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Abstract

Objective—Making mistakes is inevitable, but identifying them allows us to correct or adapt our 

behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors 

that need to be explicitly corrected by the user, thereby consuming time and thus hindering 

performance. We hypothesized that neural correlates of the user perceiving the mistake could be 

used by the BMI to automatically correct errors. However, it was unknown whether intracortical 

outcome error signals were present in the premotor and primary motor cortices, brain regions 

successfully used for intracortical BMIs.

Approach—We report here for the first time a putative outcome error signal in spiking activity 

within these cortices when rhesus macaques performed an intracortical BMI computer cursor task.

Main results—We decoded BMI trial outcomes shortly after and even before a trial ended with 

96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-

its-kind intracortical BMI error “detect-and-act” system that attempts to automatically “undo” or 
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“prevent” mistakes. The detect-and-act system works independently and in parallel to a kinematic 

BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the 

performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including 

a state-of-the-art decoder (ReFIT-KF).

Significance—Detecting errors in real-time from the same brain regions that are commonly used 

to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to 

people with paralysis.

The nervous system makes widespread use of feedback to correct errors shortly after they 

occur and to adapt in order to minimize future errors [1–4]. During the control of movement, 

error signals are used to correct perturbations and update the brain’s internal model [5–8]. 

The same principle is also of clear utility to engineered systems and underlies control 

systems [9,10]. In this work, we tested whether an engineered system that directly interfaces 

with the neural system – a brain-machine interface – can exploit the fact that it shares 

common error detection goals with the biological system that it is connected to. A variety of 

neural error signals, which provide feedback on our actions and the environment, have been 

investigated in the last few decades [11–22] and potentially can be used to improve BMI 

performance [19,23–26], or even able-bodied performance [27]. Here, we focused on the 

task-outcome error signal, which arises when the goal of the movement was not achieved 

[19,21,28–30]. It was previously unknown whether this signal is present in primary motor 

(M1) and dorsal premotor (PMd) cortices typically targeted for intracortical BMIs. 

Therefore, in this paper, we asked two primary questions: (1) does an outcome error signal 

exist in the PMd and M1 cortices?, and (2) can decoding this signal benefit BMI 

performance?

Current intracortical BMIs decode only neural correlates of movement intention from the 

cortex, either in pre-clinical animal model experiments [31–43] or clinical trial evaluations 

in people with paralysis [44–52]. The performance of BMI systems has markedly improved 

in the last two decades; however, they have not reached natural arm reaching performance, 

and errors, such as selecting the wrong key during typing, still occur. At the heart of the 

limitations in BMI movement intention decoding is a tradeoff between speed and accuracy: 

increasing the complexity or precision required by the task leads to slower performance 

and/or more mistakes. Since errors usually require the BMI user to make a timely corrective 

action, such as selecting a delete key on a keyboard, BMI applications are designed to strike 

a balance between higher task efficiency (e.g., keyboard density) and minimizing error rate 

[53]. However, we envision BMI users using standard interfaces that will accelerate their 

independence, e.g., using a cursor to control a tablet [54]. Thus, in real-world use, optimal 

interfaces (and optimal target sizes) will not always be present, and errors occur more often 

than when working with an optimally-designed lab system. To date, most efforts at 

increasing the performance of intracortical BMIs have focused on improving movement 

intention decoding [31–39,41–43,52,55]. Here we provide a proof-of-principle of a 

complementary approach: a parallel error detector that executes corrective interventions, 

thereby prevent or undoing mistakes. We note that the error detection approach is largely 

independent of the implemented kinematic decoder; thus, our work aims to present a widely-

applicable proof-of-concept rather than improve specific state-of-the-art decoders. This 
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approach potentially enables the BMI system to be used for harder and more accurate tasks 

(e.g., denser grid, smaller key sizes or higher-dimensional prosthetic control) even with the 

same quality of movement intention decoding. This approach can also be used to rescue 

BMI performance when sensors degrade, in a fundamentally different and complementary 

way to existing approaches of rescuing kinematics decoding [56–59].

While there has been substantial work in developing adaptive BMI decoders that update 

their kinematic decoding parameters in response to externally specified errors [31,50,60–63] 

or inferred errors from the statistics of the system’s output [64,65], intracortical BMI designs 

have not explored the utility of a biological task outcome error signal. A BMI user is 

typically provided constant visual feedback of the BMI-controlled effector (e.g., computer 

cursor) and the BMI behavioral goal (such as the target on the screen), and is therefore 

aware of their BMI performance. It is therefore reasonable to postulate that neural correlates 

of BMI-based behavioral errors exist somewhere in the brain and might be utilized by BMIs 

as feedback to correct errors. Indeed, error-related potentials have been employed 

successfully in EEG-based BMIs with discrete decoding for trial-based typing [66–68], trial-

based movements [20], and prosthetic device manipulation [69,70]. Encouragingly, outcome 

errors during a hand control task, recorded through electrocorticographic (ECoG) from 

motor cortex, were decoded during a post-hoc analysis [71]. However, a similar approach 

has not been implemented in real-time continuous control BMIs recording neural activity 

from motor areas (premotor and motor cortex), nor from intracortical recordings of spiking 

activity. It is important to determine if and how error decoding can increase the performance 

of such intracortical BMIs, which are to date the highest-performing BMI systems 

[46,49,51,52].

If such task-outcome error signals exist in PMd and M1, then BMIs could incorporate error 

detection without the need for implanting sensors in additional brain areas. Importantly, the 

existence of error signals in other brain areas and their influence on motor behavior do not 

guarantee that they can be identified in motor cortical areas, let alone decoded accurately for 

BMI purposes. Much of the research on error signals relies on EEG and fMRI measurement 

techniques; these studies have not reported clear evidence of error signals, and especially 

outcome error signal, in motor cortex. Encouraging evidence comes from a recent ECoG 

study, which found that responses that appear to come from motor cortex are modulated by 

execution error and task-outcome error [19,71]. Additional motivating evidence comes from 

an intracerebral study which found that supplementary motor area (SMA) is modulated by a 

response task outcome [21] making it a prime candidate for electrode targeting in the future. 

Other intracortical recording studies found evidence for execution error modulation in M1 

and premotor cortex [72,73]. Nonetheless, it is not yet clear whether outcome error signals 

are present in M1 and PMd, which motivates an intracortical investigation. Intracortical 

recording can also enable a more extended analysis of the related neural modulation, such as 

accurate latency measurement, high spatial resolution, and single unit and population-level 

analyses. Accurate mapping of error signals across the brain will shed light on the brain’s 

motor control mechanisms. Evaluating whether task-outcome error signals can be detected 

in the M1 and PMd is therefore of scientific value in addition to its translational utility for 

BMI.
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In this study, we used intracortical recordings from two monkeys to search for the existence 

of an outcome error in neuronal spike activity in PMd and M1. Specifically, we assessed the 

ability to detect wrong selections during a BMI ‘typing task’. We report three key findings: 

first, we found, for the first time, that putative task-outcome error signals are present in PMd 

and M1. Second, we present methods to design a BMI error decoder and predict its effect on 

performance. Third, we demonstrate for the first time a performance improvement of a 

closed-loop intracortical BMI augmented with a real-time error decoder.

Methods

Behavioral tasks

All procedures and experiments were approved by the Stanford University Institutional 

Animal Care and Use Committee. Two male rhesus macaques (monkeys J and L) were 

trained to perform point-to-point movements of a 6 mm radius virtual cursor in a 2D plane 

using either hand movements or BMI control. They were free to move their arm even during 

BMI control [40,74,75]. A keyboard-like task was modeled after the task described in 

[75,76]. The goal of the task and the experiment timeline is depicted in the Behavioral Task 

section of the Results and figure 1. The workspace was 40×32 cm and had in its center a 

24×24 cm grid uniformly divided into n×n (n=6 to 8, depending on the dataset) contiguous, 

non-overlapping square target acquisition regions (whose height and width was 24/n cm). 

Each square target acquisition area contained, at its center, a circular visual representation of 

a target (8 mm radius, yellow discs in figure 1a). For BMI data collected for offline error 

decoding analysis (figure 2), we calibrated the task difficulty each day by changing grid size 

and required target hold time to keep the monkey’s success rate at approximately 80% 

(actual experimental session success rates ranged from 76% to 82%). This difficulty was 

chosen to balance having a sufficient number of failed trials with which to study neural 

activity following a failure versus frustrating the monkey or having failure be the expectation 

rather than the exception. For online comparison of the ReFIT-KF decoder, we used the 

optimal hold time of 450 ms as found in [53] with a 6×6 and 7×7 grids. The task had a 5 

second time limit; only 3% (J) and 9% (L) of the trials were exceeding the time limit; these 

were omitted from the offline analyses.

Neural recording and signal processing

Monkeys were implanted with two (monkey J) or one (monkey L) 96-electrode Utah arrays 

(Blackrock Microsystems, Inc.), using standard neurosurgical techniques [77] 63–90 (J) and 

83–91 (L) months prior to this study. J’s arrays were implanted into the left cortical 

hemisphere; one array went into the primary motor cortex (M1) and the other into the dorsal 

premotor cortex (PMd), as estimated visually from local anatomical landmarks (figure 1b). 

L’s array was implanted into the right hemisphere boundary between motor cortex and 

premotor cortex, as estimated visually from local anatomical landmarks (figure 1b). Since L 

had only one array, anterior electrodes were labeled as ‘PMd’ and posterior electrode labeled 

as ‘M1’ in our analysis (gray areas in figure 1b).

Voltage signals from each of the electrodes were bandpass filtered from 250 to 7500 Hz. A 

spike was then detected whenever the voltage crossed below a threshold set at the beginning 
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of each day (at −4.5 × rms voltage). Contralateral hand position (for decoder training and 

hand kinematics analyses) was measured with an infrared reflective bead tracking system 

(Polaris, Northern Digital) polling at 60 Hz.

Most of the analyses presented accepted all voltage threshold crossing spike events on a 

given electrode, which may include more than one individual neuron’s activities. These 

“threshold crossings” have become the standard for BMI applications [46,50,52,55,77]. 

However, for supplementary analyses we sorted spikes to identify single unit activity using 

Blackrock Offline Spike Sorter (BOSS, Blackrock Microsystems, Inc.). This sorting was 

done manually, assisted by BOSS’ k-means algorithm.

BMI cursor control

At the start of each experiment, we collected a training dataset of approximately 500 arm-

controlled trials of a planar Random Target Task according to the protocol described by Fan 

and colleagues [77]. These data were used to train a Feedback Intention-Trained Kalman 

filter (FIT-KF) decoder [77], which operates on the observed firing rate vector at time t, yt, ε 
R(N=192 electrodes for J and 96 for L). For the ReFIT-KF decoder variant, we retrained the 

decoder from closed-loop BMI control data according to the protocol described in Gilja and 

colleagues [40]. Both FIT-KF and ReFIT-KF output a velocity command every 25 ms from 

input consisting of binned spike counts from the preceding 25 ms, and have comparable 

performance [77]. Briefly, FIT-KF is a streamlined version of the ReFIT-KF decoder [40] 

because it omits closed-loop recalibration, and it improves upon a standard KF by adjusting 

kinematics of the training data to better match the subject’s presumed movement intention. 

Note that for several of the days of the FIT-KF experiment days, we deliberately increased 

the difficulty of the task by not zeroing out training set velocities during the hold epoch (this 

calibration step is described by Fan and colleagues [77].

The velocity Kalman filter (VKF) converges quickly to a steady state:

, where vt ∈ R is the velocity of the cursor at time t [78]. We call the first term (M1vt−1) the 

momentum (a state dynamics matrix that smooths the velocity) and the second term (M2vt) 

the ‘neural push’ (a mapping from neural activity to velocity). The linear mapping M2 

defines a decoder-potent space: neural activity in this subspace will affect the kinematics. 

However, neural activity outside this subspace, i.e. in the decoder-null space, will have no 

direct effect on kinematics [73]. The steady state equation can also be written as:

, which shows that the current velocity is a causal smoothing of the neural push. M2 defines 

two complementary and orthogonal neural subspaces: one where neural activity affects 

cursor movement (decoder-potent space) and another where the neural activity does not 

affect cursor movement (decoder-null space). These subspaces are similar to the task-
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relevant and task-irrelevant spaces in the study by Flint and colleagues [79], and are closely 

related to output-potent and output-null subspaces in the study by Kaufman and colleagues 

[80].

Offline analysis

For all offline analyses, multiunit threshold crossing spike counts recorded on each of the N 

electrodes were binned every 25 ms (vt ∈ RN) and each trial (Yi ∈ RN×K, where K is the 

number of time bins in the trial) was aligned to target selection time (t=0, figure 1A).

We did not use formal effect size calculations to make data sample size decisions, but from 

the central limit theorem and the high trial number (see Results) we were able to assume 

normal distributions. All fully completed experimental blocks were included in the analysis, 

unless stated otherwise. For statistical significance, we assumed unequal variances (Behrens-

Fisher problem) and used a two-sided two-sampled t-test with a confidence level of p=0.05 

with Bonferroni correction (to account for the family-wise error rate), unless stated 

otherwise.

PSTHs

Peristimulus time histograms presented in figure 2a,b and Supplementary figure 1 were 

computed using data from example days: J: 2015-04-22 (3508 trials, 76% success rate) and 

L: 2015-08-04 (1611 trials, 80% success rate). From the central limit theorem and the high 

trial number we were able to assume normal distribution of the PSTHs and use a two-sided 

two-sample t-test as a statistical test to compare the two conditions. We assumed unequal 

variances (Behrens-Fisher problem) and used a Bonferroni correction (for the number of 

channels and time bins) to account for the family-wise error rate. When testing whether 

population firing rates during failed trials are higher than during successful trials (figure 2b), 

we used a one-sided two-sample t-test.

Percentage of significant electrodes

We evaluated the extent to which task outcome differences were observed across the entire 

recorded population by computing the percentage of electrodes that showed significant firing 

rate differences between successful and failed trials. As was the case for comparing PSTHs, 

we used a two-sided two-sample t-test as a statistical test to compare the two conditions, and 

performed Bonferroni correction to account for both number of electrodes and number of 

samples. This test was used to determine if an electrode’s activity during a certain time 

window is significantly different between the two conditions. To smooth the results, an 

electrode was considered as significant for the population analysis if it crossed the 

confidence level on two consecutive time samples. Lastly, we averaged across days the 

percentage of significant channels at every time bin ( , where k is the bin number). To 

estimate this measurement’s standard error, s.e. , and conduct statistical tests, we used a 

bootstrap procedure with B=500 repetitions. In the bootstrap, we drew trials with repetitions 

and repeated the procedure to find the percentage of significant channels for the sampled 

trials ( , where b is the repetition number). From the set of bootstrap repetitions of , we 

estimated the measurement’s s.e., conducted statistical tests, and computed response 
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latencies. When comparing PMd and M1 (e.g., figure 1B), we used the same technique 

while restricting the analysis to only the PMd or M1 electrodes.

Dimensionality reduction via principal component analysis (PCA)

In many of the analyses we were interested in isolating the neural signal component specific 

to the difference between failed and successful trials, i.e., the putative task outcome error 

signal. Firing rate time series during any two conditions (e.g., success and failure) can be 

represented with their average Ycm=(Ysuc+Yfail)/2 and difference Ycm=Ysuc−Yfail i.e., 

common and differential modes. Here, the common mode contains activity presumably 

related to performing the task but unrelated to the specific outcome. To focus on the 

difference between outcomes and filter out common processes, we performed principal 

component analysis (PCA) on the differential mode; i.e., the difference in the neural activity 

between the outcome-averaged successful and failed trials at bin k:

This ‘outcome-targeting’ PCA is filtering out these ‘irrelevant’ (for our purposes) signals 

and reducing the data’s dimensionality (and thus the number of classifier parameters) 

increased decoding accuracy (see next section).

Based on similar reasoning, we used an analogous technique (‘direction-targeting’ PCA) to 

find the subspace that captures neural variance likely to relate to a directional error signal 

(figure 4). Specifically, we conducted PCA on the trial-averaged differences between success 

trials and fail trials grouped by which of the four targets directly adjacent to the cued target 

was selected. PCA was run on a data matrix in which these four subtracted conditions’ data 

series were concatenated in time (4K × N).

Classification via support vector machine

For all binary classifications in this study, we used a linear support vector machine (SVM) to 

predict whether each trial was a success or failure. The data were composed of labeled 

(success or fail) trials (indexed by i), each with an associated data matrix Zi ∈ RL×K, where 

L is the number of number of electrodes or principal components or kinematic components 

(depending on the specific analysis), and K is the number of time bins in the chosen time 

window. Given a set of training trials, the SVM fitting algorithm builds a model that can be 

then used to assign new examples into one of these two categories. In pilot studies, we found 

that the decoding performance was maximized when using five leading principal 

components (PCs). We note that different target selection-aligned time windows (figure 2d 

and Fig 3) had different numbers of time bins, and so we needed to build a separate classifier 

for each window. Since the online error detector had knowledge of when a target selection 

occurred (but not whether the correct target was selected, of course), this approach is fully 

compatible with online BMI use.

For offline classification, we used 10-fold cross-validation to estimate the classification 

accuracy and its standard error. To compute naive classifier performance (as a control), we 
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repeated the 10-fold cross validation after the labels of the trials (success or fail) were 

randomly shuffled across the trials. Moreover, to assess whether the classifier was biased 

towards one category (e.g., decoding ‘successful trial’ all the time), we computed the 

detection rate of successful and failed trials separately (i.e., true positive and true negative). 

When the input features to the classifier were PC activations rather than high-dimensional 

electrode firing rates, we were careful to not have the test dataset affect identification of the 

PC subspace: we first conducted PCA on each training set of the cross-validation to find a 

PC basis set, and then used this basis for subsequently classifying test data. When 

comparing two methods of classification statistically, we used a two-sided two-sampled t-

test on the 10-fold classification accuracy of each classifier.

Online error detector

When comparing BMI error detection online using the FIT-KF decoder, we modified the 

monkeys’ typing task in two ways to make it more analogous to human typing [43,81]. First, 

to simulate how users must press the ‘delete’ key after an incorrect selection and then 

correctly select the missed key, we cued a predefined delete key after every incorrect 

selection. Once this delete key was selected, we then re-cued the target that was initially 

missed. Second, we removed the unusually long post-selection feedback delays that we had 

previously added as a scientific control. Specifically, we shortened the time between 

selection and the next trial initiation to 20 ms for error prevention experiments and 420 ms 

for error deletion experiments. When comparing BMI error detection online using the ReFIT 

decoder, the ‘delete’ key’ was not in use. Rather, the next target came up regardless of 

whether the previous selection was correct, but erroneous selections still penalized bit-rate 

and could be avoided by the error detect-and-prevent system. To compute the standard error 

and conduct statistical tests on measured bitrates, we used a Bootstrap procedure of 

swapping success and fail trial labels as explained in Methods: Percentage of significant 

electrodes.

The online error detector used the same two phase signal processing used for the offline 

classification: first, dimensionality reduction (projection of electrodes’ firing rates to a 

smaller number of PCs’ subspace), and then classification using SVM. In pilot studies, we 

found that decoding performance converged after a large quantity of approximately 2000 

training trials, and that these decoders worked well across days. Therefore, to improve 

performance and maximize the amount of time available for performance testing during a 

given experiment session, we pre-trained the error detector on multiday datasets from 

previous days. We could take this approach because we expected recordings to be quite 

stable from day to day [82,83].

ReFIT experiments were performed only with monkey J since monkey L died before those 

experiments could be performed. We note that the average ReFIT decoder bit-rate of 

monkey J performing the 6×6 grid typing task presented in this study is lower than his 

performance on a comparable task previously reported in [42]. This is due to neural signal 

degradation and monkey behavior changes occurring in the two years between the 

experiments.
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Control for kinematic differences

To regress out neural correlates of kinematics, we first found the least squares linear 

regression between cursor velocity and the neural activity (yk=Axk+b). Next, we computed 

the neural activity residual without the contribution to kinematics . 

We compared the classification accuracy of the task outcome based on the neural activity 

(yk) and the residual  in Supplementary figure 5 to assess the effect of kinematics on 

the classification performance. The data used for these analyses were the six (J: 12,648 

trials) and four (L: 5,528 trials) days reported in the Behavioral task section of the Results. 

When detecting errors using either neural activity (yk) or its residual , we used 

dimensionality reduction as explained in the Dimensionality reduction via principal 

component analysis (PCA) Methods section. We performed two-sided two-sample t-tests on 

the 10-fold cross validated results.

Control for external cue differences

For the external cue controls, we conducted a guaranteed liquid reward experiment (8,400 

trials over three experiment sessions), a no cued target color change experiment (3,104 trials 

over two days), and a no auditory feedback experiment (3,912 trials over two days), all with 

monkey J. We measured offline error detection accuracy as explained in the Classification 

via support vector machine section under these different task modifications. The details of 

these modifications are described in Supplementary Text 1.

Directional error detection

To estimate the classification accuracy when decoding error direction (figure 4), we used 10-

fold cross-validation nearest neighbor classifier (assigning a predicted point the identity of 

the K=1 nearest neighbor point) operating on the 5-dimensional neural data obtained by 

projecting firing rates onto the five leading direction-targeting PCs (see Results and 

Dimensionality reduction via PCs section). We tested the classifier on data from the six (J: 

12,648 trials) and four (L: 5,528 trials) days reported in the Behavioral task results section. 

We computed two-sample two-sided t-test statistics between the 10-fold cross-validated 

results using true or shuffled data.

Results

Behavioral task

Two rhesus macaques (J and L) were trained to control a BMI cursor using intracortical 

spikes recorded from multi-electrode arrays in M1 and PMd (figure 1b, Methods). Neural 

signals were processed in real-time with a mathematical decoding algorithm based on a 

modified Feedback Intention Trained Kalman Filter [57,59,77] (FIT-KF, which has 

comparable performance to ReFIT, a state-of-the-art decoder [77], see Method). The decoder 

output a two-dimensional BMI cursor velocity control signal. Our experiment was designed 

to resemble a ‘typing task’: the monkeys had to acquire a specific target cued in green 

amongst a keyboard-like grid of selectable yellow targets using the BMI-controlled cursor 

[43,75,76] (figure 1a, Methods). We delayed reward and auditory feedback for 600 ms 

following target selection (figure 1a–iv) to temporally separate neural activity reflecting the 
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monkey’s (presumed) recognition of the task’s outcome from neural activity related to 

explicitly receiving the liquid reward on successful trials. Since our initial goal was to 

compare neural responses during successful and failed trials, we calibrated the task difficulty 

daily (Methods) to make it hard enough that there was a sufficient number of failed trials 

(76%–82% success rate) for statistical power.

Task outcome-related neural differences

To investigate whether motor cortical activity reflects task outcome, we first compared the 

trial-averaged activity from successful and failed trials; selected electrodes’ PSTHs are 

presented in figure 2a, aligned to target selection time. In both monkeys, we found that there 

were periods before and after target selection when neural activity was significantly different 

depending on trial outcome (see Methods) in both threshold crossing spikes activity (figure 

2a) and spike-sorted single unit activity (Supplementary figure 1). In all subsequent analyses 

we used ‘threshold crossings’ containing both single- and multi-unit activity to improve 

statistical power (Methods). We found that the neural activity, on average across all 

electrodes, tends to have higher firing rates during failed trials when compared to successful 

trials (figure 2b gray bars, t-test with Bonferroni correction, p<0.05).

To evaluate the extent to which this task outcome difference was observed across the entire 

recorded population, we computed the percentage of units that showed significant firing rate 

differences between successful and failed trials as a function of time (figure 2c; bootstrap 

test, p<0.05 with Bonferroni correction, Methods). We found that the activity of 18±1% 

(monkey J) and 25±1% (monkey L) of units was modulated by task outcome around target 

selection time. A substantial fraction of the ensemble was modulated even earlier: we found 

that at least 10% of units’ activity differed based on upcoming task outcome 155 ± 10 ms (J) 

and 161 ± 13 ms (L) (mean ± s.e.) after the target hold period started. Units in PMd tended 

to reflect task outcome earlier than those in M1 (Supplementary figure 2). Specifically, the 

threshold of least 10% of the population was modulated by task outcome 117 ± 10 ms (J) 

and 80 ± 20 ms (L) earlier in PMd than in M1 (t-test, p<0.01). From these results, we can 

infer that the activities of many neurons in M1 and PMd are correlated with task outcome. In 

subsequent sections we will describe various controls showing that this putative outcome 

error signal is not merely a result of indirect outcome correlates such as kinematics and 

reward. First, however, we answer whether this putative outcome error signal can be 

beneficially incorporated into an intracortical BMI.

Outcome decoding on a single-trial basis

To evaluate the potential for online error detection, we first analyzed trial-outcome decoding 

accuracy as a function of time relative to selection time. We decoded trial outcome based 

solely on neural activity in growing time windows using principal components analysis 

(PCA) for dimensionality reduction and a linear support vector machine (SVM) for 

classification (Methods). Trial outcome decoding accuracy increased as the trial progressed 

and converged to 97±0.5% (J) and 94±1% (L) around 400 ms after target selection (figure 

2D). In addition, we found that decoding accuracy at selection time was already 

substantially above chance: 83±1% (J) and 85±2% (L). To verify that our decoder is not 

biased towards one outcome (e.g., always guessing success), we separately computed the 
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accuracy of detecting successful trials (TP, true positive rate) and failed trials (TN, true 

negative rate) as a function of time (Supplementary figure 3), and found the decoder 

performed well in both cases. These high decoding accuracy results encouraged us to 

implement a real-time error detector; however, the offline decoding time course raises 

important decoder design questions that are critical to address.

Design for real-time error detection

Two main design properties are central to the error detector: 1) decoder latency, i.e., when 

the classification occurs relatively to the BMI action (e.g., before selection or some time 

later?), and 2) the corrective intervention performed upon error detection (e.g., does the 

system prevent an action before it occurs or undoes it afterward?). The choice of corrective 

intervention depends on the application and when accurate classification can be made. If the 

error can only be detected once already made, then the BMI system could only intervene 

with a corrective “undo” action to minimize the error’s consequences. However, if the error 

can be detected before the presumed erroneous action is made, then the BMI system can 

attempt to prevent the error. While it would in principle be better to prevent an erroneous 

action, or, failing that, to undo it as early as possible, figure 2d reveals that there is a clear 

tradeoff between the error detector’s latency and its classification accuracy. On the one hand, 

increasing the detector latency increases its accuracy. But on the other hand, this prolongs 

the trial, which decreases overall utility.

An error detect-and-act system can be incorporated in parallel to BMI kinematic decoders in 

many applications. Here, to provide a numerical treatment of this tradeoff, we applied it to 

the BMI communication application (using a virtual keyboard for ‘typing’) as a proof of 

concept to investigate the potential benefit of error detection. In a typing task, users typically 

correct mistakes by selecting the ‘delete’ key. This manual corrective action is highly time-

consuming since the user needs to perform two additional selections for each mistake (first 

delete the wrong character, and then select the correct key). Thus, a helpful corrective 

intervention is to automatically “detect-and-undo” the previous target selection by deleting 

the previous character when an error signal is detected. To estimate the effect error auto-

deletion would have on a BMI, we considered the bit-rate metric [41,52,53,84,85], which 

quantifies BMI communication performance. Bit-rate is defined as the rate of correct key 

selections (weighted by how many bits of information each selection conveys) minus a 

penalty for incorrect key selections based on the conservative assumption that each incorrect 

selection must be compensated for with a correct selection (e.g., selecting ‘delete’):

(1)

where T is the total length of the trials, N is the number of potential targets, and s and f are 

the numbers of success and fail trials, respectively. When error auto-deletion is incorporated 

into a BMI, the overall system’s bit-rate will depend on the effective success (s′=s·TP) and 

fail (f′=f·(1-TN)) trial count as well as the task delay imposed by having the error detector 

decide after target selection (dt). The bit-rate can therefore be estimated as:
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(2)

This conservative estimate assumes that every trial will be delayed (dt) by the detector 

latency (by a few hundred millisecond). However, in real world applications this penalty 

might be substantially reduced when considering user strategy (e.g., if the user trusts the 

error auto-delete, they could continue towards the next key without waiting for the 

intervention) or if the detector latency overlaps with a cognitive load-imposed natural delay 

between movements (e.g., thinking about what the next letter should be). We do not suggest 

that continuous BMI decoders inherently require a post-selection delay to operate, but rather 

that the user may introduce such a delay when using the BMI for a cognitive task, such as 

typing.

We estimated the bit-rate as a function of when the error detection was attempted. For the 

key parameter of the error detector’s success rate as a function of time, we used the 

empirically observed accuracies from monkey J’s offline error detection data. In figure 3a, 

the estimated bit-rate (calculated using equation 2) increases until selection time because the 

classification accuracy increases without any added task delay. We considered two possible 

scenarios for what would happen if the error detection occurs after selection time: (1) a 

worst-case scenario in which the detector latency delays the next movement (dark purple 

lower lines), and (2) a best case scenario (light purple upper lines) in which error detection 

does not cause any added delay (e.g., if the user is pausing to prepare the next cursor 

movement anyway). The resulting detect-and-undo performance should therefore be 

somewhere between these two extrema lines, depending on the user and the task. Our 

analysis suggests that the performance change due to adding error detection, compared to 

standard BMI (Eq. 1, gray lines), can range from a more than two-fold communication rate 

improvement under low task success rate conditions (e.g., 65%), to decreasing performance 

when success rates are already high (e.g., 95%). Encouragingly, we also found that in a 

challenging enough task (with relatively low success rate), error auto-deletion can improve 

performance over a non-augmented decoder that does not have a delay, even when 

considering the worst-case scenario when a delay is needed for the auto-deleting system. 

This makes sense intuitively: automatically undoing most errors at a slight cost of time on 

every trial will be worth it if errors are frequent, but less so (or not at all) if errors are rare.

Since we observed high error detection accuracy even before target selection, we propose an 

additional mode for a detect-and-act system: “detect-and-prevent” action when an error is 

predicted right before when the selection would normally occur. In a dwell-typing 

application, a key is selected by holding the cursor over it (e.g., for 500 ms). We therefore 

propose to prolong the required hold time (e.g., waiting an additional d=50 ms) when an 

error is predicted. This intervention will give the user the opportunity to move the cursor out 

of the presumably incorrect target if it was indeed incorrect, or to keep the cursor over the 

target if it was in fact their intended key (i.e., after a false positive error detection). One of 

the benefits of this approach is that the cost of false positive detection will be small 

compared to erroneous detect-and-undo: rather than forcing the BMI user to re-acquire the 
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target key, the trial length will only be slightly extended. Similar to before, we estimated the 

effect of error detect-and-prevent on overall performance by:

(3)

Since there is no benefit from predicting the outcome earlier than the selection time, we only 

considered detection immediately preceding selection time (figure 3a).

Closed-loop, real-time error detect-and-act

Our goal is to demonstrate a proof-of-concept of a complementary approach that can 

presumably improve any decoder (be it the ReFIT-KF, FIT-KF, OLE, etc.) when BMI control 

becomes more challenging and errors occur. In real-world use, errors may result from a 

range of causes such as user mistakes (e.g., typos), a suboptimal interface that increases task 

difficulty (e.g., selectable keys that are very close together), a sub-optimal decoder, or a 

challenging task that is at the limits of the BMI’s performance (e.g., threading a needle). 

Thus, to test our hypothesis that a BMI can benefit from error detection in the face of errors, 

we chose to elicit errors by using a sub-optimal decoder (FIT-KF).

To demonstrate the utility of this system in a closed-loop BMI system, we implemented and 

tested these two proposed corrective interventions online as a proof-of-concept of a BMI 

with error detect-and-act capabilities. Across 10 (J) and 9 (L) experiment sessions (days), we 

used a real-time error detector in parallel to a kinematic decoder (FIT-KF, Methods and 

figure 1ai), and tested both the error auto-deletion (with dt=400 ms decoder latency) and 

error prevention (with d=50 ms delay) operation modes in a typing task where the difficulty 

was adjusted to yield an uncorrected success rate of around 80%. The error decoder used 

PCA-based feature reduction (keeping five leading principal components) and a linear SVM 

classifier (Methods). Both error prevention and error auto-deletion modes were compared 

separately to a standard kinematic decoder without error detection in an A-B-A block 

format, where A was a standard kinematic decoder (FIT-KF) and B was the same kinematic 

decoder with a detect-and-act system.

We found that both error detect-and-prevent and detect-and-undo modes improved the 

monkeys’ bit-rates each day (bootstrap-test, p<0.001). Error prevention increased the 

average bit-rate by 24% (J) and 23% (L). When evaluating error auto-deletion, we delayed 

the next trial by 400 ms for both the standard and error detection-augmented BMI 

(Methods), which mimics the aforementioned scenario where there is a cognitive need for 

the BMI user to briefly pause before starting to move the cursor towards the next key (figure 

3c). Error auto-deletion increased the average bit-rate by 20% (J) and 32% (L) (see 

Supplementary Movie 1). Additionally, we also estimated what the bit-rates would have 

been if the system were being used in a scenario without a pause between trials. To do so, 

we re-calculated the bit-rates after removing the added delay (400 ms) from the trial length 

(figure 3c, top purple and gray semi-transparent bars). This offline re-analysis corresponds 

to the best-case scenarios both for the standard BMI system (the user doesn’t need to briefly 

pause between selections) and for the error detect-and-undo system (the user starts towards 
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the next key without waiting to see whether the error detect-and-undo system executes or 

not). Detect-and-undo performance should be between the two scenarios (in the range of the 

transparent bars) depending on the task and the user strategy. We found that some overlap 

between the two performance ranges (with and without a delay) exist, in particular for 

monkey J. An overlap means that error auto-deletion is beneficial in some scenarios and not 

in other. Thus, the benefit of this detect-and-undo system depends on the task and the user 

strategy.

Based on the figure 3a bit-rate estimates and the figure 3c closed-loop results, we conclude 

that for these monkeys performing this particular task, error-prevention outperformed error 

auto-deletion. Thus, we also tested error prevention when using ReFIT-KF, a state-of-the-art 

decoder [52,53,86]. We evaluated the system in two task difficulties (6×6 and 7×7 grids, 

figure 3d). The detect-and-prevent system improved the standard ReFIT-KF performance 

during each day and for each task by 8% and 18% on the 6×6 and 7×7 grid tasks, 

respectively (figure 3d, bootstrap-test, p<0.001). This performance improvement was due to 

a reduction in the number of selection errors. As expected, the improvement was greater 

when performing the harder task (7×7, which is closer to the actual number of keys on a 

standard English keyboard) with a BMI augmented with detect-and-prevent capability. 

These online results corroborate our estimated predictions that error detection can provide 

even greater performance improvement during even more challenging tasks (e.g., when high 

accuracy is required). Our results show that error detection can improve BMI performance 

when the targets are optimally placed for bit-rate (6×6 [53]), but the technique becomes even 

more impactful during a more challenging task (7×7) when high accuracy is required. More 

demanding task requirements are germane to real-world applications (e.g., when more than 

36 keys are needed, or when the key size is smaller than 4 cm, or when browsing a website 

with dense and non-optimally placed clickable hyperlinks).

Controls for indirect task-outcome correlates

Neural activity in the motor cortex is related to many processes including, but not limited to, 

kinematics, kinetics, sensory feedback, trial outcome (as reported here), and noise. We 

therefore wondered whether the neural activity differences we observed between successful 

and failed trials resulted from other variables that indirectly correlate with trial outcome but 

are not directly related to the monkey’s internal recognition/prediction of the trial’s 

outcome. Specifically, we tested whether kinematic differences (in both BMI cursor 

movement and residual arm movements), reward, and other experimental elements (auditory 

and color feedback) were major contributors to our outcome decoding. We briefly describe 

the results here, and report more details and further discussion in Supplementary Text 1.

We conducted two controls related to kinematics. First, we found that regressing out the 

BMI’s velocity-related component from the neural activity did not affect outcome 

classification accuracy. Second, we found that outcome detection using BMI cursor and 

hand kinematics were significantly worse (<80% accuracy, Supplementary figure 5) than 

decoding using neural activity. Thus, although small kinematic differences did exist between 

successful and failed trials, this information alone does not account for our ability to decode 

trial outcome accurately. This is consistent with our finding that less than 1% of the outcome 
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error signal variance could be explained by movement-related neural activity. However, we 

note that this control should be interpreted while considering its limitations: although the 

causal mapping between neural activity and kinematics in a BMI framework is completely 

known, there might be additional kinematic-intention neural activity that is not linearly 

mapped to kinematics. Thus, these controls do not completely rule out whether differences 

in movement intentions could affect task-outcome decoding.

In two additional control experiments, we 1) provided rewards on all trials and 2) withheld 

auditory feedback (Supplementary figure 6). These experiments showed that reward and 

auditory feedback did not affect error detection performance (t-test, p>0.3), and suggest that 

the signal being decoded does not contain reward expectation components. This contrasts 

with recent work [87] that found a reward signal in the motor cortex but did not find 

outcome-related neural modulation. However, in that work, the monkeys performed reaches 

guided by uncertain visual cues, without seeing the target itself. Thus, the monkeys could 

not know the outcome until the reward was provided. As such, the [87] task design precludes 

dissociating the neural activity resulting from external cues (i.e., a reward signal) versus the 

monkey’s internal understanding of whether he performed the trail correctly (i.e., an 

outcome signal). Supplementary Text 1 further discusses these differences. In our task, the 

color change from green to blue when the correct target was being held was the only 

external cue about the trial’s upcoming outcome. A further control experiment in which this 

cue was removed (Supplementary figure 6) showed it had a minor effect (5% detection 

accuracy difference, t-test p<0.01). This is consistent with the monkey being more uncertain 

of the trial outcome without the color information. Nevertheless, we observed that outcome 

error classification accuracy was still high (92%) when target color remained unchanged, 

indicating that most of the signal we decoded was not due to color change.

Together, these controls are consistent with the hypothesis that the neural modulation we 

have described and decoded primarily reflects a putative task outcome error signal that 

cannot be attributed to differing kinematics, reward expectation or experimental cues.

Dissecting the putative outcome error signal

Thus far we have presented evidence that neural activity differs between successful and 

failed trials. However, it is difficult to understand the latent population-level patterns 

underlying these differences from examining single unit PSTHs. Dimensionality reduction 

techniques are often used to summarize properties of high-dimensional data (e.g., neural 

population activity) for visualization and interpretation [88,89]. Here, we used principal 

components analysis (PCA, Methods). This enabled us to summarize the population-level 

activity of the outcome-related neural signal and explore whether this signal differs 

depending on the relative direction of the correct and (mis)selected target.

First, to determine the putative outcome error signal’s dimensionality and to visualize its 

dynamics, we examined the outcome-targeting PCs (i.e., PCA on the difference between 

success and fail trials), which are shown in Supplementary figure 7. The three leading 

outcome-targeting PCs (which we will call the ‘outcome-error subspace’) capture 88±1% (J) 

and 82±1% (L) of the variance of the trial-averaged, outcome-related neural activity 

difference. Encouragingly, both monkeys’ neural activities showed similar dynamics in this 
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subspace. This suggests that a major contributor to the putative outcome error signal is not 

related to monkey-specific stereotypical movements or monkey-specific neural response 

patterns following successful versus failed trials. Rather, these dynamics may instead reflect 

a general pattern of outcome error-related neural dynamics in these cortical areas.

Next, we explored whether the putative outcome error signal reflected the relative direction 

between the incorrectly selected target and the cued target. We would expect an outcome 

error signal to be direction-invariant, in contrast to an execution error signal, which should 

provide directional information about the error. To verify that the proposed signal is largely 

direction independent, we projected the direction-averaged neural activity into the outcome-

error subspace and verified that most (90% (J) and 91% (L)) of the putative outcome error 

signal variance is common across errors in the different directions (Supplementary figure 8). 

The high degree of direction invariance in the outcome-targeting neural subspace suggests 

that this proposed outcome signal component mostly reflects neural activity related to 

outcome error.

Directional error detection

Despite finding that most of the putative outcome error signal was directionally invariant, we 

investigated whether we could additionally decode a different motor cortical signal that 

correlates with the direction of the error. The existence of such a directionally tuned post-

execution error signal was recently reported [90]. To construct a different neural subspace 

that tries to capture variance related to the direction between the cued and incorrectly 

selected target, we performed a different analysis where we calculated the PCs of the neural 

differences between the average of successful trials and the activities averaged over 

erroneous trials to each of the four targets adjacent to the cued target (Methods). This 

‘direction-targeting’ PCA technique is similar to our method described earlier to find the 

putative outcome error subspace (‘outcome-targeting’ PCA), except here we focus on 

observing the variance specific to which direction points towards the correct target. We 

found that there did indeed exist a different set of neural projections such that the resulting 

variance is mostly explained by the differences between direction conditions, rather than by 

the condition-average signal (figure 4a). Note that this result does not disagree with our 

previous statement (Sup. figure 8) that more than 90% of the putative outcome error signal 

variance is common across directions, since here we projected the data into a different neural 

subspace that was specifically targeted to identify direction-related variance, rather than 

outcome-related variance. Here, we focused on the potential of detecting the direction of the 

error for BMI. However, we believe that the relationship between the two signals (e.g., 

temporal, spatial, and causal relationship, and identifying a common source that might exist 

in other brain areas, etc.) should be further investigated in future work. Also, we note that in 

our task, error direction may be highly correlated with the monkey’s movement intention at 

the end of the trial [35], and thus further work is needed to disassociate these two factors. 

Despite this scientific caveat, here we were interested in the practical utility of this 

component of the neural activity (see next section), and for this BMI purpose we are 

agnostic to whether it reflects the monkey’s perception of error direction versus his intention 

to make a correction.
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Finding these activity differences across error directions motivated us to do an offline 

analysis to evaluate if we could decode relative error direction (i.e. predict the location of the 

correct target with respect to the incorrectly selected target) on single trials. As a proof-of-

concept for future BMIs, we evaluated the error direction classification accuracy by 

predicting one of four potential directions after incorrect target selection using a nearest-

neighbor classifier (Methods). We were able to decode where the correct target was 

substantially better than chance in both monkeys (figure 4b; J: 68±1%, L: 76±2%; t-test, 

p<0.0001). This capability presents an opportunity to further improve BMI performance.

Discussion

This work makes both neural engineering and scientific advances. Its neural engineering 

contribution is to introduce and validate a new strategy for improving high-performance 

motor BMIs by simultaneously decoding non-motor cognitive signals. Its scientific advance 

consists of describing an outcome error signal in motor cortical spiking activity. Here we 

will discuss each in turn.

Error detect-and-act improves BMI performance

The key neural engineering contribution of this work is the design and closed-loop 

demonstration of a first-of-its-kind method for augmenting an intracortical BMI with error 

detection. This system utilized the brain’s error signals – which we show can be accurately 

detected from the same sensors and cortical area homologues already being used for clinical 

motor BMIs – to improve the performance of state-of-the-art BMI decoders. This opens a 

new avenue for improving intracortical motor BMIs, which until now have decoded only 

neural correlates of movement intentions [31–39,41–43,52,55], by simultaneously detecting 

additional cognitive signals related to the task being performed. Error detect-and-act can be 

used in parallel to any kinematic BMI and is more helpful in more error-prone scenarios, 

meaning that the utility of this strategy will increase as the complexity of tasks being 

performed with BMIs increases.

These error detection techniques can be applied to a broad range of BMI tasks to intervene 

with corrective actions. If the task outcome error signal generalizes across tasks, then no 

task-specific training data would be required; otherwise, calibration data would need to be 

collected within the context of the specific task. This question of generalization warrants 

future study. In a computer cursor control task, error detection can be used to prevent or 

undo incorrect clicks during typing [42,43,49,50]. During control of a robotic arm [45,46], 

task outcome error detection could be used to cancel the last command (e.g., grasping) and 

instead return to a previous state (e.g., the state of the robotic arm a second ago). Estimating 

the direction of the error – rather than just its occurrence – in a real-time BMI could be used 

to even further improve performance. For instance, the BMI system could automatically 

select the decoder’s estimate of what the intended key was during typing, or move the 

effector towards the intended object during robotic arms use. When designing a detect-and-

act BMI for a particular application, the optimal corrective action and its corresponding 

decoder latency would depend on four parameters: the user’s success rate (i.e., task 

difficulty), the average trial length, the cost of making an error (e.g., additional reaches for 
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deletion), and the error detection accuracy as function of the time. The latency can then be 

adapted online based on the prevalent error rates given the task difficulty and BMI neural 

control quality. In addition, error signals can also be used to update decoder parameters and 

adjust the learning rate of an adaptive algorithm, especially when the ground truth is 

unknown. For example, outcome error signal can be used to increase the learning rate after 

errors, while knowledge about the error direction could be utilized to update decoder 

parameter [31,50,60–63,68,91], thus reducing future errors.

Existing communication BMI workspaces are designed for minimum errors at the expense 

of complexity and efficiency [50,53] (e.g., keyboard density). Error detect-and-act can 

improve BMI performance by increasing the tolerable task difficulty. For example, 

increasing the number of available keys on a keyboard will increase the transmitted 

information rate from each selection; however, this decreases the target size and as a result 

reduces the success rate. By using a detect-and-act system, one could increase the number of 

keys while still keeping the success rate high. To find the optimal keyboard density, a 

mapping of the success rate as a function of layout needs to be found [53]. When using a 

BMI with an error detect-and-undo capability, hard tasks will become easier in the sense that 

the effective success rate will become higher. This may also benefit other types of difficult 

tasks, such as high-dimensional BMI-driven prosthesis [48] or when very high cursor control 

accuracy is needed, such as when navigating a link-dense website, game, or computer 

desktop.

Another application of error detection is in the context of rescuing performance following 

signal degradation. Chronic intracortical electrode signals degrade with time, which 

decreases BMI performance and success rates [92–95]. To date, efforts to rescue 

performance have focused on designing new kinematic decoders [56–59,63,65,96,97]. The 

error detection methods introduced here provide an alternative approach to increase effective 

success rates, thus rescuing BMI performance and improving the user experience.

Implementing a similar error detect-and-act system in a clinical human BMI should be 

straightforward as long as this task outcome error signal also appears in the human brain 

areas implanted with the electrode arrays, such as the motor cortex, an area typically 

targeted for BMIs. This open question is an important area for future investigation; recent 

encouraging ECoG results indeed showed evidence for such activity in motor cortex [71]. 

We predict that one source of differences that may be encountered during translation stems 

from human BMI movements being self-initiated by the user, in contrast to experimenter-

paced monkey tasks. A benefit of this is that it is more likely that there will be a naturally-

occurring delay between selecting a key and the initiation of movement towards the next 

key. Thus, it may be possible to extend the latency of error detection – which would improve 

outcome decoding – without increasing the average trial length. Another factor that could 

result in improved performance is that a human user would be informed of the error detect-

and-act system and could change their strategy to better exploit it, perhaps by learning to 

modulate their neural activity to better emphasize the outcome error signal.
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A putative outcome error signal in the premotor and primary motor cortices

The detect-and-act applications demonstrated in these experiments would not have been 

possible without the discovery of a suitable outcome error signal in relevant cortical areas. 

Thus, the key scientific contribution of this study is that, to our knowledge, this is the first 

report of task outcome-related spiking neural activity in M1 and PMd. These results using 

intracortical recordings significantly expand a recent ECoG study [19,71] which suggested 

the presence of error signals in motor cortex. First, we showed that error signals are present 

in both PMd and M1, and that they appear earlier in PMd compared to M1. Second, we also 

investigated the structure of this error signal and its directional independence at the level of 

the neural population and ruled out kinematic confounds, strengthening the claim that this is 

indeed an outcome error signal in the motor cortex. Finally, we have shown that this 

outcome error signal also exists during BMI use.

Finding a putative task-outcome error signal in the PMd and M1 is perhaps more surprising 

than finding an execution error signal for the following reason: execution error, which arises 

from a discrepancy between the intended and the actual movement [71,98], and target error, 

which arises from unpredictable changes in target location [98], are considered ‘lower-level’ 

in the error signal hierarchy compared to outcome error [99]. These low-level errors signal a 

mismatch of desired and estimated effector state that should be corrected immediately by 

motor cortex. In contrast, outcome error is a higher-level feedback about the end result of the 

movement [19,71,99,100]. It can indicate the need for changing the motor output on 

subsequent movements or updating the internal model of the effector [6,101,102], but has no 

immediate relevance to ongoing movement generation. Hence, one might have a higher 

expectation of finding execution and target errors in motor cortex, which itself is concerned 

with low-level details of muscle movements [103–106], and finding the more abstract 

outcome error signal to be restricted to motor areas believed to be associated with higher 

levels of movement control, such as supplementary motor area (SMA) [21,107], anterior 

cingulate cortex (ACC), basal ganglia [100,108–110] and cerebellum [6]. The existence of 

an outcome error signal in the motor cortex supports the theoretical proposal that motor 

controllers such as motor cortex use reinforcement learning signals to identify an appropriate 

response strategy to achieve their movement goal [12]. It is also consistent with recent 

reports that motor cortex is critical for motor learning [111].

We were able to decode the outcome error signal even before the end of the trial (figure 2d). 

At first glance, it might appear surprising that a task outcome error signal should be present 

before the trial is finished. However, we know from previous studies that high-level error 

signals can be detected even before the end of the trial and even before the response onset 

[110]. The source of this task outcome error prediction can be a forward model that 

estimates the probability of future error and plans a proper response. For example, when a 

person is about to lose his balance, he knows with increasing confidence as time progresses 

that a fall is unavoidable, and he prepares for the consequences. More specifically, in our 

case the monkeys were familiar with the task and could presumably recognize that the cursor 

had remained inside the acquisition area of an incorrect target for close to the selection 

duration; they therefore could anticipate that an incorrect selection was imminent.
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Conclusion

In summary, the identification of a putative task outcome error signal in M1 and PMd raises 

important questions about how motor cortex adapts and learns as well as about what role this 

signal serves throughout the nervous system. It also raises key questions regarding the origin 

of this signal, which may well be outside of motor cortex and the result of cooperating 

cortical and subcortical networks. Finally, we demonstrated that is possible to leverage this 

putative outcome error signal to increase BMI performance by corrective interventions. As 

such, this signal may enable an entirely new way to substantially increase the performance 

and robustness, user experience, and ultimately the clinical viability of BMI systems.
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Figure 1. Experiment layout and task timeline
(a) A monkey performs a BMI grid task by controlling the cursor using a kinematic decoder 

(black pathway). We built an error detector (red path) that was integrated into the BMI to 

perform closed-loop error prevention before (‘Error prevention’, green timeline dot) or auto-

deletion during (‘Error auto-deletion’, purple timeline dot) the waiting period. (i) His goal 

was to move the cursor (white disk) to the cued green target amongst the potential yellow 

targets. The target selection areas were non-overlapping and collectively spanned a 24×24 

cm2 workspace. Therefore, the cursor was always in the acquisition window of a possible 

target when it was in the grid workspace. The monkey can nominally identify task errors 

through continuous visual feedback. (ii) When the correct target (green) was being held, the 

target’s color changed to blue. It reverted to green if the cursor left the target before 

selection. Holding the cursor over any target (start time indicated by the orange timeline dot) 

for 300 – 400 ms selected that target. (iii) After selection (green timeline dot), the cued 

target disappeared (iv) and the monkey waited 600 ms for an auditory feedback tone that 

matched the outcome and, in successful trials, a liquid reward. A new trial started after an 

additional 400 ms. (b) Microelectrode array location(s) in motor cortex, as estimated 

visually during surgery from local anatomical landmarks (A = anterior, P = posterior, L = 

lateral, M = medial).
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Figure 2. Decoding trial outcome-dependent neural differences
Green dot corresponds to t=0 target selection time, as in figure 1. Orange dot shows target 

hold start. (a) Trial-averaged firing rates (mean±s.e.) of example electrodes during failed 

(red) and successful (blue) trials. Gray bars indicate times with significance differences (t-

test with Bonferroni correction, p<0.05, Methods). (b) Population trial-averaged firing rates. 

(c) Percentage of electrodes that show significant differences as a function of time (mean

±s.e.). (d) Offline single-trial outcome decoding accuracy as a function of the end of a 

growing decoded time window, which starts at 300 ms before selection and ended between 

200 ms before until 600 ms after target selection. The dataset in panels c and d combine six 

(J: 12,648 trials) and four (L: 5,528 trials) days of closed-loop BMI experiments.
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Figure 3. BMI error detector design and online improvement demonstration
(a) Estimated bit-rate when augmenting the BMI with an error detector as a function of 

when detection happened and task difficulty (success rate) using Eq. 1–3. The parameters for 

bit-rate estimation were based on the empirical monkey J data (T=1.3s, N=64) 

(Supplementary figure 3 and figure 2). The three line types (dashed, solid and dotted) 

correspond to different base success rates with a standard BMI (gray, i.e. without parallel 

error decoding). Lower dark and upper light purple lines are worst- and best-case scenarios, 

respectively, based on whether the next movement is delayed or not as a result of the error 

classifier latency. (b) Time windows used for online error prevention and error auto-deletion, 

relative to (a) timeline. (c) Bit-rate comparisons (median, 1st and 3rd quartile, and extreme 

values of a bootstrap with 500 repetitions) between a standard BMI (FIT-KF, gray) and a 

BMI augmented with online error detection. Two modes of operation were evaluated online: 

error auto-deletion (purple) and error prevention (green). The top of the semi-transparent 

auto-deletion bars show post-hoc re-calculated bit-rate after removing the added delay (400 

ms) following each selection. The vertical span of this bar represents a range of scenarios 

between the best and the worst case of whether the user naturally pauses between key 

selections (see main text for more details). Auto-deletion helps substantially in the best-case 

scenario, but does not out-perform a standard BMI in the worse-case scenario. Black dots 

are the bit-rate estimates (Eq. 2 and 3) of detect-and-act performance, based solely on the 

empirical data of the corresponding standard BMI (gray bars); note that these predictions fall 

within the measured closed-loop augmented performance ranges. The error auto-deletion 

dataset combines five (J: 9611 trials) and five (L: 6676 trials) days of closed-loop BMI 

experiments. The online error prevention dataset combines five (J: 7555 trials) and four (L: 

6002 trials) days of closed-loop BMI experiments. (d) Bit-rate and error-rate comparison 

when using a state-of-the-art decoder (ReFIT) with and without error prevention. This 

dataset aggregates monkey J performing a closed-loop BMI experiment using three days 

each of two grid sizes (6×6: 4926 trials, and 7×7: 2480 trails).
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Figure 4. Information related to error direction is present in and can be decoded from motor 
cortical activity
(a) Neural responses exhibited distinct patterns depending on which of the four targets 

adjacent to the cued target (shown in the colored insert) was incorrectly selected. Here we 

show monkey J’s neural activity (see Supplementary figure 9 for monkey L) projected onto 

two neural dimensions (using ‘direction-targeting’ PCA) and were chosen because their 

variance is mostly explained by the differences between direction conditions. Pie charts 

show relative variance contribution of the averaged-across-directions error signal (black) and 

the separated-by-direction error signal (yellow). (b) Classification accuracy when predicting 

which of the four targets adjacent to the cued target the monkey erroneously selected using 

neural data from 300 ms before until 600 ms after selection time. To determine chance 

classification, we decoded data with randomly shuffled error direction labels.
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