots within the paper and its Sup-
plementary Information File are available from the corresponding author upon
reasonable request.
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