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Abstract

Background & Aims—Chronic, excessive alcohol consumption leads to alcoholic liver disease 

(ALD) characterized by steatosis, inflammation, and eventually cirrhosis. The hepatocyte specific 

microRNA 122 (MIR122) regulates hepatocyte differentiation and metabolism. We investigated 

whether an alcohol-induced decrease in level of MIR122 contributes to development of ALD.

Methods—We obtained liver samples from 12 patients with ALD and cirrhosis and 9 healthy 

individuals (controls) and analyzed them by histology and immunohistochemistry. C57Bl/6 mice 

were placed on a Lieber-DeCarli liquid diet, in which they were fed ethanol for 8 weeks, as a 

model of ALD, or a control diet. These mice were also given injections of CCl4, to increase liver 

fibrosis, for 8 weeks. On day 28, mice with ethanol-induced liver disease and advanced fibrosis, 

and controls, were given injections of recombinant adeno-associated virus 8 vector that expressed 

the primary miR-122 transcript (pri-MIR122, to overexpress MIR122 in hepatocytes) or vector 

(control). Two weeks before ethanol feeding, some mice were given injections of a vector that 

expressed an anti-MIR122, to knock down its expression. Serum and liver tissues were collected; 

hepatocytes and liver mononuclear cells were analyzed by histology, immunoblots, and confocal 

microscopy. We performed in silico analyses to identify targets of MIR122 and chromatin 

immunoprecipitation quantitative PCR analyses in Huh-7 cells.
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Results—Levels of MIR122 were decreased in liver samples from patients with ALD and mice 

on the Lieber-DeCarli diet, compared with controls. Transgenic expression of MIR122 in 

hepatocytes of mice with ethanol-induced liver disease and advanced fibrosis significantly reduced 

serum levels of alanine aminotransferase (ALT) and liver steatosis and fibrosis, compared to mice 

given injections of the control vector. Ethanol feeding reduced expression of pri-MIR122 by 

increasing expression of the spliced form of the transcription factor grainyhead like transcription 

factor 2 (GRHL2) in livers tissues from mice. Levels of GRHL2 were also increased in liver 

tissues from patients with ALD, compared with controls; increases correlated with decreases in 

levels of MIR122 in human liver. Mice given injections of the anti-MIR122 before ethanol feeding 

had increased steatosis, inflammation, and serum levels of ALT compared to mice given a control 

vector. Levels of hypoxia inducible factor 1 alpha (HIF1A) mRNA, a target of MIR122, were 

increased in liver tissues from patients and mice with ALD, compared with controls. Mice with 

hepatocyte-specific disruption of Hif1a developed less-severe liver injury following administration 

of ethanol, injection of anti-MIR122, or both.

Conclusions—Levels of MIR122 decrease in livers from patients with ALD and mice with 

ethanol-induced liver disease, compared with controls. Transcription of MIR122 is inhibited by 

GRHL2, which is increased in livers of mice and patients with ALD. Expression of an anti-

MIR122 worsened the severity of liver damage following ethanol feeding in mice. MIR122 

appears to protect the liver from ethanol-induced damage by reducing levels of HIF1A. These 

processes might be manipulated to reduce the severity of ALD in patients.
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Introduction

Chronic alcohol consumption accounts for nearly 50% of liver-related deaths in the United 

States, however, no effective therapies exist for patients. While early steatosis in alcoholic 

liver disease (ALD) is reversible, chronic, excessive alcohol consumption leads to 

steatohepatitis and fibrosis. Acute alcoholic hepatitis has a 30–50% 30-day mortality and the 

standard of care with steroids has limited benefits and significant side effects. Alcoholic 

cirrhosis (Liennec cirrhosis) is the single greatest cause of hepatocellular cancer (HCC)1,2. 

Thus, identification of novel therapeutic targets is a major clinical need in ALD2.

ALD is characterized by liver steatosis, inflammation, and progressive fibrosis2–4. Alcohol-

triggered hepatocyte steatosis and cell death in combination with bacterial 

lipopolysaccharide (LPS) due to alcohol-induced “leaky gut” results in the activation and 

infiltration of immune cells. The subsequent release of inflammatory cytokines causes 

further hepatocyte cell death and results in perpetuation of liver injury5.

Hepatic microRNAs (miRNAs) have crucial roles in maintaining liver homeostasis, 

mitochondrial function, and regulating oncogenesis6,7. MIR122 constitutes 70% of all 

miRNAs in mature hepatocytes, or approximately 130,000 copies per cell, with negligible 

expression in other cells and tissues8. Mice with germline and liver-specific deletion of 

MIR122 display steatosis at birth, spontaneous progression to fibrosis, and HCC9. In 
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humans, liver MIR122 expression inversely correlates with HCC survival and metastasis, 

while MIR122 inhibition reduces hepatitis C virus (HCV) viremia, serum triglycerides, and 

cholesterol10–12. These observations suggest that MIR122 has diverse and pleiotropic effects 

on hepatocytes and liver diseases and prompted us to explore the role of MIR122 in ALD.

Encoded on chromosome 18, MIR122 is transcribed as a ~4.7 kb noncoding pri-miRNA 

transcript by RNA polymerase II which is then rapidly processed into a 66-nucleotide (nt) 

pre-MIR122 by Drosha. Subsequently, the pre-miRNA is shuttled into the cytoplasm where 

it is processed into its mature 23-nt form. While factors that maintain the high level of 

expression of MIR122 in the healthy liver have been well studied, little is known about the 

regulation of MIR122 expression in disease states.

In this study, we explored the hypothesis that alcohol modulates MIR122 expression in the 

liver and contributes to pathogenic features of ALD. We demonstrate a significant reduction 

of MIR122 expression in hepatocytes and show restoration of MIR122 levels had therapeutic 

benefits in ALD. Further, we discovered that the decrease in MIR122 was due to inhibition 

of MIR122 transcription by chronic alcohol-induced increases in the grainyhead-like 2 

transcriptional regulator. We found that alcohol-induced MIR122 reduction is hepatocyte-

specific and it mediates steatosis and inflammation through its primary target, hypoxia-

inducible factor-1 alpha (HIF1α).

Materials and Methods

Human Liver Samples

Human liver samples were provided by the NIH-funded Liver Tissue Procurement and Cell 

Distribution System (N01-DK-7-0004/HHSN26700700004C) Cell Distribution System 

(N01-DK-7-0004/HHSN26700700004C). Demographics can be found in Supplementary 

Table 1. Healthy liver samples were provided as age-matched controls.

Animal use

All animals received care in compliance with protocols approved by the Institutional Animal 

Use and Care Committee of the University of Massachusetts Medical School. As previously 

described13 mice were acclimated to a Lieber-DeCarli liquid diet of 5% ethanol (vol/vol) 

over a period of 1 week, then maintained on the 5% diet for 4 weeks. Wild-type (WT) mice 

(C57/BL6), Alb-Cre, and HIF1flox/flox mice were purchased from Jackson Laboratories (Bar 

Harbor, ME)14. Mice were treated by tail vein injection with AAV vectors at 6×1011 genome 

copies/mouse or approximately 3×1013 genome copies/kg15.

Murine model of advanced alcoholic fibrosis

Model of advanced fibrosis was adapted from previously published work16. Mice were 

gradually started on a Lieber-DeCarli liquid diet with 2% ethanol (vol/vol) for a period of 2 

week, which was increased to 4% and then 5% each two weeks. During this time 0.5ul/kg 

carbon tetrachloride (CCl4) or corn oil was given every 3rd day for 8 weeks. On day 28, 

CCl4 injections were held for 1 week and 6×1011 viral particles of AAV8 containing either 

pri-MIR122 or Scrambled vector were administered intravenously. CCl4 injections resumed 
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on day 35 and continued every 3 days until day 56. Mice were sacrificed 48 hours following 

the last dose of CCl4.

Statistical Analysis

Statistical significance was determined using two-tailed t-test; two-way ANOVA with 

Dunnett’s multiple comparison post-test were used to compare the means of multiple 

groups. Outliers were determined using the ROUT method and a q of 1%. Data are shown as 

mean ± SEM and were considered statistically significant at *P < 0.05, **P<0.005, and 

***P<0.0005. GraphPad Prism 7.02 (GraphPad Software Inc.) was used for analysis.

Additional Methods found in Supplementary Materials

Results

Chronic alcohol decreases hepatic MIR122 expression in humans and mice

Because the role of MIR122 in ALD is unknown, first, we hypothesized that alcohol may 

regulate MIR122 levels in hepatocytes. Investigation of human diseased livers revealed that 

MIR122 expression was significantly reduced (by 2-fold) in patients with alcoholic cirrhosis 

when compared to healthy controls (Fig. 1A, Supplementary Table 1), raising the question of 

whether chronic alcohol could promote liver injury by inhibiting MIR122. To further dissect 

the role of MIR122, we used the Lieber-DeCarli chronic alcohol diet in mice that results in 

early features of ALD including liver injury, steatosis and inflammation17. We found that 

MIR122 expression was significantly reduced in the livers of alcohol-fed mice compared to 

pair-fed controls (Fig. 1B) and the extent of MIR122 reduction was equivalent to that seen in 

the livers of patients with alcoholic cirrhosis.

To determine the cell specificity of the MIR122 reduction, we isolated primary hepatocytes 

and liver mononuclear cells (LMNCs) from mice. MIR122 was selectively decreased in 

hepatocytes and not in LMNCs from alcohol-fed mice (Fig. 1B) compared to pair-fed 

controls. This supported our hypothesis that alcohol-induced changes in MIR122 in the total 

liver are hepatocyte-specific.

Restoration of MIR122 in hepatocytes rescues mice from alcohol-induced liver injury in 
vivo

Given the essential role of MIR122 in hepatocyte homeostasis, we hypothesized that if the 

reduction of MIR122 by alcohol is a causal factor in ALD, then restoration of mature 

MIR122 in the livers of alcohol-fed mice will reverse disease severity. To assess the 

potential of MIR122 restoration to reverse alcohol-injury, we developed a recombinant 

adeno-associated virus 8 (rAAV8) vector expressing pri-MIR122 (MIR122-OX) and a 

scrambled control vector (scr). rAAV8 vectors have been shown to have tropism for 

hepatocytes and can safely maintain sustained transgene expression for years in the 

liver18,19. In a preliminary experiment, we established that wild-type, alcohol-fed mice 

developed significant liver injury by week 2 of the 5-week alcohol feeding (Supplementary 

Fig. 1A). We also determined that our rAAV8 MIR122-OX construct requires 3 weeks for 

full expression in the liver (Supplementary Fig. 1B). Therefore, we treated pair-fed and 
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alcohol-fed mice with 6×1011 viral particles containing Scr or MIR122-OX construct via 

tail-vein injection on week 2 of a 5-week alcohol feeding (Supplementary Fig. 1C).

Treatment with the rAAV8-MIR122-OX effectively increased mature MIR122 levels in the 

livers of pair-fed and alcohol-treated mice (Fig. 1C). Overexpression of MIR122 in 

hepatocytes attenuated alcohol-induced increases in serum ALT (Fig. 1D), and steatosis 

indicated by histology and liver triglyceride levels (Fig. 1E). Furthermore, MIR122-OX 

treatment reduced key inflammatory cytokines, MCP-1 and IL-1β, (Fig. 1D) in alcohol-fed 

mice.

Therapeutic restoration of MIR122 reduces liver injury and fibrosis in an alcohol+CCl4 
model of advanced fibrosis

The Lieber DeCarli alcohol mouse model results in a modest increase in early markers of 

fibrosis and represents early alcoholic liver disease. Therefore, to examine the therapeutic 

potential of MIR122 models more akin to clinical liver disease we sought a more aggressive 

model of ALD, by combining alcohol and carbon tetrachloride (CCl4) to induce 

fibrosis20,21,22. Briefly, mice were fed with increasing alcohol concentrations of LDC diet 

over 8 weeks and either CCl4 or Corn Oil i.p. every 72 hours. On day 28, mice were treated 

with either pri-MIR122 or scrambled vector (Supplementary Fig. 1E). AAV8 vectors have 

previously been shown to be equally effective in transducing both healthy and cirrhotic 

livers23. Indeed, we noted equivalent activity of co-expressed Gaussia Luciferase (GLuc) in 

the serum CCl4 treated mice 2 weeks following injection in both Oil and CCl4-treated mice 

(Supplementary Fig. 1F).

Following 8 weeks of alcohol and CCl4, scrambled vector-treated mice demonstrated a 

robust increase in liver injury as measured by serum ALT (Fig. 1F–0 hours) and fibrosis 

(Fig. 1G–H) with respect to PF+Oil treated controls. Importantly, MIR122-OX-treated mice 

exhibited reduced ALT at 24 hours and 48 hours following final CCl4 dose compared to scr-

treated controls (Fig. 1F). Furthermore, MIR122-OX-treated mice revealed significantly 

reduced fibrosis as measured by Sirius red staining (Fig. 1G), and by significantly lower 

expression of Acta2 and Col1a1 (Fig. 1H), encoding α-SMA and Type-I collagen, in Et

+CCl4 mice when compared to scrambled controls.

We noted that GLuc activity, indicating transgene expression, decreased following repeated 

administration of CCl4 in both scr and MIR122-treated mice (Supplementary Fig. 1F). This 

loss of GLuc expression was also associated with a reduction of MIR122 in both MIR122-

OX and Scr-treated fibrotic animals while PF-oil treated MIR122-OX mice maintained a 

robust level of MIR122 overexpression (Supplementary Fig. 1G). Together, this indicates 

that MIR122 over-expression was effective in reducing fibrosis and liver injury, while the 

reduction of the transgene occurred due to the repeated CCl4 injections23.

Alcohol inhibits MIR122 transcription via alternate splicing of grainyhead-like 2 
transcription factor

The question remained as to the mechanism by which MIR122 expression is reduced by 

alcohol. Surprisingly, both PF and alcohol-fed WT mice treated with rAAV8-MIR122-OX 

achieved similar expression levels of mature MIR122 (Fig. 1C). Given that our U6-promoter 
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MIR122-OX construct required processing by canonical miRNA maturation mechanisms, 

we hypothesized that chronic ethanol did not inhibit the maturation or stabilization of 

MIR122 but rather its transcription.

miRNAs are encoded by their own genes and regulated transcriptionally24. Using TaqMan 

probes specific for the endogenous MIR122 primary transcript (pri-MIR122), we found that 

alcohol reduces pri-MIR122 expression in livers of human alcoholic cirrhosis patients 

approximately 2-fold (Fig. 2A). Livers of alcohol-fed mice and, more specifically, isolated 

hepatocytes also showed significant reductions in pri-MIR122 expression (Fig. 2B) similar 

to the reduction of mature MIR122 (Fig. 1A, B) suggesting transcriptional regulation. Of 

note, we found reduced pri-MIR122 expression in hepatocytes of alcohol-fed mice treated 

with MIR122-OX (Supplementary Fig. 1D) indicating that the effect of chronic alcohol on 

MIR122 transcription is independent of liver injury, or mature MIR122 levels.

These observations turned our attention to grainyhead like-2 (GRHL2), a homolog of the 

Drosophila grainyhead transcriptional regulator, which was recently suggested as a potential 

repressor of MIR122 expression in progenitor cells during hepatic differentiation 25. 

However, the role of grainyhead proteins in hepatic pathophysiology has yet to be described.

Using in silico analysis, we identified a conserved grainyhead dimer binding site 

approximately 300 bp upstream of the MIR122 transcription start site (TSS), 

(Supplementary Fig. 2A). First, we performed chromatin immunoprecipitation-qPCR in 

Huh-7 cells which confirmed the putative GRHL binding site in the MIR122 promoter (Fig. 

2C). Total liver extracts from alcohol-fed mice showed a modest, but not statistically 

significant increase in GRHL2 mRNA expression (Fig. 2D). However, we found robust 

increases in GRHL2 expression in the livers of alcoholic cirrhosis patients (Fig. 2E) when 

compared to healthy controls. Furthermore, this 18-fold increase in GRHL2 demonstrated a 

significant inverse correlation with MIR122 expression (Fig. 2F) in human alcoholic 

cirrhotic livers.

In normal, healthy human livers and mouse livers immunohistochemistry evaluation revealed 

that GRHL2 was primarily localized to the biliary epithelium, a finding consistent with 

previous reports (Fig. 3A–C) 26,27. In alcohol-fed mice and in livers of alcoholic patients, we 

detected increased GRHL2 staining that appeared to localize both to the cytoplasm and 

nucleus of hepatocytes (Fig. 3A–C). While western blot analysis from total livers revealed 

only a moderate increase in the expression of the 70 kDa GRHL2 (GRHL2-FL) (Fig. 3D, E), 

the levels of the 49 kDa GRHL2 splice variant (GRHL2-S), previously described as a 

“dominant negative” variant, were significantly increased in both human and murine livers 

(Fig. 3D, E) 28. To dissect the functional relevance of this finding, we co-transfected a 

luciferase reporter containing the human MIR122 promoter with either the GRHL2-FL or 

the GRHL2-S isoforms into Huh-7 cells. Our results showed that both the full-length (FL) 

and spliced variant forms of GRHL2 potently inhibited MIR122 expression (Fig. 3F). Taken 

together, our data suggest that alcohol regulates MIR122 expression by selectively 

increasing the spliced form of GRHL2 in hepatocytes.

Satishchandran et al. Page 6

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MIR122 inhibition in hepatocytes recapitulates and augments the hepatocellular damage 
and steatosis induced by chronic alcohol

Given the alcohol-related reduction of MIR122 in murine hepatocytes and the ameliorating 

effect of MIR122 restoration on the pathogenic features of ALD, we hypothesized that direct 

inhibition of MIR122 in vivo will mimic features of alcoholic-induced liver pathology. To 

inhibit MIR122 in vivo, we developed a rAAV8 vector system expressing an anti-MIR122 

Tough Decoy (TuD). We have previously reported that AAV-delivered anti-MIR122 TuDs 

are able to maintain sustained inhibition of MIR122 in murine livers15. Wild type (WT) mice 

were treated with rAAV8-scrambled (Scr) or rAAV8-anti-MIR122-TuD (MIR122 TuD) 2-

weeks prior to initiation of the chronic alcohol feeding to permit full vector expression 

(Supplementary Fig. 3A).

In WT mice, rAAV8 MIR122 TuD achieved a robust and sustained knockdown of MIR122 

in both pair-fed and alcohol-fed mice (Fig. 4A). Interestingly, in addition to the rAAV8 

MIR122 TuD-induced reduction, liver MIR122 levels were further decreased by ethanol 

feeding compared to pair-fed, TuD-treated mice (Fig. 4A) suggesting that alcohol may have 

a direct effect on MIR122. TuD-mediated inhibition of MIR122 alone resulted in a 

significant increase in serum ALT (Fig. 4B) and hepatic steatosis (Fig. 4C) that was 

equivalent to that induced by the chronic alcohol diet. Remarkably, alcohol feeding in the 

MIR122-TuD treated mice resulted in even higher serum ALT (Fig. 4B) without a 

combinatorial increase in hepatic lipid accumulation (Fig. 4C). Together, these data suggest 

that MIR122 inhibition drives triglyceride accumulation predisposing hepatocytes to injury 

upon exposure to alcohol.

MIR122 inversely correlates with HIF1α in ALD

To assess potential mechanisms by which decreased levels of MIR122 could mediate liver 

injury and steatosis, we searched for MIR122 targets that may contribute to the development 

of ALD. Our lab has previously identified that HIF1α as a target of MIR122 in vitro 29. 

While the role of HIF1α activation in ALD has been studied, a direct relationship between 

MIR122 and HIF1α in vivo has yet to be explored14. Our present analysis of the livers of 

alcoholic cirrhosis patients and hepatocytes of alcohol-fed mice revealed an increase of 

HIF1α mRNA that showed a significant inverse correlation with MIR122 expression (Fig. 

5A, B respectively). This correlation suggested that HIF1α regulation by MIR122 in 

hepatocytes may be a key element in the pathogenesis of ALD.

MIR122 regulates HIF1α in vivo

Alcohol and knockdown of MIR122 in the livers of WT mice increased HIF1α mRNA 

individually and additively (Fig. 5C). To confirm that the increase in HIF1α mRNA 

represents increased DNA binding capacity, we performed both EMSAs and antibody-

mediated transcription factor binding assays using a HIF1α consensus binding 

oligonucleotides on hepatocyte nuclear extracts. Our results showed that TuD-mediated 

inhibition of MIR122 resulted in increased HIF1α DNA binding at baseline, equivalent to 

alcohol-feeding alone (Fig. 5C). Furthermore, the combination of alcohol and MIR122-TuD-

inhibition yielded an additive increase in HIF1α mRNA and DNA-binding activity 

suggesting that alcohol regulates HIF1α via MIR122 (Fig. 5C). Indeed, we found that the 
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increase in HIF1α activity correlated with an increase in PPARγ mRNA expression (Fig. 

5C–D), a direct target of HIF1α activation and a key factor in driving steatosis30–33.

In vivo restoration of MIR122 in hepatocytes prevented the alcohol-induced increase in 

HIF1α mRNA, DNA binding activity, and PPARγ mRNA expression, a HIF1α target gene 

involved in lipogenesis (Fig. 5E–F)34. Overall, these data demonstrate that restoration of 

MIR122 in hepatocytes may suppress the pathogenic features of ALD via inhibition of 

HIF1α in vivo and indicates that hepatocyte-specific MIR122 delivery could be a 

therapeutic consideration in ALD.

Hepatocyte-specific knockout of HIF1α protects from liver injury, steatosis, inflammation, 
and fibrosis induced by alcohol or MIR122 reduction

Based on the discovery that MIR122 is decreased by alcohol and that MIR122 inhibits 

HIF1α in hepatocytes, we postulated that if MIR122 regulates HIF1α in vivo, then mice 

with a hepatocyte-specific knockout of HIF1α (HIF1αhep−/−) will be protected from the 

MIR122-TuD and/or alcohol-induced liver injury (Supplementary Fig. 3A, B).

In support of this hypothesis, we found that in contrast to WT mice, HIF1αhep−/− mice were 

protected from liver injury (Fig. 6A) and steatosis (Fig. 6B, C) whether induced by alcohol 

or MIR122 inhibition alone, or in combination. Furthermore, HIF1αhep−/− also displayed no 

increase in PPARγ (Fig. 6D) associated with the knockdown of MIR122 and alcohol in WT 

mice. These data suggested first, that the loss of MIR122 in hepatocytes directly triggers an 

increase of HIF1α, resulting in steatosis and hepatocyte injury in the liver. Second, alcohol 

and exogenous MIR122 inhibition additively decrease MIR122, inducing HIF1α, and 

subsequently, PPARγ.

Analysis of H&E sections and qPCR evaluation of immune cell markers revealed increased 

immune cell infiltration, CD68 (Fig. 6B, E) in anti-MIR122 TuD-treated, or alcohol-fed 

mice with an increase in mice treated with both TuD and alcohol. We also found increased 

levels of IL-1β and MCP-1 protein (Fig. 6E), in the livers of alcohol and MIR122 TuD-

treated WT mice. In contrast, HIF1αhep−/− mice treated with either MIR122 inhibition or 

chronic alcohol showed a reduction in inflammatory cell infiltration and activation compared 

to WT mice (Fig. 6E), suggesting that, in addition to steatosis, liver inflammation induced 

by MIR122 decrease is also attenuated by hepatocyte-specific HIF1α deficiency.

The development of fibrosis indicates progression of ALD as a result of sustained 

hepatocyte injury, inflammation, and stellate cell activation. As the 5-week LDC alcohol 

feeding model represents early features of ALD, prominent fibrosis was not seen by Sirius 

Red staining (Fig. 7A, B) however, there were significant increases in pro-collagen-1α and 

Acta2 mRNA levels (Fig. 7C) in alcohol-fed WT mice. The combination MIR122 TuD and 

alcohol feeding significantly increased liver expression of fibrosis markers compared to 

alcohol alone or pair-fed WT controls (Fig. 7A–C). Importantly, the increase in fibrosis in 

the MIR122 TuD+Et group was abrogated in the HIF1αhep−/− mice (Fig. 7A–C). Together, 

these data strongly suggest that the increased pro-inflammatory and pro-fibrotic state are 

secondary to HIF1α-mediated hepatocyte injury due to the reduction of MIR122.
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As noted in the MIR122-OX study, the inhibition of MIR122 expression due to alcohol was 

independent of mature MIR122 levels. We also find reduced pri-MIR122 expression in the 

hepatocytes of alcohol-fed mice treated with either MIR122-TuD, as well as in HIF1αhep−/− 

(Supplementary Fig. 3C) further corroborating our hypothesis that the inhibition of MIR122 

due to alcohol is independent of liver injury.

Discussion

The pathomechanism of ALD involves several key factors including hepatic fat deposition 

and activation of inflammatory pathways which can all be regulated by microRNAs5,7,35,36. 

In this report, we show that chronic alcohol reduces MIR122 levels in human livers and 

murine hepatocytes and that this MIR122 reduction contributes to liver injury, steatosis, and 

inflammation in ALD. Our experiments in chronic alcohol reveal a novel mechanism of 

alcohol-induced inhibition of MIR122 via upregulation of GRHL2. We also discovered that 

in vivo inhibition of MIR122 with a rAAV8–delivered anti-MIR122 TuD induces steatosis 

and inflammation similar to alcohol in the liver and in combination with alcohol augments 

the features of ALD. We show for the first time that features of ALD induced by direct 

MIR122 inhibition can be prevented in hepatocyte-specific HIF1α deficient mice thereby 

mechanistically linking MIR122 reduction to increased HIF1α activation in ALD14. We 

show that therapeutic AAV8-mediated restoration of MIR122 reverses hepatic injury via 

inhibiting HIF1α after alcohol administration and thereby decreasing liver injury, steatosis, 

inflammation, and fibrosis (Supplementary Fig. 4). We further showed that MIR122 

restoration was also effective in reducing liver fibrosis in an aggressive model of liver 

fibrosis induced by a combination of chronic alcohol and CCL4.

While this is the first report to mechanistically describe the alcohol-induced reduction in 

MIR122 in human livers and mice, other studies found decreased liver MIR122 levels in 

patients and in murine models of nonalcoholic steatohepatitis (NASH), bile duct ligation, 

and hepatocellular cancer (HCC)1,29,37,38. In those studies, the loss of MIR122 was 

associated with increased steatosis, disease severity, as well as sensitivity to HCC 

development, metastasis, and mortality1,29,37,38. MIR122 has been found to regulate many 

pathways including those governing hepatic metabolism, cellular differentiation, and 

proliferation – all of which may contribute to ALD pathogenesis6,39,40. Our data indicates 

that the increase of HIF1α in hepatocytes, a direct MIR122 target, is a key mediator of ALD 

pathogenesis. Furthermore, we show that over-expression of MIR122 in murine hepatocytes 

can inhibit this pathway and reverse alcohol-induced steatosis and liver injury.

Our results show that the inhibition of MIR122 by alcohol or an rAAV-mediated MIR122 

inhibitor results in a baseline increase in HIF1α, steatosis, and hepatocyte injury. This 

observation is similar to the phenotype previously described in mice with in vivo 
overexpression of HIF1α in hepatocytes (HIF1dPA)14,41. Here we found that reduction of 

MIR122 in hepatocytes with chronic alcohol (MIR122-TuD+Et), resulted in a dramatic 

increase in hepatic injury, greater than alcohol or MIR122 reduction alone (Fig. 4B) without 

an increase in steatosis (Fig. 4C). This phenomenon may be due to the further reduction in 

MIR122 seen in TuD+Et mice when compared to TuD+PF mice. Previous studies showed 

that mice that had higher HIF1α expression in hepatocytes developed steatosis and liver 
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injury even in the absence of alcohol14,41. When given alcohol, HIF1dPA mice exhibited a 

combinatorial phenotype similar to that seen in MIR122-TuD+Et, having greater liver injury 

than either treatment alone, and further increasing HIF1α mRNA expression. Alternately, 

we cannot rule out that alcohol may increase HIF1α mRNA expression by pathway(s) other 

than MIR122.

Our studies with MIR122 restoration via a gene therapy approach using a rAAV8 MIR122-

OX indicate that targeting MIR122 balance in hepatocytes can ameliorate steatosis, liver 

injury, and fibrosis in chronic early and late-stage alcohol-induced liver pathology. These 

experiments provide a mechanistic role for reduced MIR122 in the pathogenesis of ALD and 

highlight the therapeutic potential of MIR122 restoration in hepatocytes.

Two previous studies have explored the therapeutic potential of MIR122 modulation with 

contradictory results9,42. Esau, et al. used an anti-MIR122 anti-sense-oligonucleotide (ASO) 

to knockdown MIR122 in the liver in a high fat diet (HFD) model42. They demonstrated that 

short-term inhibition of MIR122 in the liver reduced steatosis in HFD-fed mice. These 

findings, however, were in sharp contrast to work by Hsu, et al. who showed that liver-

specific-knockouts (122−/−LKO) had increased susceptibility to myc-induced HCC. Our work 

provides the first evidence to indicate that restoration of MIR122 in hepatocytes ameliorates 

the features of ALD, defining a novel treatment indication of normalizing liver MIR122 

levels in ALD9.

It has been shown that MIR122 is an essential host factor for HCV replication and represents 

a therapeutic target in HCV infection43–46. Therapeutic inhibition of MIR122 using 

Miravirsen or SPC3649, a Locked Nucleic Acid (LNA) anti-MIR122 oligo, was developed 

to treat HCV infection44,47,48. Recently completed phase 2a trials using Miravirsen to treat 

HCV infection yielded reduced HCV viral load at low therapeutic concentrations, with no 

adverse events45,47. Additionally, these groups and others have demonstrated a cardio-

protective role for MIR122 inhibition. AAV, ASO, and LNA inhibition of MIR122 have all 

demonstrated a decrease in serum cholesterol and triglycerides without 

hepatotoxicity15,45,47. Our findings, however, raise the concern that sustained inhibition of 

MIR122 could result in progressive liver injury as a potential complication of chronic 

MIR122 inhibitor therapies47,49.

Our present observation in livers with ALD appears to be contrary to previous in vitro 
findings where we have shown an increase in MIR122 during acute exposure to EtOH in 

hepatoma cell lines43,50. However, exposure in vitro represents an acute exposure model 

rather than chronic alcohol consumption. Further, most hepatoma cell lines exhibit a 

decreased baseline expression of MIR122 due to mutations and dysregulated transcription 

factor networks when compared to primary cells making findings with respect MIR122 

modulation difficult to generalize8,43.

While much attention has been placed on an understanding of the mature form of MIR122 in 

liver physiology and its characterization as an oncomir, few studies have explored the 

upstream mediators that regulate pri-MIR122 expression51. Recent publications have 

demonstrated the essential functions of GRHL2 in development and differentiation with 
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conflicting evidence on its role in EMT, and cancer progression25,52,26. A strong correlation 

of GRHL2 expression with various epithelial cells, undifferentiated progenitor cells, and 

chronic disease states such as atopic dermatitis and psoriasis were described53,54. Uniquely, 

hepatocytes are a rare subset of epithelial cells that do not normally express GRHL226. We 

too find GRHL2 expression in the biliary epithelium in normal liver while GRHL2 was 

expressed in hepatocytes in ALD both in human and mouse livers. Our results show that 

overexpression of the full-length (FL) GRHL2 variant inhibits MIR122 in humans and mice. 

We also discovered that the effect of alcohol is to specifically increase the alternatively 

spliced form of GRHL2, which inhibits MIR122 expression equivalent to the FL isoform. 

This spliced isoform is the result of alternative splicing in exon 1 which results in a protein 

that retains the conserved C-terminal DNA binding domain, but lacks the N-terminal 

transactivation domain, thereby inhibiting transcriptional activity (Supplementary Fig. 2B).

IHC and proteomic screens have detected GRHL2 in a subset of HCCs suggesting that gain 

of GRHL2 expression may play a role in promoting hepatic neoplasia. Tanaka et al. found 

an association between a genome copy number gain of GRHL2 in tumor tissues of patients 

with recurrent HCC52. However, it is important to note that these findings conveyed 

increases of the GRHL2 genomic locus on chromosome 8, a frequent occurrence in HCC, 

and that increased copy number of GRHL2 has been shown not to translate into increased 

protein or mRNA. Furthermore, their work demonstrated that siRNA knockdown of GRHL2 

inhibits HCC tumor growth was performed in Huh-6 cell lines which lack GRHL2 mRNA 

while harboring copy number gains of chromosome 826,52. Work done by Tanimizu and 

colleagues found a loss of GRHL2 expression in differentiating murine hepatocyte 

progenitors and that increasing GRHL2 was associated with a decrease in MIR122 

expression25. Little is known about the full-length or spliced isoforms of GRHL2, and their 

biological significance in hepatic pathology. Our data suggest that the alcohol-induced 

increase in GRHL2 in mature hepatocytes inhibits MIR122 and drives ALD pathogenesis. 

We speculate that increase in GRHL2 expression in hepatocytes in ALD may also represent 

an early alteration of hepatocyte de-differentiation that can promote preneoplastic changes in 

the alcoholic liver.

Of note, we found that alcohol combined with rAAV8-MIR122-TuD resulted in an additive 

effect, further reducing MIR122 levels and increasing liver injury when compared to 

MIR122-TuD or alcohol treatment alone. We suggest the combined effect is explained by 

the combination of alcohol-induced transcriptional inhibition by GRHL2 and MIR122-TuD-

mediated reduction in mature MIR122.

The treatment of ALD is a complex process involving reversal of parenchymal cell injury 

and suppression of inflammation55. After 40 years of clinical trials, steroids remain the 

controversial standard of care, with no new FDA-approved treatments available2,56–58. 

Based on our results, we speculate that GRHL2 may serve as a prognostic marker of 

hepatocyte differentiation or disease progression and that in vivo therapeutic correction of 

GRHL2 splicing or expression changes in ALD may be beneficial to correct MIR122 

dysregulation. However, until the role of GRHL2 in liver disease is explored further, we 

propose that downstream intervention with MIR122 restoration to treat ALD may constitute 

a safer, simpler, and more effective approach.
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While the use of viral vector gene therapy is gaining increasing acceptance, they have both 

advantages and disadvantages and their use is not without limitations with respect to the 

treatment of chronic liver disease. First, viral vectors deliver their transgenes as non-

integrating episomes which are lost following repeated regenerative cycles51,59. Immediately 

following AAV treatment, we noted equivalent serum GLuc activity in both CCl4 and oil-

treated controls. However, GLuc activity rapidly declined in subsequent weeks in only CCl4-

treated mice (Supplementary Fig. 1F) indicating transgene was expelled during replicative 

cycles. In accordance with this, we noted no difference in MIR122 RNA between MIR122-

OX and Scrambled in following 8 weeks of CCl4 compared scrambled treated controls, 

while PF-Oil mice maintained a robust level of MIR122 overexpression (Supplementary Fig. 

1G). Secondly, while AAVs have markedly reduced immunogenicity when compared to 

other viral delivery systems, neutralizing antibodies to the virus do develop following their 

use, requiring the use of other AAV serotypes dosing should repeated treatment be 

required60. Given our data that vector expression was well maintained following 3 weeks of 

chronic alcohol alone (Fig. 1C), the use of AAV-mediated delivery still remains a viable 

long-term therapeutic in ALD where cell turnover is less than that seen with repeated CCl4 

administration.

Recent clinical trials in the UK using rAAV8 vectors to treat Hemophilia B deficiency has 

demonstrated that a single peripheral-vein dose can safely and effectively achieve sustained 

transgene expression for 16 months after treatment18. Furthermore, previous work has also 

demonstrated that AAV8 are equally effective in transducing both healthy and cirrhotic livers 

when administered intravenously23. This single dose approach provides an added benefit in 

treating patients with ALD who are frequently lost to follow-up compared to other miRNA 

therapies that require monthly dosing59. Of note, in WT-PF mice treated with rAAV8 

MIR122-OX, the degree to which we restored MIR122 was greater than anticipated (Fig. 

1C); however, there was no hepatotoxicity as a result. Given that 130,000 copies of MIR122 

are in each hepatocyte, overexpression amounts to nearly 70,000 extra copies per cell, 

therefore, treatments that over-express MIR122 may have a large therapeutic window8.

MIR122 restoration has been considered as an HCC therapy, where its loss has been 

reported10,11,40,61. However, treatment at such a late stage of ALD is difficult and gene 

therapy is often precluded due to tumor size9. Our data supports a novel treatment indication 

for MIR122 restoration, as a therapy in both early and late stage ALD to prevent and reverse 

hepatic injury and cirrhosis that warrants further exploration in the clinical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Treatment with rAAV8-MIR122-OX protects from ALD by restoring the alcohol-induced 
reduction of MIR122 expression
Expression of MIR122 in (A)human livers (n=9–12/group), (B)murine livers (n=8–14/

group), murine hepatocytes and liver mononuclear cells (LMNCs) of pair-fed and alcohol-

fed mice (n=5/group). Hepatic (C)MIR122 expression, from livers of either Et-fed WT mice 

treated with rAAV8-Scr or rAAV8-MIR122-OX vectors (n=8–12/group). Liver injury, 

inflammation, and steatosis was assessed by (D) serum ALT, liver MCP-1 and IL-1β protein 

levels, and (E) H&E, ORO staining, hepatic triglycerides concentrations, respectively. 

(F)ALT at 0-, 24-, and 48-hours following final dose of CCl4(n=6–10). Hepatic fibrosis was 

evaluated by measuring (G)Sirius-red staining and the percent-positive area stained was 

quantified using ImageJ and (H)Col1a1 and Acta2 expression from total liver RNA (n=6–

10). Scale bars; 100 μm. Student’s t-test or two-way ANOVA.
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Fig. 2. Grainyhead-like 2 inversely correlates with MIR122 expression in human livers
Pri-MIR122 expression in (A)human livers (n=10–12/group) and (B)alcohol-fed WT murine 

livers (n=7–8/group) and hepatocytes (n=5/group). ChIP-qPCR of the GRHL binding results 

presented as % input of (C)GRHL2 and respective IgG controls. (D)GRHL2 mRNA 

expression in murine livers. (n=3/group) (E)GRHL2 mRNA expression and correlation with 

MIR122 expression in human livers (n=10–12/group). Student’s t-test, two-way ANOVA, 

and Pearson’s correlation coefficient.
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Fig. 3. Alcohol inhibits MIR122 in hepatocytes via alternatively spliced GRHL2
GRHL2 immunihistochemistry of (A)murine and (B)human livers. Scale bars; full-size=100 

μm, inset=200 μm. (C)Immunostaining of isolated primary hepatocytes from PF- and Et-fed 

mice. Scale bars; PF and Et=10 μm, Et+IgG=7.5 μm. Representative immunoblots for 

(D)murine (n=8/group) and (E)human (n=10/group) GRHL2 from total liver lysate. (F)The 

effect of GRHL2-FL or GRHL2-S on MIR122 promoter activity (n=4/group) in nuclear 

lysates from huh-7 cell lines. Student’s t-test.
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Fig. 4. The reduction of MIR122 recapitulates ALD pathogenesis
(A)Hepatic MIR122 expression (B)serum ALT, (C)H&E and Oil-Red-O (ORO) staining and 

triglyceride concentrations from the total livers of scrambled or MIR122-TuD treated WT 

following 5-week LDC (n=8–14/group). Student’s t-test or two-way ANOVA.
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Fig. 5. MIR122 loss mediates hepatic steatosis and inflammation through HIF1α
Expression of HIF1α and correlation to MIR122 expression in (A)human livers (n=9–12/

group) and (B)murine hepatocytes (n=8–14/group). HIF1α expression and activity measured 

by mRNA, EMSA and HIF1α binding assay from isolated primary hepatocyte nuclei, and 

PPARγ mRNA in total livers isolated after 5 weeks of PF or Et diet from; (C–D)Scr or 

MIR122-TuD treated WT mice and (E–F)MIR122-OX treated mice. Student’s t-test or two-

way ANOVA (n=8–14/group).
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Fig. 6. Hepatocyte specific HIF1αKO mice are protected from loss of MIR122 and chronic 
alcohol
Liver Injury assessed by (A)serum ALT and (B)H&E staining of WT and HIF1αhep−/− 

following 5-weeks of LDC or PF diet treated with either AAV8-Scr or MIR122-TuD vectors. 

Hepatic triglycerides assessed by (C)ORO staining and triglyceride quantification. 

Downstream HIF1α function was measured by total liver (D)PPARγ mRNA. Hepatic 

inflammation was assessed by (E)IL-1β and MCP1 protein, and CD68 mRNA. Student’s t-
test or two-way ANOVA (n=8–14/group).
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Fig. 7. MIR122 loss mediates hepatic fibrosis through HIF1α
Hepatic fibrosis was evaluated by (A)Sirius Red staining and the (B)percent-positive area 

stained was quantified using ImageJ (n=6–14). Additional markers of fibrosis were further 

assessed by expression of (C)col1a1 and Acta2 from total liver RNA (n=6–14). Two-way 

ANOVA. Scale bars: 100 μm.
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