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Abstract

BACKGROUND AND PURPOSE—The purpose of this case-cohort study was to examine 

urinary arsenic levels in relation to incident ischemic stroke in the United States.

METHODS—We performed a case-cohort study nested within the REasons for Geographic and 

Racial Differences in Stroke(REGARDS) cohort. A subcohort(n=2,486) of controls was randomly 

sampled within region-race-sex strata, while all incident ischemic stroke cases from the full 

REGARDS cohort(n=671) were included. Baseline urinary arsenic was measured by inductively 

coupled plasma mass spectrometry. Arsenic species, including urinary inorganic arsenic(iAs) and 

its metabolites monomethylarsonic acid(MMA) and dimethylarsinic acid(DMA), were measured 

in a random subset(n=199). Weighted Cox’s proportional hazards models were used to calculate 

hazard ratios(HRs) and 95% confidence intervals(CIs) of ischemic stroke by arsenic and its 

species.

RESULTS—The average follow-up was 6.7 years. While incident ischemic stroke showed no 

association with total arsenic or total iAs, for each unit higher level of urinary MMA on a log-

scale, after adjustment for potential confounders, ischemic stroke risk increased nearly 2-

fold(HR=1.98; 95%CI: 1.12–3.50). Effect modification by age, race, sex, or geographic region 

was not evident.
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CONCLUSIONS—A metabolite of arsenic was positively associated with incident ischemic 

stroke in this case-cohort study of the U.S. general population, a low-to-moderate exposure area. 

Overall, these findings suggest a potential role for arsenic methylation in the etiology of stroke, 

having important implications for future cerebrovascular research.
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Introduction

Stroke is the fifth leading cause of death among adults in the United States and a significant 

source of disability1. The mortality rate in stroke varies geographically in the United States 

with a “Stroke Belt” traversing the Southeastern region(Alabama, Arkansas, Georgia, 

Indiana, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and 

Virginia)2, where individuals have an elevated risk of dying from stroke compared to other 

states3. Within the Stroke Belt states, there is an area with an even higher risk of stroke 

mortality known as the “Stroke Buckle.” This includes North Carolina, South Carolina, and 

Georgia4. While some factors have been found to explain this geographic disparity in part5, 

a conclusive answer has yet to be found.

Because of its role in inflammation6 and atherosclerosis7, inorganic arsenic(iAs) may be part 

of the reason for the Stroke Belt. Organic arsenic compounds, such as arsenobetaine(AB), 

occur naturally in seafood and are considered non-toxic8. Inorganic arsenic, alternatively, is 

considered highly toxic, and occurs in the environment as arsenite(iAsIII) and 

arsenate(iAsV). Both forms can be found in contaminated food sources, drinking water, 

occupational exposure, and industrial sources9. In the liver, iAsIII is metabolized into a 

trivalent form(MMAIII) and then a pentavalent form of monomethylarsonic acid(MMAV), 

followed by trivalent and pentavalent forms of dimethylarsinic acid(DMAIII and DMAV)10. 

After ingestion, iAs is excreted in the urine with concentrations in the range of 10–20% iAs, 

10–15% MMA, and 60–75% DMA11. Together, exposure to the trivalent and pentavalent 

forms of iAs, MMA, and DMA have the potential to inflict widespread cardiovascular 

damage. Underreporting iAs and its metabolites is a serious limitation of research on the 

health effects of arsenic.

Much of the evidence for iAs toxicity and vascular disease risk comes from regions of high 

groundwater exposure, such as Taiwan12, Bangladesh13, Chile14, and China Inner 

Mongolia15. Although iAs concentrations as high as 100 ppb have been reported in some 

areas16, exposure in the U.S. overall is considered as low-to-moderate. For this reason, few 

studies have investigated the potential adverse effects of iAs in the U.S.17–20, and none have 

represented the Stroke Belt region.

While increasing evidence suggests that long-term exposure to iAs is associated with risk of 

a variety of vascular diseases21, evidence that iAs is an independent predictor of ischemic 

stroke remains inconclusive. A greater risk of stroke mortality or hospitalizations in 

households, villages or counties with high-total-arsenic drinking water was found in 

some12, 13, 18, 19, 22, but not all studies14, 15, 23–26. Three studies have assessed the relation 
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between urinary arsenic and stroke incidence or mortality20, 24, 26; none demonstrated a 

significant association. A recent meta-analysis across 31 studies(8 reporting on stroke 

prevalence/mortality) found a positive association between arsenic exposure and 

cardiovascular disease, coronary heart disease, and peripheral arterial disease, but not 

stroke27.

This study aimed to explore the association between urinary arsenic(organic and inorganic) 

and incident ischemic stroke using data from the U.S. national REasons for Geographic and 

Racial Differences in Stroke(REGARDS) Study.

Methods

Study population

Methodological details of REGARDS can be found elsewhere28. In summary, REGARDS is 

a population-based study of adults aged ≥45 years28. The cohort includes 30,239 individuals 

enrolled between January 2003 and October 2007, with follow-up every six months. The 

cohort is 55% female, 41% black, and 56% from Stroke Belt region.

This study uses a case-cohort design. The subcohort(n=2,666) was selected from the entire 

cohort of REGARDS participants having at least one follow-up(N=29,653) with a fixed 

sampling probability of 8.997% in each stratum jointly classified by age(<55, 55–64, 65–74, 

75–84, and ≥85 years), sex, race(black and white), and stroke region residency(non-Stroke 

Belt, Stroke Belt, and Stroke Buckle)29. A flow chart of sample exclusion process is listed in 

Figure 1.

REGARDS was approved by the Institutional Review Boards of each participating 

institution, and all participants provided written informed consent. Because of the sensitive 

nature of data collected for this study, requests to access the dataset from qualified 

researchers trained in human subject confidentiality protocols may be send to the 

REGARDS administrative staff at regardsadmin@uab.edu.

Measures

Primary Exposure—Urine samples were obtained during a home visit at baseline. All 

urine samples for this study were analyzed by the University of Missouri-Columbia 

Research Reactor Center(MURR). Specific laboratory methods are described in more detail 

elsewhere30. In brief, total urinary arsenic was measured using inductively coupled plasma-

mass spectrometry(ICP-MS). Urinary creatinine was measured using standard methods31. 

We report urinary arsenic and arsenic species as a normalized ratio of arsenic/creatinine to 

control for variation in urine flow rate.

Because of budget constraints, arsenic species and metabolites were measured in a random 

subset of 200 urine samples from the case-cohort sample(n=3,097), with 50 samples from 

each of the four gender-race stratum. Species were separated via liquid chromatography and 

measured using ICP-MS. Arsenic species have been shown to have long-term stability in 

urine excretions among those exposed32.
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Outcome—The outcome was incident ischemic stroke. Methods of determination of 

incident stroke have previously been reported33. Suspected cases of incident stroke were 

obtained every six months via telephone and verified using medical record review. The final 

adjudication was based on the WHO definition of stroke and/or imaging results consistent 

with stroke. All ischemic stroke cases adjudicated by September 30, 2012, were included.

Covariates—Baseline demographic and health behavior measures were collected via 

telephone interview. Covariates considered were age, sex, race(black or white), region(non-

Stroke Belt, Stroke Belt, and Stroke Buckle residence), education(<high school, high school 

graduate, some college, or ≥college graduate), smoking status(never, past or current smoker), 

alcohol consumption(never, past or current user), physical activity(none, 1–3/week, or ≥4/

week), body mass index(BMI), systolic and diastolic blood pressure(BP), total cholesterol, 

low-density lipoprotein-cholesterol, and glucose. History of type 2 diabetes, myocardial 

infarction, hypertension, and albuminuria were defined using self-report and measured data. 

Myocardial infarction was defined by self-report or centrally-read ECG evidence of MI. 

Hypertension was defined as a systolic BP≥140 mmHg, a diastolic BP ≥90 mmHg, or the 

self-reported hypertension medication use. Albuminuria was defined as a urinary albumin 

level of ≥30 mg/g creatinine. BMI was based on measured height and weight and 

categorized into underweight/normal(<25 kg/m2), overweight(25–<30 kg/m2), and 

obese(≥30 kg/m2).

Because evidence suggests that combined exposure of arsenic and cadmium, as well as 

arsenic and mercury, induces greater toxicity than either alone34, cadmium and mercury 

were included as covariates. Cadmium was measured in urine using ICP-MS. Mercury was 

measured in serum using a direct mercury analyzer(Nippon MA-3000).

Statistical Analysis

Distributions of baseline characteristics in the random subcohort were presented based on 

quintiles of total urinary arsenic(creatinine adjusted). The differences in baseline 

characteristics across urinary arsenic subgroups were compared using analysis of variance, 

Kruskal-Wallis test, or chi-squared test, as appropriate.

Participants contributed to person-time from baseline to the time when a case was identified, 

a participant was censored, or the end of the study(September 30, 2012). To determine the 

association[hazard ratios(HRs) and 95% confidence intervals(CIs)] between urinary arsenic 

levels and incident ischemic stroke, a weighted Cox model was used. The variance of the 

estimator was estimated using the robust variance35. We sequentially adjusted for potential 

confounders in three models.

We assessed effect modification by race, age, sex, and geographic variables(e.g., urban vs. 

rural, and Stroke Belt vs. non-Stroke Belt residence) with likelihood ratio tests.

We examined the associations of urinary iAs(iAsIII+iAsV), iAs+MMA, iAs+MMA+DMA, 

MMA, and DMA with incident ischemic stroke in the random subsample. The second-stage 

sampling weight was also considered.
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All analyses were conducted using SAS 9.4(SAS Institute, Inc., Cary, NC, USA). P≤0.05 

was considered statistically significant.

Results

There were 63 and 713 incident ischemic stroke cases in the subcohort(n=2,666) and the 

entire case-cohort sample(n=3,316), respectively. Among the total 3,316 participants, 

urinary arsenic data were available in 3,166 individuals. We further excluded participants 

with missing data on urine creatinine(n=6) and those who had BMI<18.5 kg/m2(n=63). 

Therefore, 3,097 participants remained in the main analysis(subcohort: n=2,486; incident 

cases: n=671).

Baseline characteristics of the subcohort across quintiles of creatinine-adjusted total urinary 

arsenic exposure are represented in Table 1. Those with total urinary arsenic levels in the 

highest quintile tended to be older, female, past or never smokers, current alcohol users, 

college graduates, overweight or obese, and Stroke Buckle residents compared with those in 

the lowest quintile. Total urinary arsenic exhibited an inverse correlation with urinary 

cadmium, as well as a positive trend with serum mercury. Baseline characteristics of 

ischemic stroke cases across quintiles of creatinine-adjusted total urinary arsenic exposure 

are represented in Supplement Table 1. In summary, ischemic stroke cases with total urinary 

arsenic in the highest quintile tended to be older, current smokers, college graduates, have 

lower diastolic BP, lower LDL-C, and higher serum mercury.

A total of 671 participants developed ischemic stroke over an average follow-up of 6.7 years. 

Table 2 shows the multivariable-adjusted HR of ischemic stroke by quintiles of creatinine-

corrected total urinary arsenic levels. After adjustment for confounders, there were no 

associations between total urinary arsenic levels and ischemic stroke incidence. Neither a 

linear nor non-linear association was detected by a restricted cubic spline analysis. Effect 

modification by race, sex, age, or geographic region was not observed(data not shown).

The multivariable-adjusted HRs of ischemic stroke by iAs and metabolite species are 

presented in Table 3. Among the 200 participants in random subsample, 1 sample was 

contaminated. Therefore, there were 199 participants in the species analysis(random subset: 

n=199; incident cases: n=41). There was a significant linear association of iAs(iAsIII+iAsV)

+MMA on a log-scale with stroke risk(HR=1.69; 95%CI: 1.06–2.72), but the statistical 

significance of this association was attenuated after further adjustment. The levels of MMA 

ranged from 0.01 to 0.77 μg/g creatinine, and for each unit higher level of urinary MMA on 

a log-scale, after adjustment for potential confounders, ischemic stroke risk increased about 

2-fold(HR=1.98; 95%CI: 1.12–3.50).

Discussion

In this population-based case-cohort study, we found that MMA, a metabolite of iAs, but not 

total arsenic, was positively associated with incident ischemic stroke. While the findings are 

generally consistent with results from ecological studies, this study provides important 

additional information on urinary arsenic species and stroke incidence from an area with 

low-to-moderate arsenic exposure.
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To date, few studies have investigated urinary arsenic(total and/or speciated) exposure and 

ischemic stroke incidence, although the possible adverse effects of chronic exposure to high 

arsenic levels in drinking water in relation to stroke have been documented many times in 

ecological studies13, 19. Ecological data can help generate hypotheses, but it is prone to bias, 

so must be interpreted with caution. Our study found no association between total arsenic 

and incident stroke. These findings are in agreement with a study between total urinary 

arsenic exposure and stroke mortality in a sample of 11,746 Bangladeshi men and women24 

that found no association. A prospective study in 3,575 American Indians showed similar 

findings20.

Our study is the first we are aware of to show a significant relation between exposure to 

inorganic arsenic and ischemic stroke incidence. We are aware of only one other study 

investigating iAs metabolites and stroke risk. A case-cohort study of the Health Effects of 

Arsenic Longitudinal Study26 cohort found no association between MMA% methylation and 

stroke risk, although associations were evident with cardiovascular disease. The investigators 

note, however, that they were unable to distinguish between stroke subtypes in this analysis, 

and so the inclusion of hemorrhagic stroke may have undermined any possible association. 

The metabolism of iAs varies across individuals and is considered reflective of an 

individual’s ability to methylate to MMA and then DMA36. This is particularly important, 

since MMAIII is considered more toxic than either iAs or DMA37. After ingestion, typical 

iAs methylation results in 10–15% and 60–75% concentrations of MMA and DMA, 

respectively11. Those with a higher proportion of MMA(and thus a lower proportions of iAs 

and DMA) are considered “poor methylators”(>15% MMA), and are at a higher risk for 

atherosclerosis, peripheral vascular disease, heart disease, hypertension and various types of 

cancer38. The possibility cannot be excluded that the observed association between MMA 

and ischemic stroke may only be a proxy of individual methylation poor capacity to all 

external substances.

The true mechanism of iAs metabolism is still little understood. One proposed model 

suggests that iAsIII is methylated to MMAV and DMAV, forming a transient MMAIII species 

in the process10. The urinary MMA level reported in this study is the sum of MMAIII and 

MMAV. For this reason, the MMA metabolite measured in this study was most likely the 

pentavalent form and any MMAIII that may have been present likely would have been 

methylated to the pentavalent form after the addition of hydrogen peroxide during the 

laboratory analysis stage39.

Finally, it is important to note that the methylation of iAs is not the only possible source of 

MMA. MMA can also be found in monosodium methyl arsenate(MSMA), a commonly used 

organo-arsenate-based herbicide. MSMA seems to persist in foliage and soil for long periods 

of time and may pose a threat to those exposed to these treated areas40. MMA can be 

measured in rice and foods derived from rice long after the herbicidal treatments have 

ceased41. In sum, we must consider two possible sources of exposure to MMA–the 

methylation of iAs to MMA and exposure to MSMA. The observed association between 

MMA, but not iAs, and incident ischemic stroke suggests the latter requires serious 

consideration. A deeper understanding of MSMA exposure in this cohort is required.
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Inflammation may mediate the association of MMA with ischemic stroke. Human models 

indicate an increase in the expression of proinflammatory cytokines in circulating 

lymphocytes after arsenic exposure42. For example, individuals with prolonged exposure to 

arsenic exhibited an upregulation of a variety of growth factors and cytokines related to 

inflammation in their circulating lymphocytes42. Inflammation plays a significant role in 

atherosclerotic plaque formation and vascular damage43. Taken together, arsenic-induced 

inflammation is a plausible mechanism of atherosclerosis and, by extension, ischemic stroke.

Limitations of this study require consideration. The small sample size of the subcohort in 

which arsenic species were measured limited our capability to detect heterogeneity, so 

further study is needed. Another limitation was that the exposure was only measured at 

baseline, although several studies have demonstrated the temporal stability of arsenic in 

private and public drinking water sources, as well as levels in urine32, 44. Furthermore, 

arsenic levels in drinking water from individual households were unavailable, limiting our 

ability to speculate on the source of iAs exposure.

Our study has a number of strengths. The greatest strength is the measurement of arsenic 

species, a rarity in stroke research involving arsenic. Another strength is the use of a large, 

national sample that over-represents blacks and southerners. Also, because REGARDS was 

specifically designed to explore risk factors for stroke, its characterization of vascular risk 

factors is excellent. Furthermore, urinary arsenic measurement that incorporates all sources 

of exposure, including both water, food, and environment, is a great objective measure of 

arsenic exposure45. The case-cohort study design also represents a strength, as it is both 

efficient and flexible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart featuring the case-cohort sampling scheme of this study.
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