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Abstract

Background: The genomes of laboratory rat strains are characterised by a mosaic haplotype structure caused by
their unique breeding history. These mosaic haplotypes have been recently mapped by extensive sequencing of
key strains. Comparison of genomic variation between two closely related rat strains with different phenotypes has
been proposed as an effective strategy for the discovery of candidate strain-specific regions involved in phenotypic
differences. We developed a method to prioritise strain-specific haplotypes by integrating genomic variation and
genomic regulatory data predicted to be involved in specific phenotypes. Specifically, we aimed to identify
genomic regions associated with Metabolic Syndrome (MetS), a disorder of energy utilization and storage affecting
several organ systems.

Results: We compared two Lyon rat strains, Lyon Hypertensive (LH) which is susceptible to MetS, and Lyon Low pressure
(LL), which is susceptible to obesity as an intermediate MetS phenotype, with a third strain (Lyon Normotensive, LN) that
is resistant to both MetS and obesity. Applying a novel metric, we ranked the identified strain-specific haplotypes using
evolutionary conservation of the occupancy three liver-specific transcription factors (HNF4A, CEBPA, and FOXA1) in five
rodents including rat. Consideration of regulatory information effectively identified regions with liver-associated genes
and rat orthologues of human GWAS variants related to obesity and metabolic traits. We attempted to find possible
causative variants and compared them with the candidate genes proposed by previous studies. In strain-specific regions
with conserved regulation, we found a significant enrichment for published evidence to obesity—one of the metabolic
symptoms shown by the Lyon strains—amongst the genes assigned to promoters with strain-specific variation.

Conclusions: Our results show that the use of functional regulatory conservation is a potentially effective approach to
select strain-specific genomic regions associated with phenotypic differences among Lyon rats and could be extended to
other systems.
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Background

Phenotypic diversity is ultimately driven by genetic differ-
ences. The connections between DNA sequence and
observed phenotypes are often difficult to determine and
may be confounded by non-genetic causes including envir-
onmental effects. Regardless, it is increasingly clear that
differences in transcriptional regulation are an important
factor explaining phenotypic diversity [1-6]. This is espe-
cially true between closely-related species [2, 7-9]. Accord-
ingly, a number of efforts have been made to combine
transcriptional regulatory data with genome variation to
select candidate genomic regions involved in producing
phenotypic characteristics of interest [10—13].

The rat is a key animal model for biomedical research
[14-16]. More than 600 laboratory rat strains have been
created over the last century in order to study specific traits
including those which are more informative in rat than in
other model species, such as behaviour and neurodegenera-
tive diseases, cardiovascular diseases and metabolic
disorders [17—-19]. One focus over the last decade has been
the identification of genes and other genomic loci associ-
ated with these strain-specific traits [13, 20]. Despite the
great number of quantitative trait loci (QTL) identified in
rat models using a number of techniques [21], only a small
number of causative genes have been determined for
complex traits or diseases [13, 22, 23].

Most genomic variants in an individual are expected to
be neutral, and therefore have no impact on reproduction
or survival [24, 25]. In the case of laboratory rats, the exist-
ing variation among strains (e.g. [26]) is the sum of the
ancestral variation among individuals used in the process of
strain development and the novel variation that originated
and accumulated in the genome during the establishment
and maintenance of the strains. Like humans [27] and la-
boratory mice [28], genetic variation among rat strains is
not randomly distributed across the genome; instead it is
organised in haplotype blocks [29—-31], which are caused by
meiotic crossover of the shared ancestral variation. Com-
parison of these haplotype blocks among rat strains with
different phenotypes has proven to be a powerful strategy
for genetic mapping of complex traits and diseases [29, 31].
For example, Atanur and colleagues analysed the genomes
of 27 rat strains, and found that haplotype blocks with
variants that are unique to a single strain were positively
selected in the initial phenotype-driven derivation of these
strains, and thus variants associated with strain-specific
phenotypes are predicted to be in these regions [30]. How-
ever, the genomic extent of such regions and the number of
sequence variants found within them are nearly always too
large for an effective determination of candidate loci influ-
encing the phenotype of interest (see e.g. [32]).

Regulatory activity such as active promoters, enhancers
and transcription factor binding sites (TFBS) can be effect-
ively mapped genome-wide with current techniques such as
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chromatin  immunoprecipitation  followed by high-
throughput sequencing (ChIP-seq) [33]. Previous studies
have suggested that both the number and conservation level
of transcription factor binding sites in a given region affect
the level of gene expression [3, 34—37]. Since tissue charac-
teristics are directed to a large extent by the activity of
tissue-specific transcription factors, the location of these
regulatory elements might be useful when selecting haplo-
type blocks associated with specific phenotypes or diseases.

In this study, we characterise the haplotype blocks
holding strain-specific genome variation among three
closely related strains of the Lyon rat. Although Lyon
rats were initially established as a model of hyperten-
sion [38], several additional symptoms related to meta-
bolic syndrome (MetS), such as obesity, dyslipidaemia
and susceptibility to insulin resistance have been found
in the Lyon Hypertensive (LH/Mav) strain [39-41].
Only obesity is observed in the Lyon Low pressure (LL/
Mav) and all MetS related phenotypes are absent in the
Lyon Normotensive (LN/Mav) strain [39-42]. Since
both liver and kidney are involved in MetS [43], we
generated RNA-seq expression data from liver of LL
rats and from kidney of all three strains and integrated
these with relevant existing data including the level of
regulatory conservation for three liver-specific tran-
scription factors (CEBPA, FOXA1 and HNF4A [9]) be-
tween rat and five related mouse species and strains.
We show that the level of functional regulatory
conservation can help select strain-specific haplotype
blocks putatively associated with phenotypic differences
among Lyon rats.

Results
85% of strain-specific variation among Lyon rat strains is
concentrated in less than 9% of the genome
To define haplotype blocks, we partitioned the rat genome
into 10 kb windows and calculated the number of strain-
specific variants (SSVs) in each window relative to the refer-
ence rat genome assembly (see Methods). We observed a
bimodal distribution in the number of SSVs and used this
distribution to define the resulting haplotype blocks as
having either a high density of SSVs (High Variability Region,
HVR) or a low density of SSVs (Low Variability Region,
LVR) (see Methods, Fig. 1 and Additional file 1: Figure S1).
The distribution of SSVs across the genome was similar
for the two pairwise comparisons of Lyon rats susceptible to
MetS and obesity (LH and LL) and the Lyon Normotensive
(LN) that is resistant (i.e. LHvsLN and LLvsLN, see Fig. 2a,
Additional file 1: Figures S2A and S3A). In both cases, the
vast majority of strain-specific variants were concentrated in
HVRs (LHvsLN: 84.96% and LLvsLN: 85.09%), and these
regions only covered a small part of the genome (LHvsLN:
8.55% and LLvsLN: 7.10%) (Fig. 2b, Additional file 1: Figures
S2B and S3B, Table 1). These regions were partly
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Fig. 1 Procedure to identify genomic regions of interest based on the distribution of Strain-Specific Variants (SSV) across the genome. a SSVs were obtained
for the pairwise comparisons between the two susceptible Lyon strains (LH or LL) relative to the control Lyon rat (LHvsLN and LLvsLN) and the reference rat
genome (LHvsBN and LLvsBN). b Densities of SSVs were calculated in non-overlapping genome windows of 10kbp; we applied a smoothing algorithm to
these densities (see Methods). ¢ Distribution of the smoothed densities of SSVs obtained from LNvsBN and LLvsBN were used to calculate the threshold
between HVRs and LVRs. Only those regions with at least three consecutive genome windows of the same type were considered. d HVRs and LVRs across
chr19 for the hypertensive Lyon rat relative to the control Lyon rat (LHvsLN); regions showing poor mapping qualities (unmappable) were discarded from our

analyses. Related Figure: Additional file 1: Figure S1

overlapping: 42.6% of LHvsLN HVRs overlap with LLvsLN
HVRs, while 51.2% of LLvsLN HVRs overlap with LHvsLN.
SSV overlaps have similar fractions (Fig. 2c). The fraction of
the genome that we identify as highly strain-specific is simi-
lar to that obtained previously for these and other rat strains
(see [30, 31], Methods and Additional file 1: Figure S2B).
HVRs characterise a substantial reduction in the portion of
the genome that is most likely to be involved in MetS
phenotypes and therefore form the primary focus of our
subsequent analysis.

Evidence for the functionality of high variability regions
in the Lyon rats associated with MetS

We then sought to determine if the HVRs preferentially
contain features that could explain the phenotypic differ-
ences among Lyon rats by comparing them to other regions
of the genome (see Methods and Fig. 3). Specifically, we
tested whether there is a significant enrichment in HVRs of
the following elements: i) annotated genes, ii) genes associ-
ated with metabolic-related traits, iii) genes differently
expressed among Lyon rats, iv) occupancy in rat of three
liver-specific transcription factors, and v) regions ortholo-
gous to human variants associated by GWAS to obesity and
metabolic traits.

The number of Ensembl genes [44] that overlap at
least one HVR was marginally greater than expected by
chance and this overlap was significant for the LHvsLN
comparison (p<0.05), but not for LLvsLN (p>0.05)
(Fig. 3b). Additionally, but only in the case of LLvsLN,
there was a significant enrichment of genes associated
with Type I diabetes mellitus (KEGG PATHWAY data-
base, gene count: 25, p < 107°, see results for ‘All HVRSs’
in Additional file 1: Figures S4 and S5 (DAVID web
services v6.7 [45, 46]). Gene enrichment in the HVRs
was more significant when considering only the genes
whose expression in either liver or kidney differed
between LH and LN strains, and between LL and LN
strains (see Methods and Additional file 1: Table S1).
(Fig. 3c and Additional file 1: Table S2).

We next considered whether the HVRs were enriched
for either the occupancy of three specific transcription
factors (HNF4A, CEBPA, and FOXA1) or the 418 rat
orthologues of Human GWAS variants associated with
obesity and metabolic traits. In both cases we did not
observe a significant enrichment (Fig. 3d—e, Additional
file 1: Figure S6 and Table S3).

In summary, the observation that both annotated and
differentially expressed genes are enriched in HVRs
supports the hypothesis that HVRs harbour functional
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Fig. 2 Genome distribution and characteristics of HVRs and SSVs. a Distribution and density across the whole genome of the HVRs obtained for
LHvsLN (in brown) and LLvsLN (in green) rats. Figure modified from the Ensembl genome browser version 69. b Percentages of the rat genome
and the strain-specific variants assigned to HVRs, LVRs and unmappable regions (UNMAP) for LHvsLN and LLvsLN. ¢ Overlap of HVRs and SSVs for

LHvsLN and LLvsLN comparisons. Related Figures: Additional file 1: Figures S2 and S3

regions that could be responsible for phenotypic differ-
ences observed among the Lyon rats. However, given the
overall genomic span of identified HVRs and the large
number of SSVs both in coding and non-coding regions
in the HVRs (see Table 1), these analyses on their own
are inadequate to suggest either the causative genes or

Table 1 Descriptive statistics for the SSVs and HVRs obtained
for the susceptible Lyon rats (LH and LL) relative to the resistant
Lyon strain (LN)

Strains  Total SSVs  SSVs in HVRs HVR count  Total HVRs size
LHvsLN 413,068 351,459 (85.09%) 2319 232.36 Mb (8.55%)
LLvsLN 324,932 276,053 (84.96%) 1941 193.06 Mb (7.10%)

the causative variants influencing MetS or obesity across
the whole genome.

Liver-specific regulation data can prioritise regions of

strain-specific variation in Lyon rats associated with MetS
We next integrated strain-specific genomic variation with
available genomic regulatory data from tissue relevant to
MetS in order to prioritise the HVRs using the occupancy
and level of conservation of the three liver-specific tran-
scription factors. We created subsets of HVRs characterised
by occupancy of the factors and the level of conservation
among mice and rats using a factor-specific Conservation
Enrichment score (CE; see Methods). Briefly, CE; is the
fraction of transcription factor binding events in a 10 kb
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kidney between LH and LN strains, and between LL and LN. d Rat orthologues of human GWAS variants associated with metabolic traits. @ Occupancy in
BN rat strain of three liver-specific transcription factors (CEBPA, FOXA1 and HFN4A). Related Figures: Additional file 1: Figures S4, S5 and S6
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window that are conserved between rat and mouse for each
transcription factor. The score was determined independ-
ently for each of the three factors (f= CEBPA, FOXA1, or
HNF4A). Thus, for each transcription factor and for both
the LHvsLN and LLvsLN comparisons, we created seven
subsets of HVRs: ‘All HVRS’ including those without any
binding event; ‘HVR w/TFBS with at least one TFBS
regardless of conservation; and five subsets containing
HVRs with CE; greater than 0, 0.2, 04, 0.6 and 0.8,
respectively. We then reassessed the evidence for
functionally of these HVR subsets in a similar way to that
done with the whole set of HVRs as above.

Enrichment of Ensembl rat genes in HVR subsets corre-
sponded with the occupancy and level of conservation of the
three liver-specific transcription factors (Fig. 4a). With the
exception of the subset of LLvsLN with all HVRSs, all tests in
the HVR subsets were statistically significant (p < 0.05). For
LHvsLN and for the three factors, maximum significance
possible (p < 107) was obtained for the subset of HVRs with
at least one TFBS (HVR w/TFBS), and for the subsets with
CE¢> 0.0 and CE;>0.2. In the case of LLvsLN and for the
three transcription factors, the maximum significance was
obtained in the subset of HVRs with at least one TFBS, and
HVR subset with CE;>0.0 (ie. HVR subsets with the
darkest colour in Fig. 4a).

As above, we analysed the functional annotation
enrichment in the HVR subsets using DAVID [45, 46]

with KEGG PATHWAY [47, 48] and UP TISSUE [49]
databases (see Methods). In all cases (both LHvsLN and
LLvsLN for the three liver-specific transcription factors)
the term ‘liver’ from the UP TISSUE database, had the
greatest accumulated significance across HVR subsets
(see Additional file 1: Figures S4A and S5A). These
results indicate that HVRs selected according to informa-
tion from liver-specific regulation data are enriched in
genes associated with liver function. Importantly, but as
expected, this association was not evident without using
genomic regulation data to select HVRs (see Fig. 4b).

In the case of LHvsLN, the greatest enrichments in genes
associated with liver function were obtained for the
CEceppa>06 (<107, CEroxa1>04 (p<107) and
CErnran > 0.2 (p<107°) subsets (HVR subsets with the
darkest colour in Fig. 4b). For LLvsLN, the greatest enrich-
ments were obtained for CEcggpa > 0.2 (p < 107), CEgoxar >
04 (p <107 and CEjynran > 02 (p < 107%) (Fig. 4b).

For the analyses using KEGG_PATHWAY database, we
did not find a consistent increase in significance associated
with an increase in CEg although we did identify some
functional terms that were statistically significant (see
Additional file 1: Figures S4B and S5B).

Additionally, we looked for an enrichment of putative
GWAS positive regions in HVR subsets by determining the
orthologous location in rat of NHGRI-EBI GWAS Catalog
SNPs associated with obesity and metabolic-related in
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Fig. 4 Conservation Enrichment (CEy) is correlated with functional enrichment. a Genes overlapping HVR subsets. The colour gradient shows the significance
obtained from the enrichment analyses done in each of the HVR subsets. Bar sizes indicates the total number of genes overlapping each subset of HVRs. b
Liver-genes defined by UP_TISSUE annotation. The functional annotation analyses were calculated by DAVID 6.7. Colour gradient and bar size defined as
above. ¢ Rat orthologues of human GWAS regions associated with obesity and metabolic traits. We excluded HVR subsets with CE¢ > 0.6 and CE; > 08 due to
no GWAS variants overlapping these HVR subsets. Colour gradient and bar size defined as above. d Ratio of genes differentially expressed in either liver or
kidney, between LH and LN strains, and between LL and LN strains (y-axis) for each subset of HVRs. e Proportion of synonymous coding SSV (SC-SSV) and
non-synonymous coding SSVs (NSC-SSV) in HVRs for each subset of HVRs. Related Figures: Additional file 1: Figures S4, S5, S7 and S10

humans [50] (specific terms listed in Additional file 1: Table
S3). The use of the regulatory information from liver-specific
transcription factors identified significant enrichments of
GWAS variants in relevant subsets of HVRs. For example,
we found significant enrichments (i.e. p < 0.05) for LHvsLN
in the subsets of HVRs w/ TFBS and CE¢> 0.2 for the three
liver-specific factors, in CE;>0.0 for FOXA1 and HNF4A
and in CE;> 0.4 for FOXA1) (Fig. 4c, Additional file 1: Table
S4). Regarding LLvsLN, we found significant enrichments
for in HVRs w/TFBS, CE;¢> 0.0, CE¢> 0.2, CE¢> 0.4 for both
FOXA1 and HNF4A (Fig. 4c, Additional file 1: Table S4).

Genes differentially expressed between LH and LN
strains in either liver or kidney (Additional file 1: Table
S1) are significantly enriched for all subsets of HVRs
(Additional file 1: Figure S7), regardless of which tran-
scription factor is considered. The same is true for genes
differentially expressed between the LL and LN strains. To
compare the differences in enrichment between subsets,
we computed the fraction of all Ensembl rat genes that
are differently expressed for each HVR. In all cases, the
fraction of differentially expressed genes was positively
correlated with CE; (Fig. 4d). For example, for LHvsLN
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and data from liver, the fraction increased from 6% (‘all
HVRSs’ subset) to 15% (CEpoxa; > 0.8), while for kidney, it
increased from 15% (‘all HVRs' subset,) to 30% (CEcggpa >
0.8; CEroxa1 >0.8). A similar pattern was observed for
LLvsLN (Fig. 4d).

We hypothesised that there may be a correlation between
selection pressures leading to regulatory conservation as
measured by CE; and changes to the sequence of protein
coding genes within the same sets of HVRs. The ratio of
non-synonymous coding SSVs (NSC-SSVs) to synonymous
coding SSVs (SC-SSVs) was therefore compared across HVR
subsets (see Methods). Although we find relatively little
difference in the ratio of the non-synonymous changes,
especially for the case of the LHvsLN comparison, in the
LLvsLN comparison, non-synonymous changes do appear to
be depleted when HVRs have higher regulatory conservation
(ie. higher CEy) (Fig. 4€). This may be the effect of simultan-
eous selection on both protein coding genes and regulatory
networks for a subset of regions in the LL genome.

In summary, the use of CE; (i.e. the conservation level
between rat and mouse in the occupancy of three liver-
specific transcription factors) is effective for selecting candi-
date regions involved in phenotypic differences between
Lyon rats. In most cases, we observed an increase in
statistical significance as a function of CE. Moreover, the
consideration of regulatory information was required to
identify HVRs significantly enriched for genes associated
with metabolic related-trait genes and enriched for human
GWAS variants related to obesity and metabolic traits.

Integrating results from the three liver-specific transcription
factors to prioritise the strain-specific variation in Lyon rats
associated with MetS

Given the observed stability of combinatorially bound
transcription factors [9] and connection of these regions to
human disease [51], we assessed if the number of liver-
specific transcription factors used to estimate the conserva-
tion level could more efficiently prioritise candidate HVRs.
For this purpose, we used the HVR subsets with CE¢>0
(i.e. all HVRs with at least one conserved TFBS).

We observed that conservation of more than one type
of factor in a given HVR was common: 41% (LHvsLN)
and 43% (LLvsLN) of the HVR CE¢>0 regions had
conserved peaks for all three of the liver-specific
transcription factors (Fig. 5a). We then partitioned the
HVRs with conserved peaks by the diversity of factors
that where conserved in the given HVR. Specifically,
‘HVR 1TF includes HVRs with one or more conserved
TFBS from at least one factor; while ‘HVR 2TF and
‘HVR 3TF refer to HVRs with conserved TFBS from at
least two or all three factors (i.e. HRV 3TF is a strict
subset of HVR 2TF, which is strict subset of HVR 1TF).
We then assessed these HVRs subsets to determine if an
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increased diversity of conserved liver-specific transcrip-
tion factors is an effective method to prioritise HVRs.

Although the presence of genes is significantly
enriched in each of these HVR subsets, there are no dif-
ferences among HVR 1TF, HVR 2TF and HVR 3TF: in
all cases enrichment significances were equal to p=10~*
(Fig. 5b). Similar results were obtained when considering
all liver-associated genes in HVRs (see Methods) for
LLvsLN (HVR TF1: gene count=126, p<0.05; HVR
TF2: gene count = 105, p < 0.05; HVR TF3: gene count =
87, p<107%) and LHvsLN (HVR TF1: gene count = 153,
»p<0.05 HVR TF2: gene count=131, p< 1072, HVR
TF3: gene count = 102, p < 1072 (Fig. 5¢).

HVRs with an increased diversity of conserved peaks
were generally significantly enriched (permutation tests,
p <0.05) for orthologous regions of human GWAS SNPs
except for the case of the HVR 3TF subset with the
LHvsLN SSVs (Fig. 5d and Additional file 1: Table S5).

The significance of enrichments of genes differentially
expressed in either liver or kidney was p <10~ for the
subsets with at least one conserved peak for one, two
and three liver-specific transcription factors, respectively,
for both LHvsLN and LLvsLN strain comparisons. Con-
sidering the ratios of differentially expressed genes, we
observed that they kept relatively constant across HVRs
subsets as the number of liver-specific transcription
factors with conserved peaks increased (Fig. 5e).

These results suggest that knowledge of which TFBSs
are conserved and whether a given region of the genome
has conserved TFBSs from multiple factors may be
effective in some situations at prioritising regions with
strain specific variation involved with tissue specific
functions. For example, we did not observe enrichments
in HVRs associated with liver-expressed genes and the
orthologous rat regions associated with human GWAS
without using the conservation level as measured by CE;
(see above and Fig. 4).

Analysing the genes obtained from the selected high
variability regions

To gain insight into genes from the prioritised HVRs
that may be important for MetS or obesity, we focused
on the most conserved and regulatorily complex HVR
subset, i.e. the set containing at least one conserved peak
for all three liver-specific factors (the HVR 3TF subset,
see above).

We performed two analyses based on possible func-
tional mechanisms underpinning the phenotypic differ-
ences among Lyon rats. First, we characterised those
genes with non-synonymous coding strain-specific
variants (NSC-SSVs; see Methods) overlapping the
selected HVRs. Such variation would result in changes
to the amino acid sequence that may be responsible for
functional changes in the resulting proteins. Second, we
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identified those genes located near putative promoters in
rat obtained from Villar et al. [4] (see Methods) and with
SSVs overlapping the selected HVRs. We assumed these
SSVs might affect the expression of the proximal genes.
For these analyses, we used only those genes expressed
in liver as measured by RNA-seq data (Fragments per
Kilobase Million (FPKM) > 1, see Methods).

We categorised the selected genes based on whether
they were i) liver-specific genes (according to the UniProt
tissue database, see Methods), ii) differentially expressed
in liver and/or kidney when comparing the susceptible
Lyon strains with the control Lyon strain, (see Methods);
iii) overlapping human GWAS variants associated with
obesity and metabolic traits overlapping the gene body in
the case of genes with NSC-SSVs or overlapping the

promoter in the cases of genes linked to promoters with
SSVs (see Table 2 and Additional files 2 and 3).

We also analysed the genes associated by published
evidence to three symptoms showed by the LH strain
(insulin resistance, dyslipidaemias) and by the LH and
LL strains (obesity) plus two symptoms not obviously
present in these strains as control (heart disease and
Alzheimers), using DisGeNET (v4.0 [52, 53]) (see
Methods). For this analysis, we used the corresponding
human orthologues of the selected rat genes because the
DisGeNET data is mainly for human (see Methods). A
total of 7542 and 7520 rat genes had human orthologues
and were expressed in liver in the LH and LL strains,
respectively. DisGeNET identifies a small number of
these genes as associated with the metabolic syndrome
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Table 2 Number of rat genes and human orthologues expressed in liver of the susceptible Lyon rats (LH or LL) and associated with
coding or promoter strain-specific variation overlapping HVRs with at least one conserved peak for three liver-specific transcription

factors (i.e. the HVR 3TF subset)

LHvsLN LLvsLN
Rat genes Human orthologues Rat genes Human orthologues
Coding Variation
Genes with NSC-SSVs 133 1110,1,14) 96 78 (0,0, 8)
Genes with GWAS? and NSC-SSVs 3 20,0, 2 3 3(0,0,2)
Liver-genes® with NSC-SSVs 15 9(0,1,4) 10 6(0,0,1)
Dif-liver® genes with NSC-5SVs 14 12 (0, 0, 0) 17 16 (0,0, 1)
Dif-kidney“ genes with NSC-SSvs 32 25 (0, 0, 4) 9 7 (0,0, 0)
Promoters
Genes assigned to promoters with SSVs 232 206 (7, 3, 32) 189 164 (4, 4, 18)
Genes assigned to promoters with GWAS® and SSVs 1 100,01 1 100,01
Liver-genes® assigned to promoters with SSVs 35 302, 1,9 26 26 (1,1,4)
Dif-liver® assigned to promoters with SSVs 38 33(1,1,8) 26 26 (1,1,3)
Dif-kidney® assigned to promoters with SSVs 52 44(0,1,7) 13 130,1,1)

#Human GWAS variants associated with Obesity and Metabolic traits in the NHGRI-EBI GWAS catalogue

BGenes expressed specifically in liver according to UniProt tissue database and accessed by using DAVID web services

“Genes differently expressed in liver or in kidney when comparing the susceptible Lyon rats (LH or LL) with the control Lyon rat (LH)

Numbers of human orthologues having evidence of associations with insulin resistance, dyslipidaemias and obesity are shown between parentheses

phenotypes and, as expected, these gene sets are highly
similar for the LH and LL strains with approximately
140 (1.9%), 110 (1.5%) and 800 (10.6%) genes associated
with insulin resistance, dyslipidaemia and obesity,
respectively in each strain.

There were 173 protein-coding genes expressed in
liver of LH or LL strains with at least one NSC-SSV in
the selected HVRs. Of these 173 genes, 144 had identi-
fied human orthologues and can thus be compared with
the DisGeNET data. This set of genes was not signifi-
cantly enriched for published associations to obesity, in-
sulin resistance or dyslipidaemias, (see Table 2,
Additional file 2).

A larger number of genes were one-to-one associated
with putative active promoters including 3865 and 3864
genes that were expressed in livers of LH and LL strain
rats and had human orthologues, respectively. Of the
3865 genes with active promoters from the LH strain, a
total of 85 (2.2%), 66 (1.7%) and 425 (11%) were associ-
ated with insulin resistance, dyslipidaemias and obesity,
respectively. The numbers for LL are similar: 86 (2.2%),
65 (1.7%), 417 (10.8%) for the associations to insulin re-
sistance, dyslipidaemias and obesity, respectively. Only a
fraction of these promoters had SSVs in the selected
HVRs: 206/3865 (5.3%) for LH and 164/3864 (4.2%) for
LL. Thirty-two of the genes assigned to promoters with
SSVs overlapping the selected HVRs in the LH strain
were associated with obesity (15.5%, Fisher’s exact test:
p < 0.05, see Table 2, Additional file 1: Table S6 and Add-
itional file 3). There were no significant enrichments for
insulin resistance or dyslipidaemias in the LH strain or

any significant associations in the LL comparison (see
Table 2 and Additional file 3).

We found no significant enrichments for the two
symptoms used as control in either the comparison to
genes with at least NSC-SSV in the selected HVRs (Fish-
er’s exact tests: all p-values >0.08) or to genes one-to-
one assigned to promoters with SSVs overlapping the
selected HVRs (Fisher’s exact tests: all p-values >0.05).

Of the set of 32 genes responsible for the significant
enrichment for obesity in the LHvsLN comparison
(Additional file 1: Figure S8), the gene with most
published evidence of association with obesity was the
insulin receptor gene Insr (ENSRNOG00000029986)
(Additional file 1: Table S6); Cat (ENSG00000121691)
was the human gene of that list assigned to the pro-
moter with the greatest number of SSVs (58 SSVs) over-
lapping the HVRs. To asses interactions among the
identified set of 32 genes and gain further insight into
how they might connect to the Lyon rat phenotypes, we
conducted a network analysis and a functional enrich-
ment analyses using GeneMANIA (plugging for
Cytospace v3.4.1 [54]). We observed two major modules
(Fig. 6 and Additional file 1: Table S7) and significant en-
richments for 20 GO terms (Additional file 1: Table S7).
One module includes 10 genes interconnected with PER1
and CRY2 and which is responsible for the significant
enrichment of GO terms related with circadian rhythm
and regulatory binding regions in DNA (Fig. 6 and
Additional file 1: Table S7). The other module includes 11
genes interconnected with INSR, SOCS3, THRSP, TGFB1,
BAMBI and SMAD?. Genes in this module are responsible
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Fig. 6 Network analysis based on protein-protein interactions for the human orthologues associated with the significant enrichment for obesity.
Human orthologues of the 32 rat genes assigned to promoters with SSVs overlapping the selected HVRs in the LH strain and associated with
obesity were analysed (black circles). Relationships among these genes were investigated using GeneMANIA (see Methods). The grey circles are
genes predicted by GeneMANIA to be in the network. Of 20 significant GO Terms (g-value <0.05) total, two are presented in the figure due to
their significance and the number of genes included in each module (green circles: ‘Circadian rhythm’, g-value <1e-8; red circles: ‘Negative regula-
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for the significant enrichment of GO terms related to regu-
lation of the transforming growth factor beta receptor
(TGF-beta) signalling pathway and regulation of the trans-
membrane receptor protein serine/threonine kinase signal-
ling pathway (Fig. 6 and Additional file 1: Table S7).

Discussion

In this study, we have used the level of functional regula-
tory conservation between related species to prioritise
genomic regions whose patterns of genome variation
suggest that they are involved in phenotypic differences
in a model of obesity and metabolic syndrome, the Lyon
rat strains.

As a first step, we characterised haplotype blocks by
density of strain-specific variants for the two compari-
sons between the susceptible Lyon strains with respect
to the resistant Lyon strain (i.e. LHvsLN and LLvsLN).
In agreement with similar analyses [30, 31], most of
these variants were concentrated in a small part of the
genomes, which we termed High Variability Regions
(HVRs). Next, we classified the HVRs according to
conserved occupancy between rat and mice for three

liver-specific transcription factors. Functional enrich-
ment of selected HVRs was evident for those genetic
elements where a significant enrichment was found in
the whole HVR sets. Importantly, our approach revealed
associations between HVRs with liver-genes and with rat
orthologues of human GWAS linked to obesity and
metabolic traits.

We also searched genes associated with genomic vari-
ation linked to two selected sets of HVRs, one from each
strain comparison; namely, those sets with haplotype blocks
having at least one conserved peak among rat and mice for
each of the three liver-specific transcription factors (i.e.
‘HVR 3TF subset). In these two subsets, we determined
those genes with non-synonymous strain-specific variants
and genes assigned to promoters with strain-specific
variation overlapping the selected haplotype blocks. We
reported a list of these selected genes where we included
additional information coming from functional analyses
and supporting the association of these genes with human
GWAS for obesity and metabolic traits and with traits in
the susceptible Lyon strains (insulin resistance, dyslipidae-
mias and obesity) (Additional files 2 and 3). We found a
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significant enrichment of liver-expressed genes associated
with obesity that were assigned to promoters with strain-
specific variation overlapping the selected haplotype block
obtained from LHvsLN. Network analyses using these
genes and based on protein-protein interactions identified
modules implicated in circadian rhythms and in the TGEF-
beta and transmembrane receptor protein serine/threonine
kinase signalling pathways.

Recent studies have described the crucial role of circadian
rhythms in regulation of body weight and metabolic process
in rodents and other mammals [55-57]. The expression of
two genes with strain-specific variation, PER1 and CYR?2,
are part of the circadian pathway and are regulated in part
by the binding of the CLOCK:ARNTL(BMALL1) heterodi-
mer to their promoter regions. PER1 and CRY?2 also feed-
back to inhibit the CLOCK:ARNTL heterodimer, which
itself regulates the transcription of other genes involved in
lipid metabolism [56, 57]. Thus, the strain-specific changes
in the promoter sequence of PER1 and CRY2 detected using
our methodology are plausibility involved in the metabolic
symptoms shown by LH strain. Further support for this
interpretation is the observation that PER1 is downregulated
in liver and kidney in LH and LL strains in comparison with
LN strain, whereas CLOCK is upregulated in kidney in LL
strain. A relationship also exists between obesity and the
TGF-beta and transmembrane receptor protein serine/
threonine kinase signalling pathways [58]. Specifically,
SMADY? is an inhibitor of the TGF-beta signalling pathway
[58] and is also downregulated in liver in the LH strain.
BAMBI cooperates with SMAD7? in the inhibition of the
TGF-beta signalling pathway [59], and it is also downregu-
lated in kidney in LH strain. Taken as a whole, the network
analyses of the 32 genes associated with obesity demon-
strates that at least a fraction of them are plausibly impli-
cated in the obesity phenotype shown by the LH strain.

Ma et al. characterised the blocks with a high density
of variants that are unique in the Lyon strains in order
to fine-map QTLs for MetS previously identified in these
rat strains [31]. As result, the candidate QTL were nar-
rowed by 78%. By focusing their analyses to coding vari-
ants in the QTL on rat chromosome 17, they reduced
the number of candidate genes to 27. We found that
three of these genes had non-synonymous strain-specific
variation overlapping the most stringent HVR 3TF sub-
set (ENSRNOG00000014834, ENSRNOG00000022378,
ENSRNOGO00000027453, see Additional file 1: Table S8),
however none of these genes were assigned to promoters
with strain-specific variation overlapping HVR 3TF
regions. More recently, Wang et al., reported 17 candidate
genes involved in the phenotypic differences between LH
and LN Lyon rats [41]. We found that only one of Wang
et al’s genes held non-synonymous variation overlapping
an HVR 3TF region (ENSRNOG00000016109, Additional
file 1: Table S8). In addition, none of the genes identified
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by Wang et al.,, were assigned to promoters with strain-
specific variation overlapping the HVR 3TF regions
(Additional file 1: Table S8).

The gene CI7h6orf52 (ENSRNOGO00000039379), which
encodes a protein similar to chromosome 6 open reading
frame 52 (C60RF52), is the only one reported by both
studies in the previous paragraph. It is suggested to be the
most likely eQTL driver gene involved in phenotypic differ-
ences between LH and LN strains [41]. C17kh60rf52 is cis-
regulated by an eQTL hotspot on chromosome 17 and is
predicted to affect 100 of 278 trans-eQTL genes [41]. While
C17h6orf52 was not the single gene from Wang et al,
linked to strain-specific variation overlapping the strict
HVR 3TF subset, it is associated with the less restrictive
HVRs 2TF subset obtained from LHvsLN comparison.
Moreover, C17h60rf52 was the only gene from the Ma et al.
and Wang et al. lists with both non-synonymous coding
and promoter assigned SSVs (Fig. 7). This result would
suggest that CI17h60rf52 has been under positive selection
during the phenotype-driven derivation of this strain and
gives support to the predicted role of CI17h60rf52 affecting
susceptibility in LH rats for the Metabolic syndrome
reported by Ma et al. and Wang et al. The identification of
Ci7h6orf52 by our complementary method further
supports its role in the phenotype and lends additional
validation to our general approach.

Conclusions

Our results demonstrate both the potential and the limita-
tions of using the level of functional regulatory conservation
to prioritise genomic regions potentially associated with
phenotypic differences among Lyon rats. This approach
would be most easily extended to other systems with similar
breeding histories including other rat strains and mice
strains. Importantly, it is not needed to generate data from
many individuals like QTL and eQTL approaches and
allows the use information already available, as conservation
in regulatory elements between rat and mice.

Methods

Determination of high variability regions, low variability
regions and unmappable regions

Genomic sequences and single nucleotide variants

We used existing whole genome alignments (ENA accession:
ERP002160) and single-nucleotide variants (available from
the Rat Genome Database) of the three Lyon strains (LH,
LL and LN) that were generated by Atanur et al. [30] in
comparison to the BN reference genome (RGSC-3.4 [60]).

Strain-Specific Variant (SSV) We called a SSV for a
given strain as a genomic position with an allele that is
not present in the strain used as reference (Fig. 1a and
Additional file 1: Figure S1A). Firstly, we obtained SSVs
for Lyon strains compared to the BN reference genome
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Fig. 7 The genomic region of C17h6orf52 (ENSRNOG00000039379). Non-synonymous coding SSVs and promoter SSVs linked to C17h6orf52 overlapping
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system. Image modified from Ensembl genome browser (Rattus norvegicus version 69.34 (RGSC3.4) Chromosome 17: 29,665,942-30,017,536)
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RGSC-34 and the resulting sets of SSVs are referred to as
LHvsBN, LLvsBN and LNvsBN for the SSVs specific to the
LH, LL and LN strains, respectively. These comparisons
were used to calculate the threshold for the different types
of genomic regions (see below and Fig. 1c and Additional
file 1: Figure S1C). Secondly, we obtained SSVs for the two
pairwise comparisons of Lyon rats that are susceptible to
MetS and obesity phenotypes relative to the strain that is
resistant (LHvsLN and LLvsLN). In these cases, we called a
SSV as a genomic position with at least one allele that is
not present in both LN and the reference BN genome. By
doing this, we discard from LH and LL genomes the
genetic variation shared with LN strain, which we assume
are not associated with MetS (Fig. 2, Additional file 1:
Figures S2 and S3). Furthermore, in a similar way as done
for LN strain by comparing it to LH and LL strains
(LNvsLH, LNvsLL); these comparisons were used as
controls of our approach, because we expected to not find
any association between LN strain SSVs and MetS (see
Additional file 1: Figures S2 and S3).

In a previous study with the Lyon rats, Ma et al. [31]
considered a SSV as any position that differed between
the two strains that were being compared regardless of

whether the position was variable with respect to the
reference BN genome (indicated as LH + LN, LN + LH
in Additional file 1: Figure S2 and LL + LN and LN + LL
in Additional file 1: Figure S3). In our case, we consid-
ered a SSV only if the allele both differed from the BN
reference genome and was also in the strain that was
used as query and not present in the strain used as
control. For example, in Additional file 1: Figure S1, our
approach considers only the G in the LNvsLN compari-
son, while Ma et al., would have included both the G
and the C. This different criterion allowed us to remove
from our LHvsLN and LLvsLN analyses those genomic
regions specific to LN, and which are likely not associ-
ated with the phenotypic differences associated with
MetS among Lyon rats (see Additional file 1: Figures S2
and S3). Other differences from methodology used by
Ma et al.,, were i) we did not discard the roughly 5% of
SSVs that were called heterozygous by Atanur et al. [30];
and ii) we did not use those genome regions with a low
estimated accessibility (see below).

Smooth density of SSVs For downstream analyses, we
used a weighted sliding window approach—triangular
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smoothing—to calculate the number of SSVs in non-
overlapping 10 kb genome windows (Fig. 1b and Additional
file 1: Figure S1B). This method smoothes differences
among windows that were caused by the genome
compartmentalization. For a given window in the genome
at position x, we calculated the smoothed density of SSVs
as the following floating mean with weights:

k
Smooth Density of SSVs = Z SSV yti
i—k

k
x (k=lil)/ Y k-li

i—k

where SSV, . ; is the number of Strain Specific Variants
in the window with position x + i, and k is the number
of neighbouring windows up and downstream used for
smoothing. We use k=3 in our analyses empirically
(data not shown) because this value gives a clear distinc-
tion between two types of genomic regions (see below
and Fig. 1c and Additional file 1: Figure S1C).

Genomic regions

High Variability Regions and Low Variability Regions
The smoothed density of SSVs in genome windows be-
tween two rat strains shows a bimodal distribution (Fig. 1c
and Additional file 1: Figure S1C). The left peak in the bi-
modal distribution contains regions of the genome identical
by descent, with low a density of SSVs (Low Variability
Region, LVR). The right peak contains regions of the
genome that are divergent between the two strains with a
high density of SSVs. A distinct valley separates the two
peaks, which we used as a threshold to differentiate HVRs
and LVRs. We calculated this threshold for the three com-
parisons between the Lyon strain rats and the reference rat
genome (RGSC-34). In all three cases the threshold
obtained was three (Additional file 1: Figure S1C); that is,
windows with a smoothed SSV density greater than three
varjants in 10 kb were classified as HVRs, and windows
whose smoothed SSV density was less than or equal to
three were classified as LVRs. Only those regions with at
least three consecutive genome windows of the same type
were considered for further analyses (Fig. 1d).

Unmappable regions We performed two analyses on the
BAM files to estimate the parameters to characterise the
non-accessible genome regions of the Lyon strains. Firstly,
we obtained the distribution of mapping qualities (i.e. -10
log;o Pr(mapping position is wrong), http://samtools.githu-
b.io/hts-specs/) by using QualityScoreDistribution.jar from
Picard tools (v1.81 (1299), http://broadinstitute.github.io/
picard/) with the option VALIDATION_STRINGENCY =
LENIENT (Additional file 1: Figure S9A). Secondly, we
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calculate genome coverage per base by using genomeCover-
ageBed form Bedtools (v2.17.0 [61]) with default parameters
(Additional file 1: Figure S9B). According to results
obtained from the later analysis, we considered a region as
unmappable when at least three consecutive windows with
an average mapping quality less then or equal to 30 and/or
with an average coverage greater then or equal to 100
(Figs. 1d, 2, Additional file 1: Figures S2B and S3B).

Animals

LH/MRrrcAek, LN/MRrrcAek, and LL/MRrrcAek rats
were bred and maintained in an approved animal facility
at the University of Iowa on a 12-h light-dark cycle and
provided food and water ad libitum. Male offspring were
used in this study. The rats were phenotyped and tissues
collected as previously described [41]. Briefly, at 3 weeks
of age the rats were weaned onto normal chow (Teklad
7913 — Harlan Teklad NIH-31 irradiated, 18% protein,
6% fat). At 15 weeks of age they were switched to a 4%
NaCl diet (Teklad 7913 modified with 4% NaCl) until
they were humanely euthanized with CO, at 18 weeks of
age after an overnight fast. Tissues were collected and
stored in RNAlater (Life Technologies, Grand Island,
N.Y.) at -80 °C for subsequent RNA extraction.

Gene expression

RNA-seq data

RNA was isolated from liver and kidney tissue using
standard TRIzol methods [62]. RNA quality was measured
(BioAnalyzer 2100, Agilent Technologies, Santa Clara, CA,
USA), using an RIN threshold of 7. Libraries were prepared
using TruSeq RNA Sample Preparation Kits v2 (Illumina,
San Diego, CA) according to manufacturer’s instructions.
RNA sequencing was performed on an Illumina HiSeq
2000, with paired-end, 50 bp cycles, at the Iowa Institute of
Human Genetics — Genomics Division. Six samples were
multiplexed per lane, yielding approximately 30 million
reads per sample. All data consisted of six biological
replicates for LH and LL liver and five biological replicates
for LL liver and LH, LL, and LN kidney. Sequence data
from LH and LN liver was previously described (Wang et
al. [41]; GSE50027). Remaining sequence data created for
this study has been deposited in the ArrayExpress database
at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession
number E-MTAB-5939.

We analysed the read quality using FASTQC software (v
0.10.1 http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were trimmed by using Trimmomatic (v0.32
[63]) if the Phred score of any base was below 25 (LEAD-
ING:25 TRAILING:25). We used reads with at least 36
bases (MINLEN:36) and only those paired reads that
remained after trimming.
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Gene expression analyses

We estimated differential gene expression between LH
and LN, and between LL and LN. TopHat (v2.0.13 [64])
was used to map reads to the rat reference genome
(RGSC-3.4). Read alignments with more than two
mismatches were discarded (—read-mismatches 2). We
also used the option —no-novel-juncs to look for reads
across junctions already annotated. The Cufflinks
package (v2.2.1 [65]) was used to assemble transcripts
separately for each replicate. We used cuffinerge to
merge the transcript assemblies from replicates to be
analysed, and finally we used cuffdiff to find differently
expressed genes and with Benjamini-Hochberg corrected
False Discovery Rates (FDR) of 0.05. Thus, we obtained
the differently expressed genes either in liver or in
kidney between LH and LN, and between LL and LN
(see Additional file 1: Table S1). We also used the FPKM
(Fragments per kilobase of exon per million of fragments
mapped) values obtained from these analyses to get the
list of genes that were expressed in the livers of the LH
and LL strains. We considered a gene expressed in liver
if its FPKM was greater than 1.0.

Regulation data: liver-specific transcription factors

We used the liver ChIP-seq datasets generated by
Stefflova et al. [9] for BN rat strain (ArrayExpress
accession: E-MTAB-1414) and for five mouse species/
strains (Mus musculus (strains C57BL/6 ] and AJ), Mus
caroli, Mus castaneus and Mus spretus, ArrayExpress ac-
cession: E-MTAB-1414). The dataset comprised two bio-
logical replicates for each species/strain and for three
liver-specific transcription factors (CEBPA, HNF4A and
FOXA1). Reads were aligned using BWA [66] with
default parameters. Peak locations were called by
SWEMBL (https://github.com/stevenwilder/SWEMBL).
Final peak sets contained peaks present in both
biological replicates.

Conservation of occupancy of three liver-specific transcrip-
tion factors between rat and mouse strains

We compared peaks generated from ChIP-seq datasets
among the five mouse species and the rat. We used only
the genomic regions present in the BLAST-Z alignment
between mouse and rat available in Ensembl (v59 [44]) and
using the NCBI37 mouse genome as references for com-
paring datasets from the different species. We considered
as conserved peaks between rat and mouse, the overlapping
peaks between rat and at least one mouse species/strain.
Coordinates of conserved peaks were converted to the rat
genome reference (RGSC-3.4). For each HVR and liver-
transcription factor, we calculated its Conservation
Enrichment score (CE¢) as the number of conserved peaks
in 10 kb for a given transcription factor.

Page 14 of 18

Permutation tests

Permutation tests were used to find significant enrichments
in HVRs. We clustered HVRs within an empirically defined
distance of 1 Mb because HVRs have a non-uniform distri-
bution across the genome (see Fig. 3a) and we assume
nearby HVRs are regulatorily non-independent. Clusters
were randomly permutated across the whole genome by
using the command shuffle from BEDTools (v2.22.0 [61])
and accessed from pybedtools (v0.6.9 [67]); the relative coor-
dinates of HVRs inside of clusters were maintained. We
estimated the distribution of expected values by calculating
either the total number or average of genetic elements over-
lapping the set of HVRs inside of the shuffled cluster for
each permutation. We performed 10,000 permutations in
each test. Significance of the enrichment of the genetic
element in HVRs was obtained by calculating the two-tailed
p-value according to this formula:

card(|[EV-EV|2|OV-EV|) +1
total of permutations + 1

two—tailed Pvalue =

where OV is the value obtained from the observed
HVRs, and EV is the expected value calculated from
each of the 10,000 sets of permuted HVRs (see Fig. 3a).
The minimal p-value possible with 10,000 permutations
is 1x107%

Functional analyses of HVRs

Ensembl genes overlapping HVRs

We used the set of Ensembl genes from Ensembl (v69
[44]) for the BN reference genome RGSC-3.4. We used a
permutation test (see above) to determine if genes
overlapped HVRs more often than expected by chance.
We calculated the number of genes overlapping at least
one HVR in the observed permutated sets (Fig. 3b).

Differentially expressed genes overlapping HVRs

We tested if genes that were differentially expressed
between LH and LN and between LL and LN overlapped
HVRs more often than expected by chance (Fig. 3c). We
used permutation tests for these analyses (see above).
We used the list of genes differentially expressed that
were obtained from RNA-seq data (Additional file 1:
Table S1). We calculated the number of these genes that
overlapped at least one HVR in the observed and per-
mutated sets of HVRs (Fig. 3c and Additional file 1:
Table S2).

Gene-annotation enrichment analysis of HVRs

We analysed if there was a functional enrichment associ-
ated with metabolic or obesity phenotypes for the genes
overlapping at least one HVR that were obtained from
LHvsLN (All HVRs in Additional file 1: Figure S4) and
LLvsLN (All HVRs in Additional file 1: Figure S5). We
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tested for this enrichment by using DAVID web services
v6.7 (python client [45, 46]) for KEGG PATHWAY [47, 48]
and UP TISSUE (Uniprot Consortium [49]) databases (re-
lease/download date: Sep 2009, https://david.ncifcrf.gov/
content.jsp?file=update.html). We used DAVID v6.7 (Sep
2009) for our analyses rather than DAVID v6.8 (October
2016), because most of the data used in our study (gene an-
notation, SNPs and occupancies of liver-transcription fac-
tors) are based on the RGSCv3.4 assembly, which is also
that used by DAVID v6.7. DAVID v6.8 uses the Rnor 6.0
assembly and differences in the gene sets and/or gene no-
menclature between these two rat assemblies create incon-
sistencies that affect the accuracy of our results (data not
shown). In addition, although the KEGG PATHWAY re-
source was updated in DAVID 6.8, the UP TISSUE dataset,
which we used to report the expected association between
the term liver and the level of functional regulatory conser-
vation (see Results section), was not updated in DAVID v6.8
(in both versions UP TISSUE is dated Sep 2009). We recog-
nise that, in their recent paper, Wadi et al. [68] showed that
the use of out-dated gene annotation prevents the identifica-
tion of all significant terms in enrichment analyses. How-
ever, in our case, even when using DAVID v6.7, we found
significant results and the expected correlation between
gene enrichment and the level of functional regulatory con-
servation. Thus, the DAVID supporting database that we
use are largely the same between v6.7 and v6.8, it is more
important for us to be consistent on the assembly and gene
set for our analysis.

Liver-specific transcription factor overlapping HVRs

We also tested if the number of peaks in rat overlapping
HVRs (Fig. 3e and Additional file 1: Figure S6) and the
average CE; (Additional file 1: Figure S10) observed for
each one of the three liver-specific transcription factors
was significantly greater that that expected by chance.
We used permutation tests (see above) for these ana-
lyses. For the observed values, we used either the total
number of peaks overlapping the HVRs or the average
CE; for a given transcription factor. For the expected
values, we calculated the two latter values for each one
of the 10,000 permuted sets of HVRs (see above).

Human GWAS variants associated with metabolic traits
overlapping HVRs

We obtained from the NHGRI-EBI GWAS catalogue [50]
the list of SNPs associated with obesity and metabolic-
related traits in humans (search terms used in Additional
file 1: Table S3). SNPs coordinates were converted from the
GRCh38 human assembly to the rat RGSC-3.4 assembly
using mapping from GRCh38 to Rno6.0 and then from
Rno6.0 to Rno5.0 and RGSC-3.4. All conversions used the
Ensembl Perl API and the Ensembl assembly converter
software (v87 [44]). As with other genetic elements
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analysed, we then used permutation tests to determine if
there was a significant enrichment of rat orthologous posi-
tions for these GWAS variants overlapping HVRs. For the
observed value, we used the total number of GWAS
variants overlapping HVRs. The expected value was
calculated as the number of GWAS variants overlapping
each one of the 10,000 sets of permuted sets of HVRs.

Selection of HVRs according to CE

For downstream analyses, we created seven subsets of
HVRs according to the occupancy for the three liver-
specific transcription factors and their CE; for each on
each one of the three liver-specific transcription factors
(CEcerpa, CEroxar and CEpngana): all HVRs; HVRs with
at least one peak (HVR w/TFBS); HVRs with CE; greater
than 0 (i.e. HVRs with at least one conserved peak), and
HVRs with CE; greater than 0.2, 0.4, 0.6, 0.8 respectively
(Additional file 1: Tables S9 and S10 show sizes and
number of SSVs of HVR subsets). We analysed each one
of the subsets of HVRs in a similar way to that used for
the full set of HVRs as described above. Then, we com-
pared the results obtained in each analysis across the
subsets of HVRs (Fig. 4). Specifically, we analysed the
enrichment in HVRs for i) Ensembl genes, ii) gene anno-
tation from DAVID (UP TISSUE and KEGG PATHWAY
databases), iii) differentially expressed genes in liver and
kidney (Additional file 1: Table S1) and iv) rat ortholo-
gues of human GWAS variants associated with obesity
and metabolic-related traits (Additional file 1: Tables
S3-and S4). Additionally, we also tested if the proportion
of non-synonymous coding SSVs (NSC-SSVs) and
synonymous coding SSVs (SC-SSVs) in HVRs differed
between the subsets of HVRs. For this, we estimated the
effect of SSVs in HVRs by using the Ensembl Variant
Effect Predictor (VEP) tool (standalone perl script v2.7
associated with Ensembl v69 [69]). We considered in the
analyses those NSC-SSVs whose most severe effect was
‘missense_variant, ‘stop_gained’ or ‘stop_lost .

Selection of HVRs by the number of liver-specific tran-
scription factors with conserved peaks

Three subsets of HVRs were created according to how
many liver-specific transcription factors had conserved
peaks: the ‘HVR ITF subset included HVRs with
conserved peaks for at least one liver-specific factor, the
‘HVR 2TF subset had HVRs with conserved peaks for at
least two factors, and the ‘HVR 3TF subset had HVRs
with conserved peaks for all three liver-specific factors
(Fig. 5a and Additional file 1: Table S11). We compared
the functionality among these HVRs subsets to test the
importance of the number of transcription factors used
to define the conservation level (Fig. 5). We analysed
each one of these three subsets of HVRs in a similar way
as used for the full set of HVRs and for the HVRs
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subsets created with different conservation levels as de-
scribed in the previous section. Specifically, we com-
pared the enrichment in HVRs among ‘HVR 1TF,'HVR
2TF and ‘HVR 3TF subsets for i) Ensembl genes, ii)
gene annotation from DAVID (liver term of UP_TISSUE
database), iii) differentially expressed genes in liver and
kidney and iv) rat orthologues of human GWAS variants
associated with obesity and metabolic-related traits.

Analyses of SSVs of the selected subsets of HVRs

For these analyses, we selected the subset of HVRs that
had at least one conserved peak between rat and mouse
strains/species for all three of the liver-specific transcrip-
tion factors (i.e. ‘HVR 3TF’ subset) as they show enrich-
ment for most of the functional elements and because of
the observed stability of combinatorially bound tran-
scription factors [9]. We limited our analysis to the
genes that were both expressed in liver of LH or LL
(FPKM >1) and associated with coding or non-coding
strain-specific variation.

Non-synonymous coding SSVs (NSC-SSVs) in the selected
subsets of HVRs

We assessed the effect of the SSVs on the protein by
using the VEP tool (standalone perl script v2.7 [69]). We
considered in the analyses those SSVs classified as non-
synonymous variants and whose most severe effect was
‘missense_variant, ‘stop_gained’ or ‘stop_lost’.

SSVs of the selected subsets of HVRs sited in promoters
Positions of putative promoters in Rat were obtained
from Villar et al. [4]. These authors characterised
promoters and enhancers by using modifications to
histone 3 lysine 27 (H3K27ac) and histone 3 lysine 4
(H3K4me3). Active promoters are marked by H3K4me3
and H3K27ac, while active enhancers are regions
marked by H3K27ac [4]. Coordinates were converted
from the Rnor5.0 assembly to the RGSC-3.4 assembly
using the Ensembl assembly converter software (v80
[44]). Genes were assigned to promoters if the gene’s
transcription start site (TSS) overlapped or was within
5 kb downstream of the promoter. Only one-to-one
gene-promoter assignations were used for our analysis.

Association between metabolic diseases and genes

Genes associated with the three metabolic-related symp-
toms showed by LH and LL strains (i.e. insulin resist-
ance, dyslipidaemias and obesity) were obtained from
DisGeNET (v4.0 [52, 53]). DisGeNET is a platform inte-
grating information on associations between genes and
human diseases from public data sources and literature.
We analysed those genes expressed in liver and with
either the selected NSC-SSV or assigned to selected
promoters with SSVs. DisGeNET analysis used the
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human orthologous genes of the selected rat genes with
homology determined by the Ensembl Perl API (v69
[44]). Only the human orthologous genes with rat
homology annotated as ‘one2one’ or apparently one2one’
were used. From DisGeNET, we searched for disease
gene associations using relevant Unified Medical
Language System Concept Unique Identifiers (UMLS®
CUIs, insulin resistance: C0021655, dyslipidaemias:
C0242339 and obesity: C0028754). We also included
two additional diseases not shown by the susceptible
Lyon strains as controls for our analyses (heart diseases:
C0018799 and Alzheimers: C0002395).

For each of the five diseases, we compared, using
Fisher’s exact test, the counts of rat genes expressed in
liver with NSC-SSVs overlapping the selected subsets of
HVRs and human orthologues associated with that
disease with the total number of rat genes expressed in
liver and human orthologues associated with the disease.
A similar comparison was done for genes assigned to
promoters with SSVs overlapping the selected HVRs. In
this case, the total number of human orthologues of rat
genes expressed in liver was limited to those that were
one-to-one assigned to promoters.

Network analysis

A network analysis was done for the 32 human ortholo-
gues associated with the significant enrichment for obesity
(Fig. 6). This analysis was done using Cytoscape 3.5.1
(v3.5.1 [70]) and GeneMANIA (plugging for Cytospace
v3.4.1 [54]) with default parameters, which involves the
use of information from six type of sources (‘Co-expres-
sion, ‘Physical interactions;, ‘Predicted; ‘Co-localization,
‘Pathway’ and ‘Genetic Interactions’). For downstream
analyses, we focused on the subnetwork obtained from
the protein interaction databases (‘Physical interactions’)
because it highlighted two modules in the resulting net-
work with 10 and 11 genes, respectively. The functional
enrichment analysis to identify which Gene Ontology
terms were significantly enriched in the network was also
done with GeneMANIA (Additional file 1: Table S7).

Additional files

Additional file 1: Supplementary figures and tables. (DOCX 724 kb)

Additional file 2: All relevant characteristics of genes that are overlapping
HVRs with conserved TFBS from all three factors and have non-synonymous
coding SSVs in at least one strain comparison. (XLSX 56 kb)

Additional file 3: All relevant characteristics of genes that are
overlapping HVRs with conserved TFBS from all three factors and have
SSVs in promoters that can be one-to-one associated with genes in at
least one strain comparison. (XLSX 70 kb)
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