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Abstract

Complex and dynamic networks of molecules are involved in human diseases. High-throughput 

technologies enable omics studies interrogating thousands to millions of makers with similar 

biochemical properties (e.g. transcriptomics for RNA transcripts). However, a single layer of 

‘omics’ can only provide limited insights into the biological mechanisms of a disease. In the case 

of GWAS, although thousands of SNPs have been identified for complex diseases and traits, the 

functional implications and mechanisms of the associated loci are largely unknown. Additionally, 

the genomic variants alone are not able to explain the changing disease risk across the life span. 

DNA, RNA, protein, and metabolite often have complementary roles to jointly perform a certain 

biological function. Such complementary effects and synergistic interactions between omic layers 

in the life-course can only be captured by integrative study of multiple molecular layers. Building 

upon the success in single-omics discovery research, population studies started adopting the multi-

omics approach to better understanding the molecular function and disease etiology. Multi-omics 

approaches integrate data obtained from different omic levels to understand their interrelation and 

combined influence on the disease processes. Here, we summarize major omics approaches 

available in population research, and review integrative approaches and methodologies 

interrogating multiple omic layers, which enhance the gene discovery and functional analysis of 

human diseases. We seek to provide analytical recommendations for different types of multi-omics 

data and study designs to guide the emerging multi-omic research, and to suggest improvement of 

the existing analytical methods.
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1. Introduction

Biological processes, such as the development of human diseases, involve a highly dynamic 

and interactive system of molecular layers (e.g. genetics, epigenetics, mRNA transcripts, 

proteins and metabolites) and are influenced by many environmental factors. Recent 

technological advancement has permitted high-throughput measurement of human genome, 

epigenome, metabolome, transcriptome and proteome at the population level (G. T. 

Consortium, 2015; Kim et al., 2014; Roadmap Epigenomics et al., 2015; Shin et al., 2014; 

Wellcome Trust Case Control, 2007; Ziller et al., 2013). Although each layer of the omic 

profile allows a comprehensive survey for that particular type of disease associations, the 

cross-talk between multiple molecular layers cannot be assessed by such simplified 

reduction approach (Chen et al., 2012). A critical but challenging next step is to obtain a 

holistic understanding of the molecular information flow and the interactive molecular 

system, which can only be achieved by studying multiple layers of omic data 

simultaneously. Incorporating multi-omic measures of population samples into 

multidimensional network and system analyses (Figure 1), will address the gaps in our 

current knowledge of molecular mediation mechanisms, gene-environment interactions, and 

longitudinal effects during the development of chronic diseases (Civelek & Lusis, 2014; 

Ritchie, Holzinger, Li, Pendergrass, & Kim, 2015). The integrative approach of multi-omic 

data may enhance the understanding of the molecular dynamics underlying the 

pathophysiology of diseases, and may lead to novel strategies for early detection, prevention 

and treatment of human diseases. Given the increasing number of population studies 

collecting multi-omic data but limited overview of the methodological framework for 

integrative analyses (Liu, Ding, et al., 2013; Petersen et al., 2014; Shah et al., 2015), we 

summarize the analytical methods for high-throughput multi-omic data, and provide an 

updated analytical framework to incorporate genomic, epigenomic, transcriptomic, 

proteomic, and metabolomics data for the emerging field of multi-omic association study of 

human diseases. In this article, we do not cover the topic of disease classification and 

prediction, which does not aim to understand the biological and functional roles of omic 

markers (Wan & Pal, 2014).

2. Overview of omics technologies and association studies

Transcriptomic and genomic association approaches have been widely adopted in 

biomedical research and have successfully identified genes and genetic loci involved in the 

development of human diseases. These findings revealed the complexity of biological 

systems, and provided insights for new approaches to disease diagnosis, treatment and 

prevention. Additionally, other high-throughput omics technologies have been developed to 

measure other importance biomolecules such as epigenomics for epigenetic markers, 

proteomics for proteins and peptides and metabolomics for low-molecular-weight 

metabolites. In many ways, omic association studies are similar in that they search for omic 

biomarkers connected with phenotype by unbiased genome-wide screening. The high-

throughput experimental methods allow us to study a large number of omic markers 

simultaneously. As a result, such omics studies emphasize the role of corresponding 

molecules of their kind. Although each omics technology is capable of measuring one type 

of biomolecule accurately and comprehensively, by themselves, they are all limited by the 
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functional roles of each type of molecule in a biological system. From a typical protein-

coding DNA sequence to its functional protein product in cell, multiple molecular 

machineries are involved, such as transcriptional regulation, translational regulation, RNA/

peptide degradation, post-translational modification and transportation. In addition, different 

type of molecules may function together to play a joint role in a system. Thus, emphasizing 

only one omic layer can miss important information, particularly the complementary effects 

and interactions between omic layers. For example, GWAS have successfully identified the 

genetic susceptibility of human diseases, however, it cannot capture the intra-individual 

changes over time and how such changes relate to the disease risk; Proteomics measures all 

proteins and peptides in biological samples, and offers highly complementary information to 

genomics. As many biological functions are transmitted through proteins, proteomics can 

yield new biology and insights into disease. The population level omics studies have 

highlighted the robust association with disease traits as well as the inter-individual variation. 

As we summarize in the following sections, recent population studies started incorporating 

high-throughput omics data beyond a single type of molecules. The new multi-omic studies 

will provide a combined view of multiple functional layer at a system level, and pave the 

road to precision medicine, which emphasizes the tailored medical practice to optimize the 

clinical outcome given the unique individual profile comparing to the population average.

2.1 Genome-wide association study (GWAS) and transcriptomics studies of human 
diseases

Genome-wide profiling of genetic variants (e.g. SNPs and copy number variations) and 

RNA transcripts have been used to study human disease in populations for over a decade 

(Alizadeh et al., 2000; Klein et al., 2005). The earlier genome-wide scans rely on microarray 

technologies with a large number of pre-selected probes targeting the corresponding genetic 

variants or RNA transcripts. In the case of GWAS, thousands of genetic variants have been 

linked with hundreds of human traits and diseases (Welter et al., 2014). Given the extensive 

coverage of the study designs and methods for GWAS and transcriptomic studies from 

existing literatures (Cookson, Liang, Abecasis, Moffatt, & Lathrop, 2009; Manolio, 2010; 

Ziegler & Sun, 2012), we focus on the most recent technological development in the context 

of multi-omic studies. For both GWAS and transcriptomic studies, the next generation 

sequencing (NGS) technologies provide the most complete genome-wide coverage 

(Metzker, 2010).

Transcriptomic association studies of human diseases have been used to identify cellular 

pathways important for disease pathology, distinguish between healthy and diseased 

individuals, and identify changes during disease progression. The newest transcriptomics 

approaches are based on the simultaneous deep sequencing of all RNA transcripts 

expression (i.e., RNA-Seq) in biological samples across the genome (Ozsolak & Milos, 

2011; Z. Wang, Gerstein, & Snyder, 2009). RNA-Seq provides comprehensive information 

on mRNA abundance, alternative splicing, nucleotide variation, and structure alteration. The 

resulting short sequence reads need to be processed following an extensive bioinformatics 

work flow including the evaluation of the data quality, the alignment to a reference genome, 

identification and annotation of variants, and quantification of the transcript levels (Trapnell 

et al., 2012). Similarly, NGS technology has been used to call SNP genotypes and structural 
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variations and provides the ultimate coverage and resolution of genetic variations including 

private mutations of individuals. Bioinformatic procedures transform the raw data from NGS 

technology into aligned reads, call genotypes from samples (single or multiple), and perform 

quality control of individual genotype calls (Nielsen, Paul, Albrechtsen, & Song, 2011). A 

large number of human samples have been or are being sequenced to fully understand the 

role of genetics in human health and disease (Marx, 2015; The 1000 Genomes Project 

Consortium et al., 2012).

2.2 Epigenome-wide association studies

Epigenetics usually refers to the heritable molecular modifications that have effects 

independent of the primary DNA sequence that can be modified by environmental exposures 

at various developmental stages throughout the lifespan (Bird, 2007; Foley et al.). Epigenetic 

modifications, through DNA methylation (DNAm) and other mechanisms, can regulate gene 

expression and exert a long-term impact on the development of chronic diseases. Most 

human diseases are thought to be due to both genetic and environmental factors, and the 

interplay between genes and environment. Epigenetic modifications are shaped by 

environmental (e.g. smoking (Breitling, Yang, Korn, Burwinkel, & Brenner, 2011; Shenker 

et al.; Sun, 2014; Sun, Smith, et al., 2013), poor nutrition(Waterland & Jirtle, 2003), genetic 

factors (Sun, 2014; D. Zhang et al., 2010), and age – all well known risk factors human 

diseases (Bocklandt et al., 2011; Teschendorff et al., 2010). Additionally, inflammatory 

markers have been associated with epigenetics at the gene level in peripheral leukocytes 

(Sun, Lazarus, et al., 2013; Uddin et al., 2011), which play a critical role in acute and 

chronic inflammation related to pathophysiology of many human diseases. Studying the 

epigenome in the well-characterized samples may enable us to discover novel genes and 

pathways through which genetic factors and environmental exposures influence disease 

initiation and development, and thereby provide new targets for prevention and treatment 

(Foley et al., 2009; Jablonka, 2004; Relton & Davey Smith, 2010). We focus on DNA 

methylome in this article, because it is the only epigenomic mechanism being robustly 

measured in population samples.

Technologies and resources—The most recent population level studies of human 

epigenome rely on high-density microarrays such as the Illumina Infinium 

HumanMethylation450 (450K) BeadChip (Dedeurwaerder et al., 2011) or sequencing-based 

methods (McClay et al., 2014) following biochemical modifications or enrichments of 

genomic DNA (Rakyan, Down, Balding, & Beck). The Illumina 450K platform allows 

simultaneous assessment of the DNAm levels of over 480,000 sites across the genome. The 

450K chip offers accurate and reproducible performance (Bibikova et al., 2011; Sandoval et 

al., 2011) with known but adjustable bias between Infinium I and II assays (Dedeurwaerder 

et al., 2011). On the down side, it only represents ~2% of all DNAm sites of the human 

genome, and over-represents the genic regions (75% of sites) including promoter, gene body 

and 3’-UTR (Sandoval et al., 2011). Because the 450K platform provides a balanced 

package of per sample cost, assay throughput, accuracy and coverage, it has become the 

most popular technology in human epigenomics research.
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Several sequencing-base techniques, including methyl-CpG binding domain protein 

sequencing (MBD-seq) (Serre, Lee, & Ting, 2010), reduced-representation bisulfite 

sequencing (RRBS) (Meissner et al., 2008), and whole genome bisulfite sequencing (Y. Li, 

Zhu, et al., 2010) can also profile the DNA methylome. They provide better genomic 

coverage than 450K array, and can assess the genetic variants and allele-specific methylation 

beyond the preselected microarray probes. For example, MBD-seq enriches for the 

methylated DNA fraction, followed by the next-generation sequencing. MBD-seq was 

successfully used to screen over 10 million DNAm sites in a population study of 

schizophrenia (Aberg et al., 2014). But these sequencing-based methods suffer from unique 

technical biases and variations in sample preparation, processing and experimental 

procedures, which may not be fully addressable in the statistical analyses or require 

intensive bioinformatic/biostatistical analyses (Michels et al., 2013).

Most epigenome-wide profiling methods use bisulfite conversion of genomic DNA in order 

to distinguish methylated from unmethylated cytosines. This chemical conversion does not 

distinguish 5-methylcytosine (5mC) from 5-hydroxymethylcytosine (5hmC) (Jin, Kadam, & 

Pfeifer, 2010), another type of cytosine modification with potentially different function in 

cellular processes (Ito et al., 2010), particular in tissues with higher content of 5hmC. 

Alternative methylation forms, such as 5hmC, require modified experimental protocol to 

complete our understating of the genomic DNA methylation.

Depending on the epityping protocol, a corresponding data quality control, processing and 

analysis pipeline need to be appropriately carried out (D. Li, Xie, Pape, & Dye, 2015; 

Michels et al., 2013). These omics-specific procedures for obtaining high-quality data are 

essential for the success of the multi-omics study. They have been thoroughly investigated 

within each omics research community. Thus, we only focus on the common themes across 

omics and the approaches to multi-omics analysis.

As the HapMap Project and the 1000 Genome Project to GWAS, the success of EWAS relies 

on comprehensive reference panels of human epigenome. National Institutes of Health 

(NIH) Roadmap Epigenomics project aims to produce a public resource of human 

epigenomic data to catalyze basic biology and human disease research (Roadmap 

Epigenomics et al., 2015). The International Human Epigenome Consortium (IHEC) is a 

global consortium with the primary goal of establishing high-resolution reference human 

epigenome maps for normal and disease cell types to the research community (Adams et al., 

2012). ENCyclopedia Of DNA Elements (ENCODE) targeted the identification of all 

functional DNA elements in the human genome including some epigenetic modifications 

(Bernstein et al., 2012; E. P. Consortium, 2004). These consortial efforts have provided 

important insight of molecular mechanism linking epigenetic variants and functional 

outcomes, and resulted in increasing knowledge of the important roles of epigenetics in both 

normal development and the disease process.

Studies of human diseases—Epigenome-wide association study (EWAS) is an 

examination of epigenome-wide markers in many individuals to scan for epigenetic markers 

associated with a trait (Sun, 2014). Current EWAS in human populations are all based on 

genome-wide measurement of DNA methylation of cytosine. EWAS has emerged as a 
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valuable approach to searching for molecular mediators of genetic and environmental 

factors, and for unexplained disease risks. Although epigenomics techniques has only been 

available and affordable recently, numerous studies have successfully identified leukocyte-

based DNAm markers associated with disease traits (Demerath et al., 2015; Dick et al., 

2014; Hidalgo et al., 2014; Irvin et al., 2014; Liang et al., 2015; Liu, Aryee, et al., 2013). 

Using hundreds to thousands of subjects, these EWAS identified DNAm sites with much 

larger effect sizes compared to a typical GWAS of the same trait (Demerath et al., 2015; 

Dick et al., 2014). Despite these encouraging findings from the first wave of EWAS of 

disease traits, numerous issues such as imperfect epityping technologies, limited types of 

specimens from human subjects, cell-type specificity, sample size and data analysis 

framework need to be further addressed and improved (Heijmans & Mill, 2012). The field 

has rapidly evolved and offered improved methods and tools for the design, analysis and 

interpretation of EWAS of human diseases.(Cortessis et al., 2012; Michels et al., 2013; Mill 

& Heijmans, 2013; Rakyan et al., 2011).

Cross-talks with other omic layers—In addition to the genetic association analysis of 

DNA methylation levels (see section 3.1), the relationship between DNA methylation and 

Gene expression levels have been integrated at the genome-wide scale (Gibbs et al., 2010; 

Liu, Ding, et al., 2013). Although epigenetic markers can induce the transcriptional 

regulation, the epigenetic modification may not be sufficient to cause changes of gene 

expression levels. In other words, epigenetic modifications potentiate the gene expression 

changes conditional on other co-regulators. Therefore, lack of correlation between 

epigenetic variation and gene expression levels does not mean that the epigenetic 

modifications have no functional consequence in gene expression. In a recent study, the 

associations between 649 metabolic traits and over 400,000 DNA methylation markers were 

examined using blood samples from 1,814 European participants. The epigenome-wide 

association approach revealed strong associations with metabolic traits driven by either 

genetic effects or possible environmental factors (Petersen et al., 2014). The group of 

correlated epigenetic and metabolic markers influenced by common environmental 

exposures suggest their potential utility in studying the environmental risk and gene-

environmental interaction for human diseases.

2.3 Proteomic studies of human biology and diseases

The proteome includes the entire set of proteins expressed by a genome (Wilkins et al., 

1996). Proteomics can measure amino-acid mutations, peptide isoforms, and post-

translational modifications that may influence cellular functions and physiology. Thus, 

proteomics is positioned to define the functional roles of proteins in normal and disease-

related cellular processes, and to enable hypothesis-driven and discovery research of human 

diseases (Nilsson et al., 2010). Proteomics can also measure where and when proteins 

localize in the cell or tissue, that is important to understand the disease process but cannot be 

captured by other genomic technologies.

Proteomic technologies—Since 1990’s, numerous biochemical approaches have been 

developed to target the large-scale proteome-wide study. The technological advance in mass 

spectrometry (MS) and protein separation now allows rapid and accurate detection of 
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hundreds of human proteins and peptides from a small amount of body fluid or tissue 

(Kraemer et al., 2011). Proper procedures in sample collection, sample preparation, MS 

experiments and data analysis are all critical to obtain high-quality data for hypothesis-

driven or proteome-wide discovery research (Nilsson et al., 2010). Recently, the protein 

products of 17,294 genes were identified and mapped in the draft of human proteome using 

30 human samples of tissues and cells (Kim et al., 2014). This draft proteome demonstrated 

the feasibility of building a complete human proteome encompassing over 200 cell types and 

all body fluids. Individual proteins can span 10 orders of magnitude in abundance (e.g. 

serum albumin and interleukin 6) (Anderson & Anderson, 2002). Current MS-based 

technology can detect and quantify proteins with at least six-fold difference in dynamic 

range and is still improving. Although, highly abundant “housekeeping” proteins from 2,350 

genes constitute approximately 75% of total protein mass, low-abundance proteins constitute 

the majority of the protein species in human (Kim et al., 2014).

Proteomic studies of human diseases—Proteomics approach has been widely 

adopted in studies of human diseases including cancer (Frantzi et al., 2015; S. Pan, 

Brentnall, & Chen, 2015; Petricoin et al., 2002; Tsai et al., 2015), multiple sclerosis (Farias, 

Pradella, Schmitt, Santos, & Martins-de-Souza, 2014) and schizophrenia (Al Awam et al., 

2015; Nascimento & Martins-de-Souza, 2015). In an early study of ovarian cancer, an 

independently trained proteomic profile of serum samples was able to prospectively classify 

ovarian cancer cases and controls (Petricoin et al., 2002). On the contrary, proteomic studies 

of multiple sclerosis and schizophrenia have not established any reliable protein biomarkers 

to classify patients after years of investigation of different biological samples (e.g. CNS 

tissue, cerebrospinal fluid, peripheral blood, plasma and serum) (Farias et al., 2014; 

Nascimento & Martins-de-Souza, 2015). However, these studies have found many protein 

candidates, which can potentially improve prognosis, diagnosis, and effectiveness of 

treatment. More recent proteomic studies also used body fluid samples to identify protein 

markers for bladder cancer (Frantzi et al., 2015), pancreatic cancer (S. Pan et al., 2015) and 

hepatocellular carcinoma (Tsai et al., 2015). These proteomic studies of human diseases 

provided integrated pictures of the protein networks involved in the pathophysiology, and 

might eventually lead to the development of novel and more efficient treatment therapies.

Cross-talks with other omic layers—Proteins function together with other genomic 

features in complex biological pathways and networks. They are products of genes and RNA 

transcripts, and play critical roles in cellular structure, transportation, transcriptional and 

translational regulation. A natural extension of proteomics is to understand the interplay 

with other genomic layers such as DNA variation and gene expression levels. The studies of 

protein quantitative trait loci are summarized in the later section along with other omic 

studies of quantitative trait loci.

Transcription and translation are two key biological processes underlying gene expression 

and disease etiology. To understand the relationship between the corresponding levels of 

mRNAs and proteins expressed from the genome, the proteome and transcriptome of the 

same samples need to be measured and analyzed in a single study. High-throughput 

transcriptomic and proteomic technologies identify and quantify RNA transcripts and 
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proteins to achieve more comprehensive understanding of gene expression in biological 

systems.

Schwanhäusser et al. conducted a joint proteome-transcriptome study of mouse fibroblasts 

(Schwanhausser et al., 2011). Overall, the corresponding mRNA and protein levels from the 

same genes were moderately correlated with global R2 of 0.41. However, the corresponding 

half-lives of the mRNAs and proteins showed virtually no correlation. Another joint 

proteome-transcriptome study of mouse liver samples observed lower level of protein-

mRNA correlation (Ghazalpour et al., 2011). The levels of transcripts and proteins 

correlated significantly for only about half of the genes tested. Employing a genome-wide 

association approach to map loci affecting mRNA and protein levels, little overlap was 

found between the protein- and transcript-associated loci. In association analyses of 

numerous clinically relevant metabolic traits, they found that the majority of associations 

with metabolic traits were specific to either the protein levels or transcript levels, and only a 

small number of clinical traits were correlated with both protein and mRNA products of the 

same gene. Surprisingly, these metabolic traits correlated better to RNA levels than to 

protein levels, which could be caused by less robust quantification method of the protein 

abundance. Using genetic data of the same mouse strains, more genetic loci were associated 

with the mRNA levels than of its corresponding protein levels (Ghazalpour et al., 2011).

Wang et al. recently reviewed studies integrating RNA-Seq with LC-MS/MS-based shotgun 

proteomics data to enhance protein identification (X. Wang, Liu, & Zhang, 2014). These 

studies showed how to effectively leverage the complementary information from RNA-Seq 

and proteomic data in understanding gene expression. Meanwhile, proteomic data provide 

confirmation of gene product and functional relevance of novel transcriptomic findings. 

Current studies highlighted that a comprehensive understanding of the control of proteome 

will require precise quantitative information at all levels, including DNA variants, mRNAs 

and proteins at a genome-wide scale.

2.4 Metabolome-wide association studies

Metabolome and metabolomics—The metabolome is the global collection of all low-

molecular-weight metabolites that are produced by cells during metabolism, and provides a 

direct functional readout of cellular activity and physiological status. It reflects the 

combined exogenous effects of lifestyle and environmental factors, as well as the 

endogenous effects of genetic, developmental and pathological factors. Metabolomics is an 

emerging discipline that aims to profile all low-molecular-weight metabolites present in 

biological samples. It provides a tool for interrogating how mechanistic biochemistry links 

to cellular phenotypes. Compared to human genome, epigenome, transcriptome and 

proteome, metabolome is not directly involved in the information flow of the central dogma. 

However, metabolomics measures both upstream and downstream changes that are close to 

environmental exposures and phenotypic changes.

Metabolomics technologies—The field of metabolomics has made remarkable advance 

in the past decade. It is now possible to perform metabolome-wide association studies as a 

powerful way to address complex biological questions (Jones, Park, & Ziegler, 2012; 
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Kaddurah-Daouk, Kristal, & Weinshilboum, 2008; Patti, Yanes, & Siuzdak, 2012). Current 

metabolomic technologies with computational methods for chemical identities and 

abundance allow for simultaneous measurements of hundreds to thousands of metabolites 

from minimal amounts of biological samples. The metabolome-wide study has become 

possible with recent developments in instrumentation, bioinformatics tools and software.

Nuclear magnetic resonance (NMR) is a common metabolomics method, that measures the 

molecules’ responses to radiofrequency stimuli by chemically distinct atomic nuclei in a 

magnetic field to provide information about the structure and dynamics of molecules (Patti 

et al., 2012). NMR spectroscopy can provide detailed information on the molecular structure 

of compounds found in complex mixtures, and a wide range of small molecule metabolites 

in a sample can be detected simultaneously. It usually requires minimal sample separation 

and preparation. The two-dimensional (2D) NMR spectra can reliably detect and quantify 

individual metabolites for metabolomic profiling.

Mass spectrometry is chemical method that can determine the type and abundance of 

chemicals through the accurate measurements of their mass-to-charge ratios (m/z). Tandem 

mass spectrometry (MS/MS) is type of mass spectrometry in which ions are selectively 

isolated and then fragmented. Recent technology of MS profiling involves the use of liquid 

chromatography (LC) to separate analytes and high-resolution MS to accurately measure 

mass and abundance (Jones et al., 2012; Patti et al., 2012). In complex biological samples, 

high-resolution detection allows quantification based on accurate m/z. This minimizes the 

need for separation by traditional LC-MS and does not require a priori knowledge of 

MS/MS spectra (Jones et al., 2012). In metabolomic applications, typical MS data consist of 

lists of metabolomic features characterized by their mass-to-charge ratios from the MS 

spectra. The mass-to-charge ratio of each feature is measured and used for structural 

characterization.

Depending on the scope of metabolites to be determined in a single analysis, a metabolomics 

study can use a targeted or an untargeted approach. Each approach has distinct capacity in 

addressing research questions, and requires unique experimental design including sample 

preparation, instrumentation, and data analysis pipeline. Targeted metabolomics measures a 

predefined set of metabolites, typically focusing on one or more types of chemicals or 

related pathways of interest (Dudley, Yousef, Wang, & Griffiths, 2010). Targeted 

metabolomic approaches are driven by a specific hypothesis about a particular biochemical 

pathway (e.g. lipid profile, carbon metabolism, amino acids and nucleotides). Although 

other analytical methods are available for targeted study, MS and NMR methods have been 

widely adopted in targeted metabolomics research, because they offer superior analytical 

specificity, reproducibility and accurate quantification (Astarita, Ahmed, & Piomelli, 2009; 

Dudley et al., 2010).

Untargeted metabolomic methods aim to simultaneously measure as many low-molecular-

weight metabolites as possible without bias. Between NMR and MS technologies, LC-MS 

detects the most metabolites and has been the choice of global untargeted metabolomic 

profiling. Thus, we focus on LC-MS-based technology of metabolomics in this article. 

Using LC-MS-based high-resolution metabolomic (HRM) methods, thousands of m/z 
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features (i.e. peaks of MS spectrum) can be consistently detected and quantified from 

biological samples (Hoffman et al., 2014; Wikoff et al., 2009). Each metabolomic feature 

represents a detected ion with a unique combination of m/z ratio and retention time. Due to 

the complexity in samples and instruments as well as variations in experimental conditions, 

the large output files from the high-resolution metabolomic method require automated 

computational algorithms to adjust these non-biological variations for downstream analyses. 

Untargeted HRM data are challenging to annotate because each metabolite may have 

multiple m/z peaks and multiple chemicals may have identical m/z value. This potential 

many-to-many relationship between metabolomic features and known chemicals requires 

comprehensive approach in annotation. To enhance the accuracy of metabolite annotation, 

the metabolomic features and metabolic modules need to be matched to reference databases 

such as the human metabolome database (HMDB) (Wishart et al., 2009), KEGG (Kanehisa 

& Goto, 2000), the Madison Metabolomics Consortium Database (MMCD) (Cui et al., 

2008), Metlin (C. A. Smith et al., 2005), and chemical databases (Baker, 2011). The 

enriched metabolic modules obtained by these methods can then be mapped to metabolic 

pathways using online metabolomics tools such Metscape and MetaCore. There are more 

advanced methods that directly select sub-regions from the metabolome-scale network 

without limiting analyses to curated pathways, including network-based penalized regression 

(W. Pan, Xie, & Shen, 2010) and the Markov Random Fields model (Wei & Li, 2007). New 

pathway-based methods can incorporate the uncertainty of the metabolite annotation into the 

statistical analysis to identify the pathway modules associated with a complex disease (S. Li 

et al., 2013). Using the untargeted approach, recent studies are able to assess the global 

metabolomic profile involving over 20,000 metabolomic features from many metabolic 

pathways in human samples (Zhao et al., 2015). The untargeted HRM has demonstrated its 

unique contribution to understanding fundamental biological processes of human diseases, 

and identification of uncharacterized chemicals linked to human health and disease (Baker, 

2011).

Metabolome-wide association studies (MWAS) of human diseases—The 

accomplishments in technology/instrumentation, data processing/analysis and feature 

annotation have already revealed that numerous metabolites correlate with complex human 

traits and diseases. Efforts have also been made to catalogue the thousands of metabolites 

present in the human samples to enable systematic discovery, curation and interpretation of 

metabolomic findings from human disease research.

Targeted metabolomics approaches have played an important role in understanding human 

diseases. A recent targeted study of 295 metabolites revealed serum effects of 

antihypertensives and lipid-lowering drugs in an European population (Altmaier et al., 

2014). Significant associations with beta-blockers, angiotensin-converting enzyme (ACE) 

inhibitors, diuretics, statins, and fenofibrates were identified in 1,762 participants. The 

metabolic changes supported known pathways directly targeted by these drugs, and 

identified novel metabolites included by the drugs. For instance, the intake of statins resulted 

in changes of serum metabolites of both the biosynthesis and the degradation of cholesterol. 

These results provide a basis for a deeper functional understanding of the action and side 

effects of commonly-used drugs. Another targeted study of 68 metabolites aimed to identify 
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the biomarkers for incident cardiovascular disease (CVD) during more than a decade follow-

up in a Finnish population (Wurtz et al., 2015). Replication of metabolite associations with 

CVD were examined in two population-based studies from the United Kingdom. Four 

metabolites were associated with incident cardiovascular events after adjusting for 

established CVD risk factors in the meta-analysis. Higher serum levels of phenylalanine and 

monounsaturated fatty acid were associated with increased cardiovascular risk, while higher 

serum levels of omega-6 fatty acids and docosahexaenoic acid decreased cardiovascular risk. 

This study supported the value of high-throughput metabolomics in biomarker discovery and 

risk assessment, which may lead to improved disease diagnosis and prevention. Targeted 

metabolomic analyses also revealed citric acid metabolites and essential amino acids as 

metabolic signatures of myocardial ischemia (Sabatine et al., 2005) and diabetes (T. J. Wang 

et al., 2011), respectively.

Recent advances make untargeted studies (i.e. metabolome-wide association studies) now 

possible, as a powerful way to investigate complex biological questions (Jones et al., 2012; 

Kaddurah-Daouk et al., 2008; Patti et al., 2012). Using an untargeted HRM approach, Zhao 

et al. identified five known and two unknown metabolites significantly predict the incidence 

of type 2 diabetes (T2D) among 2,117 normoglycemic American Indians followed for an 

average of 5.5 years (Zhao et al., 2015). A multi-metabolite score significantly improved 

risk prediction beyond established diabetes risk factors. The findings demonstrated the 

utility of metabolomics in the discovery of novel prognostic markers of T2D in population 

studies.

Metabolomics has also been applied in studies of infectious disease. An exploratory study of 

over 400 metabolites identified 6 metabolites that differentiated latent tuberculosis (TB) 

infection from healthy uninfected patients (Weiner et al.). A recent metabolomic study of 

over 23,000 metabolites identified pathophysiologic pathways distinguishing 17 active TB 

patients from 17 asymptomatic household contacts (Frediani et al., 2014). Analysis revealed 

a metabolite profile including specific resolvins, glutamate, and trehalose-6-mycolate, as 

well as other Mycobacterium tuberculosis cell wall metabolites, that could distinguish those 

with active TB disease.

2.5 Common issues and limitations of omics approaches

Experimental and technical variation—The systematic differences in high-throughput 

omics data between laboratories, operators and batches of products have been well 

documented. Although standardized experimental protocol may reduce the so-called “batch 

effects”, they can hardly be eliminated in studies with large sample sizes involving multiple 

collaborative sites. Therefore, the “batch effect” can be an important confounder in 

association studies, and potentially causes spurious associations unrelated to the outcome of 

interests. Additionally, multiple technical platforms are usually available for the same type 

of omics profiling. For example, multiple versions of microarray and sequencing platforms 

have been available from various manufactures for transcriptomic and epigenomic 

association studies. They usually have different coverage of the genomic regions and 

features. The evolution of mass spectrometry has also introduced several generations of 

proteomic and metabolomic platforms detecting various ranges of chemicals in terms of 
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identity and abundance. Such technical heterogeneity often makes the replication, validation 

and joint analysis of different omics studies very challenging. Using standard control 

samples to harmonize these measurement variations, and applying appropriate statistical 

models (e.g. mixed effect model) to adjust for batch effect can address some issues of 

technical variation. More importantly, recognizing and considering these issues in the early 

design stage is the most effective way to minimize the negative impacts.

Biological Variation—Another source of omics data variation is from the biological 

samples and specimens being measured. Except for genetic profile being identical across 

tissues and cell types, all other omic profiles (e.g. transcriptome, epigenome, proteome and 

metabolome) vary across tissues and cell types. The tissue and cell type specificity leads to 

two important issues in multi-omics studies, selection of tissues and cell types, and 

heterogeneity of tissues.

The most accessible specimen in human samples is peripheral blood. The blood based 

specimens such as plasma, serum and leukocytes are often used in omic association studies 

of human diseases due to the limited access to other disease-relevant tissues (e.g. brain for 

neurological disorders). Although the use of blood as surrogate tissue is sometimes relevant 

(e.g. autoimmune diseases and inflammatory processes), the biological relevance of blood-

based omic profiles may not be apparent for many human diseases. There are reports 

showing that some blood-based omic makers share similar association as in other tissues 

(e.g. smoking-related DNA methylation (Sun, 2014)), but there is no clear evidence linking 

global omic mechanisms to disease development and environmental exposures across 

tissues. On the contrary, consortia studies have demonstrated distinct patterns of omic 

profiles across tissues and cell types (Bernstein et al., 2012; Roadmap Epigenomics et al., 

2015). Using blood-based specimens is a convenient start of searching novel disease-related 

biomarkers, however, using blood as a surrogate tissue requires cautious validation and 

interpretation when the study aims to unravel disease mechanism.

A tissue sample always involves several cell types, each having a unique omic profile. 

Depending on the location of a tissue sample (e.g. micro-dissections of brain), or an 

individual’s physiological condition (e.g. peripheral leukocytes after acute infection), the 

proportions of multiple cell types of a tissue sample can change substantially, causing the 

heterogeneity of cell population. Such heterogeneity can shift the summary level of omic 

markers which are cell-type specific, and leads to associations unrelated to the direct omic 

changes (e.g. modifications of RNA and peptide expression levels). Statistical methods have 

been developed to adjust for potential confounding effects due to cell type heterogeneity. 

The contributing cell type(s) of the associated markers among the mixture remain 

unidentified (Abbas, Wolslegel, Seshasayee, Modrusan, & Clark, 2009; Houseman et al., 

2012; Houseman, Molitor, & Marsit, 2014). Measuring the omic profile in each purified cell 

types is an ideal solution but often unrealistic due to folds of increase of measurement cost 

associated with all cell types. An alternative approach is to conduct initial association study 

using a large sample of mixed cell types adjusted for the effect of heterogeneity. Once an 

averaged effect is identified, a follow up study of the sorted cells can focus on a specific 

omic maker to identify the most relevant cell types. The analysis in the second stage does 
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not require expensive omic profiling or large amount of samples, but provides direct 

inference on the molecular mechanism of a disease.

3. Genetic and environmental determinants of epigenomic, transcriptomic, 

metabolomic and proteomic markers

3.1 Genetic determinants of omic markers - studies of quantitative trait loci (QTL)

Given the mature analysis pipeline and the large amount of genome-wide SNP data available 

in population studies, one natural extension of the single layer omics study is to unravel the 

genetic loci affecting other omic markers (e.g. transcriptomic, epigenomic, proteomic and 

metabolomic markers) through a genome-wide QTL analysis. Disease-associated genetic 

variants do not directly cause disease at the molecular level. They affect intermediate 

phenotypes that in turn induce molecular and physiological changes. Thus, identifying the 

intermediate phenotypes of gene expression, DNA methylation, protein and metabolite 

levels that directly influence by genetic variants has the potential to provide the functional 

information of disease-causing genes and pathways, and to unravel the genetic-controlled 

molecular systems underlying the changes of health and disease status. Therefore, the QTLs 

of each omic layer hold the key functional information linking the observed genetic 

association and the disease phenotypes. In the context of multi-omic study, QTL analysis 

targets a set of similarly measured quantitative traits to screen for their associated genetic 

loci. The exhaustive pair-wise omic search demands computational resources to run 

thousands to millions of GWAS depending on each omic technology.

Studies of gene expression QTL (eQTLs)—Ten years ago, Schadt et al. demonstrated 

that integration of genetic variation and gene expression data with phenotypic data may 

identify key genes of complex traits in segregating mouse populations. Mapping eQTLs, 

particularly cis-eQTLs (i.e. eQTLs colocated with the gene encoding the RNA transcript), 

facilitated the understanding of functional linkage between disease-associated loci and the 

disease phenotype via gene expression regulation (Schadt et al., 2005). Since then, numerous 

human studies have generated eQTLs maps in multiple tissues such as brain, liver, skin, 

immune cells, and lymphoblastoid cell lines (Ding et al., 2010; Fairfax et al., 2012; Myers et 

al., 2007; Pickrell et al., 2010; Schadt et al., 2008; Veyrieras et al., 2008; W. Zhang et al., 

2008). Studies have revealed that over 30% of gene transcripts are substantially influenced 

by eQTLs (Romanoski et al., 2010). The overlap between eQTL and disease-associated loci 

may indicate the putative functional role. Therefore, the eQTLs databases have been 

routinely queried to infer potential functional roles of disease-associated loci from GWAS. 

Most GWAS findings map to non-coding regions, but a large proportion map to ENCODE 

regulatory elements (Schaub, Boyle, Kundaje, Batzoglou, & Snyder, 2012), suggesting the 

important role of transcriptional regulation underlying human diseases.

The most recent and significant development of human eQTL research is from the 

Genotype-Tissue Expression (GTEx) Consortium (G. T. Consortium, 2013, 2015). GTEx 

collects and analyzes the genome-wide genetic variation and tissue-specific gene expression 

data to understand the genetic basis for gene expression variation across multiple human 

tissues (43 up to date). Using RNA-seq method, GTEx interrogates all RNA molecules, 
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including messenger RNA, ribosomal RNA, transfer RNA, and other long noncoding RNA 

transcripts expression in all collected tissues. Through the online portal, researchers can 

view and download tissue-specific eQTL results. GTEx also provide a controlled access 

system for de-identified individual-level genotype, expression, and clinical data to support 

the broader research of human diseases.

Studies of DNA methylation QTLs (meQTLs)—Genetics is one of the primary 

determinants of epigenetic variation including DNA methylation (Bjornsson, Fallin, & 

Feinberg, 2004). Key genes such as DNA methyltransferases (DNMTs) directly control the 

DNA methylation profile. Other genetic variants may also influence the patterns of DNA 

methylation by modifying the accessibility or binding affinity of enzymes. Over a dozen of 

meQTL studies of numerous tissues (e.g. peripheral blood, lung, brain, adipose tissue and 

tumor tissues) have been reported by correlating the genome-wide SNP data with tissue-

specific DNA methylome data (Bell et al., 2011; Drong et al., 2013; Gibbs et al., 2010; 

Grundberg et al., 2013; Gutierrez-Arcelus et al., 2013; Heyn et al., 2013; Heyn et al., 2014; 

Shi et al., 2014; A. K. Smith et al., 2014; Sun, 2014; Teh et al., 2014; D. Zhang et al., 2010; 

X. Zhang et al., 2014; Zhi et al., 2013). Many meQTL studies prioritized on the local genetic 

associations with DNA methylation sites (i.e. cis-meQTLs), which typically had larger 

effects and required less number of pair-wise tests than the trans-meQTL analysis (Sun, 

2014). Because of the large number of SNP-DNA methylation site pairs to test, the trans-

meQTL analysis is more computational intensive and requires a more stringent multiple-

testing correction than the cis-meQTL analysis. The details of these methylome-wide 

meQTL studies have been recently reviewed by Sun (Sun, 2014). Because of tissue and cell 

type specificity of DNA methylation, the genome-wide meQTLs can distribute differently 

from tissue to tissue (Grundberg et al., 2013; A. K. Smith et al., 2014), as well as from cell 

type to cell type (Gutierrez-Arcelus et al., 2013). The functional impact of these tissue-

specific meQTLs may be important to understand the pathophysiology of diseases in target 

tissues. The national institute of health Roadmap Epigenomics Consortium generated 111 

human reference epigenomes for primary cells and tissues, the largest collection so far 

(Roadmap Epigenomics et al., 2015). These reference epigenomes, combined with other 

genomics data, have provided functional and causal insights about several human disease 

(De Jager et al., 2014; Farh et al., 2015; Yao, Tak, Berman, & Farnham, 2014). The maps of 

meQTL and other epigenetics QTLs of many targeted tissues and cell types from sizeable 

samples will continue to assist in the functional understanding of disease processes.

Studies of metabolite QTLs (mQTLs)—Metabolites play critical roles in biological 

pathways, and are partially controlled by genetic regulations. Several systems genetics 

studies of metabolites in human plasma or serum have been reported (Gieger et al., 2008; 

Kettunen et al., 2012; Shin et al., 2014; Suhre et al., 2011; Yu et al., 2013). The levels of a 

set of metabolites are strongly associated with genetic loci, and some of these loci 

overlapped with GWAS loci for disease traits. A non-targeted genome-metabolome-wide 

study analyzed more than 250 metabolites from 60 known pathways in human serum 

samples. Combined with genome-wide SNP data from the same 2,820 individuals with 

metabolomic data, 37 mQTLs were significant at a stringent genome-wide threshold. 

Comparing to most GWAS findings, these associations showed much larger effect sizes than 
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those for disease traits (Suhre et al., 2011) Another population study of 8,330 European 

individuals analyzed 216 serum metabolites using NMR (Kettunen et al., 2012). The GWAS 

of these metabolites identified 31 mQTLs including 11 novel loci without known association 

with any traits or diseases. The most recent large scale mQTL study investigated 529 

metabolites of plasma or serum samples from 7,824 adult Europeans using MS technology. 

A total of 299 SNP-metabolite associations (i.e. mQTLs) at 145 independent loci were 

genome-wide significant after correction for the number of SNP-metabolite association tests 

(Shin et al., 2014). The web-based database provides comprehensive genetic information 

about circulating metabolites in human body.

Studies of Protein QTLs (pQTLs)—aim to assess the correlation between genetic 

variation and protein abundance. Thus, they require precise measurements of both genotypes 

and protein abundance in high-throughput mode. The advance in quantitative proteomics 

allows a genome-wide map of pQTL model organisms (Foss et al., 2007; Picotti et al., 

2013). Early pQTL studies suffered from an inconsistent detection of proteins across 

samples and a limited dynamic range for low abundance proteins (Foss et al., 2007). A 

GWAS of 42 proteins identified eight strong pQTLs with rather large effect sizes (0.19 to 

0.69 standard deviations per allele). However, the panel of proteins only covered a small 

fraction of the proteome (Melzer et al., 2008). Using precise MS measurement of peptides 

over a large number of samples, recent pQTL analyses revealed complex genetic influence 

on the levels of proteins in yeast (Picotti et al., 2013) and mouse (Holdt et al., 2013). Picotti 

et al. used a nearly complete map of yeast proteome and genetic variation data to identify 

strong genetic effects of protein abundance, and to demonstrate epistatic interactions 

affecting protein levels (Picotti et al., 2013). The pQTL analysis of mouse plasma identified 

strong genetic determinants for approximately 40% of tested proteins, and suggested causal 

genetic variants affecting abundance of plasma proteins (Holdt et al., 2013).

Utilities of omic QTLs—Overall, these studies catalogued a large number of QTLs across 

multiple omic layers in multiple tissues and cell types, and provide a rich resource not only 

to understand the genetic regulation of intermediate phenotypes, but also to illustrate 

important molecular networks mediating the interaction between genetic variants and 

environment for human diseases. Recent studies have demonstrated the utilities of the QTL 

data including eQTLs and meQTLs. First, these QTLs have been used to infer the functional 

link between genetic variants and disease traits in recent GWAS, and lead to follow-up 

studies uncovering the biological functions of disease-associated loci. Significant GWAS 

loci are enriched for e QTLs (Nicolae et al., 2010) and meQTLs (X. Zhang et al., 2014). In 

numerous examples, the disease-associated loci were hinted to function via the regulation of 

gene expression or the modification of epigenetic markers (Liu, Aryee, et al.; Shi et al., 

2014). Secondly, these QTLs can be used as the instrumental variables in Mendelian 

Randomization (MR) study of the omic markers for their potential causal roles (Relton & 

Davey Smith, 2010, 2012). MR was initially proposed as an epidemiologic method to obtain 

unbiased estimates of the putative casual effects without conducting a randomized trial 

(Gray & Wheatley, 1991; Katan, 1986). The MR approach uses the genetic variant 

mimicking the biological effects of a modifiable exposure. If the exposure truly alters the 

disease risk, the genetic variant should also be associated with the disease through the causal 
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pathway. Because the genetic variant is randomly assigned to the offspring during meiosis in 

a population, the genotype distribution should not be biased by confounding. Only the 

genetic variant in the causal pathway should be associated with disease outcome by carrying 

the association through the causal exposure. MR approach can be applied to study the causal 

omic risk factor for human diseases. The study design and analytical issues have been 

recently discussed for epigenomic study (Relton & Davey Smith, 2010, 2012). but the same 

principles can be applied to other omic layers.

3.2 Environmental influences on multi-omic markers

Both genetic and environmental factors contribute to the development of human diseases. 

The genetic causes have been demonstrated by decades of research, and have been further 

endorsed by recent findings of thousands of genetic associations with disease traits. 

However, the static genome has its limitation to capture the time-varying changes caused by 

environmental factors or physiological conditions. The non-genetic factors can cause 

important changes in proteins, nucleic acids, lipids and other biomolecules, which have 

direct roles in biochemical and cellular functions. Recent advances of technology enabled 

robust and cost-effective measurement of genomic variants and identified thousands of 

genetic factors associated with human diseases. On the other hand, a comparable high-

throughput approach to studying the environmental causes of human diseases remains 

unavailable, which leaves a large proportion of the phenotypic variance unexplained. 

Exposome refers to the totality of human environmental exposures encompassing both 

exogenous and endogenous exposures (Rappaport, Barupal, Wishart, Vineis, & Scalbert, 

2014), and measures the accumulation of environmental influences and associated biological 

responses throughout the lifespan, including exposures from the environment, diet, behavior, 

and physiological processes (Miller & Jones, 2014). Although we are not able to fully 

measure or model the exposome, improved omics technologies including metabolomics and 

epigenomics provide promising methods to partially investigate the human exposome 

(Miller & Jones, 2014; Rappaport et al., 2014). Metabolomics, epigenomics and other omics 

approaches can complement genomics research by identifying time-varying omic markers in 

pathways and networks associated with a particular environmental exposure and a disease 

state. The multi-omic studies have the potential to transform not only the research of genetic 

variants, but also the research of the environmental exposure and the biological responses to 

the environment underlying disease development.

4. Analytical approaches and methods for multi-omic association studies

Existing studies in human and model organisms highlighted the complexity of genomic 

information flow and the interactive networks in biological processes and disease 

development. The multi-omics approach thus holds the promises to further advance human 

disease research. However, such enthusiasm can only be translated into scientific discoveries 

with sound study designs and solid analytical strategies.

The ideal datasets for such an integrative analysis are multi-omics data all collected on the 

same set of samples. However, this is often not possible because of the cost or because the 

control samples simply do not have the appropriate tissues to study. Another type of datasets 
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is multi-omics data collected on different sets of individuals from different studies. Different 

research questions can be answered for each type of multi-omic dataset using corresponding 

statistical approaches.

4.1 Regression-based joint modeling

The regression-based approach jointly models multi-omics data, using the framework of 

mediation analysis. These data are typically collected on the same subjects. Throughout this 

section, we let Y be the dichotomous disease outcome, G be a SNP or a set of SNPs 

depending on the specific method, E be the mRNA expression of a gene or a set of genes, 

and X be all non-genomic covariates (such as clinical or environmental measurements) with 

the first covariate being 1. In the following, we review four methods in this category.

Huang, Vanderweele, and Lin (2014) developed a method that integrates SNP and gene 

expression data, treating gene expression as the mediator in the causal mechanism from 

SNPs to the disease outcome (Figure 2). They used a logistic regression model

(1)

to characterize the dependence of the disease outcome on a set of SNPs G, the expression E 
of a gene, and other covariates X. A SNP-expression pair can be defined in two ways. First, 

one can choose the SNPs mapped to a gene and the expression of the gene. Second, one can 

choose the eQTL SNPs and the corresponding gene expression based on an eQTL study. The 

dependence of the gene expression on the set of SNPs and other covariates is formulated 

through a linear regression model

(2)

The goal is to test the hypothesis

(3)

This null hypothesis can be interpreted within the framework of causal mediation analysis 

based on the causal diagram in Figure 2. Define the total effect (TE) of the set of SNPs on 

the disease outcome as

in which both probabilities are marginalized over E. The TE of SNPs can be decomposed 

into the direct effect (DE) and the indirect effect (IE). The DE is the effect of the SNPs on 

the disease outcome that is not through gene expression, whereas the IE is the effect of the 

SNPs that is mediated through the gene expression. When the SNPs are associated with the 

gene expression (i.e., eQTL SNPs; αG ≠ 0), the null hypothesis (3) is equivalent to the null 

hypothesis of DE = 0 and IE = 0 (i.e., no TE of the SNPs). When the SNPs have no effect on 
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the gene expression (i.e., not eQTL SNPs; αG = 0), then there is no IE of the SNPs on Y, so 

that the null hypothesis (3) is not equivalent to testing for no TE, but simply whether there 

exists a joint effect of the SNPs, the gene expression, and possibly their interactive effect on 

the disease risk. This causal interpretation is helpful for understanding genetic etiology of 

diseases as well as for applications in pharmaceutical research (Y. Li, Tesson, Churchill, & 

Jansen, 2010).

As the number of SNPs in G may be large and some SNPs may be highly correlated with 

each other due to linkage disequilibrium (LD), the standard likelihood ratio test (LRT) or 

multivariate Wald test for the null hypothesis (3) would use a large number of degrees of 

freedom and would thus have limited power. To overcome this problem, Huang et al. (2014) 

proposed a variance component test. They assumed that the components in the vector βG are 

independent and follow an arbitrary distribution with mean 0 and variance τG, and that the 

components in βGE are independent and follow an arbitrary distribution with mean 0 and 

variance GE. The disease model (1) hence becomes a logistic mixed-effect model, and the 

test of hypothesis (3) becomes a joint test of variance components and a scalar regression 

coefficient:

Therefore, the proposed variance component test is insensitive to the number of SNPs in G. 

As the true disease model is unknown and can be different from (1), e.g., without the 

interaction term, Huang et al. (2014) further proposed an omnibus test that accommodates 

different possible disease models.

Later, Huang (2015) extended the work of Huang et al. (2014) to jointly analyze SNP, DNA 

methylation, and gene expression data with respective to a disease outcome, adding the layer 

of DNA methylation data to the existing framework. In addition, the earlier work only 

focused on testing the overall effect of a set of SNPs and the expression of a gene, without 

distinguishing the mechanisms of DE of the SNPs on the disease and IE of the SNPs 

mediated by the expression. In the later work, Huang (2015) studied path-specific effects, as 

depicted in the causal diagram (Figure 3), by jointly modeling a set of SNPs within a gene, 

the DNA methylation and expression of the gene, and the disease outcome as a biological 

process. Let M denote the DNA methylation measurement at a CpG site. Then the logistic 

model in (1) is expanded as

(4)

The dependence of the DNA methylation on the set of SNPs and other covariates and the 

dependence of the gene expression on the SNPs, DNA methylation, and other covariates are 

specified in the linear regression models
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(5)

and

(6)

respectively, where , and FM and FE|M are any 

arbitrary distributions.

An arbitrary set of regression coefficients in model (4) can be tested. For example,

(7)

can be assessed by a variance component test as proposed in Huang et al. (2014). To provide 

a mechanistic interpretation of the hypothesis (7), Huang (2015) first decomposed the 

overall genetic effect into three path-specific effects: 1) the DE of the SNPs on the outcome, 

not through the DNA methylation or the expression (denoted by ΔG→Y), 2) the IE of the 

SNPs on the outcome that is mediated through the gene expression but not through the DNA 

methylation (ΔG→E→Y), and 3) another IE of the SNPs on the outcome that is mediated 

through the DNA methylation (ΔG→MY). Within the causal mediation framework, the 

correspondence of a path-specific effect and a set of regression coefficients in the disease 

model (4) can be established. For example, the DE ΔG→Y corresponds to βG, βGM, βGE, and 

βGME, which is not influenced by the relationship among G, M, and E. By contrast, the IE 
ΔG→E→Y of SNPs mediated through expression is affected by the G-M-E relationship. 

Evidently, if there does not exist an effect of G on E, ΔG→E→Y is zero. If there exists an 

effect of G on E, ΔG→E→Y corresponds to βE, βME, βGE, and βGME; it means that the test of 

the hypothesis (7) is equivalent to the test of the IE of SNPs mediated through gene 

expression. To determine the relationship among G, M, and E, one can rely on prior 

knowledge of existing biological evidence, or statistical analyses that estimate the 

relationship, or model selection criteria such as Akaike information criterion (AIC) (Akaike, 

1974) and Bayesian information criterion (BIC) (Schwarz, 1978).

To apply this method to the genome-wide data, it is unclear how to select the DNA 

methylation measurement for a gene. It is possible to consider each of the CpG sites that 

map to the gene including the upstream and downstream of the gene, but this strategy will 

result in too many tests. The data application of Huang (2015) does not illustrate this point. 

Instead, the application concerns 12 methylation loci, a micro-RNA expression, and a gene 

expression, substituting a set of methylation loci for the set of SNPs in the methodology and 

substituting a micro-RNA expression for the DNA methylation.

While Huang et al. (2014) and Huang (2015) jointly analyze multi-omics data from the same 
subjects, Huang (2014) extended the methodologies to analyze the data from different 
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subjects. This is motivated by the fact that the GWAS and QTL studies are likely to be 

conducted in different subjects due to the availability of tissue samples and the tissue 

specificity of expression and DNA methylation. Specifically, in GWAS, SNPs and the 

disease outcomes are collected, but not gene expression/methylation; in QTL studies, SNPs, 

gene expression and methylation are collected, but not the disease outcome. Define μM = 

E(M | X, G), μE = E(E | X, G) and μME = E(ME | X, G). From expression (5), we have μM = 

GTδG + XTδX. The μE and μME can be obtained by marginalizing (6) over M. With different 

omics data on different subjects, the only testable effect is the overall SNP effect on the 

disease outcome, not any of the path-specific effects. In the statistic of the corresponding 

variance component test developed in Huang (2015), the M, E and ME terms should be 

replaced by the estimated μM, μE and μME, respectively. Thus, the testing procedure in 

Huang (2015) can be applied in settings where methylation and/or expression data are not 

collected in the subjects of GWAS but their associations with SNPs (i.e., μM, μE and μME) 

can be consistently estimated from external meQTL and eQTL studies. Note that the 

meQTL and eQTL studies should be conducted on the same subjects in order to calculate 

μME.

Zhao et al. (2014) considered the same omic datasets that Huang et al. (2014) have dealt 

with, i.e., SNP, gene expression, and disease data collected on the same set of subjects. 

However, Zhao et al. (2014) focused on testing the IE of the SNPs on the disease outcome 

that is regulated by gene expression. They proposed the following two-stage model for each 

SNP G,

(8)

(9)

where E may include the expression for a set of genes. Model (9) is significantly different 

from model (2) in that the former does not consider the regulation of the SNP on the 

expression of an individual gene, but on one particular linear combination of them; it hence 

requires estimating fewer parameters. Note that this is the same linear combination of gene 

expression in the disease model (8). Based on the two-stage model, one can test for SNP-

disease association by testing H0: αG = 0, assuming that the SNP affects disease risk through 

affecting the gene expression levels. This work is analogous to the work by Huang et al. 

(2014) but focuses solely on increasing the power of SNP association testing, rather than on 

assigning causal interpretations to any of the parameters. When a particular set of genes or a 

pathway is of interest such that the number of genes in E does not exceed the number of 

subjects, Zhao et al. (2014) proposed to use the standard estimating equation theory for 

inference. To apply their method in an agnostic, genome-wide manner, they proposed to 

consider one gene in E at a time; to reduce the multiple testing burden imposed by the huge 

number of pairwise tests they proposed to restrict to testing only those SNPs located cis to 

each gene. This method works best when there is no DE of the SNPs on the disease 

outcome, such that the SNPs act only through regulating gene expression. In this case, the 
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gene expression can help explain the variability of the SNP effect on disease and thus 

increases the power of detecting the overall effect of SNPs on disease. Indeed, Kenny and 

Judd (2014) noted that in the absence of a DE, testing the IE in a mediation analysis can be 

dramatically more powerful than the standard method testing SNP-disease associations 

directly. Even in the presence of a DE so that model (8) mis-specifies the true disease risk, 

Zhao et al. (2014) showed, both analytically and numerically, that their method is still more 

powerful than the standard method when the magnitude of DE is lower than the magnitude 

of IE.

4.2 Matching Patterns of eQTL and GWAS

He et al. (2013) developed a method to detect disease-associated genes (i.e., genes whose 

expression level influences the disease risk) by matching the eQTL patterns of each gene 

with the patterns of disease-associated SNPs. This method is especially useful when eQTL 

and GWAS studies were conducted on different samples. The rationale is that, for a disease-

associated gene, any genetic variation that perturbs its expression is also likely to influence 

the disease risk (Figure 4). Thus, the eQTLs of the gene, which constitute a unique “genetic 

signature” of this gene, should overlap significantly with the set of loci associated with the 

disease. Because many eQTLs act in trans, this approach can identify important genes that 

are distal to any GWAS association signals and thus impossible to be detected with GWAS 

alone.

He et al. (2013) implemented the above idea of genetic signature matching by a Bayesian 

framework. Suppose that, given a gene, there are m putative eQTLs that pass some low, less 

stringent significance threshold in the eQTL study. Let Uj and Vj be binary indicators to 

represent whether the ith SNP is associated with the expression and the disease outcome, 

respectively. Let Z be a binary indicator that represents whether the expression of the gene is 

associated with the disease. If, for a significant number of SNPs, Uj = 1 and Vj = 1, then it is 

likely that Z = 1. The available data consist of the p-values of SNPs relative to the gene 

expression from an eQTL study, denoted by the vector peQTL, and the p-values of the SNPs 

relative to the disease outcome from a GWAS, denoted by the vector pGWAS. Although Uj 

and Vj are not observed, they are related to peQTL,j and pGWAS,j: when peQTL,j (pGWAS,j) is 

small, it is likely that Uj (Vj) = 1. Thus, the data peQTL and pGWAS can be used to test the 

hypothesis H0: Z = 0 that the gene is not associated with the disease. The inference of Z is 

based on the Bayes factor (BF):

which is the ratio of the probabilities of data under H1 and H0. When all SNPs are unlinked, 

the BF of the gene is the product of the BFs of all SNPs:
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When there is LD among SNPs, He et al. (2013) proposed to use a block-level BF, which is 

the mean of the BFs of all SNPs in that block (Servin and Stephens, 2007). The probability 

P(peQTL,j, pGWAS,j | Z) is computed by summing over the hidden variables Uj and Vj:

The components on the right hand side are specified as follows. Uj is a Bernoulli variable 

with the success probability α, which is the prior probability of a SNP being associated with 

the gene expression. He et al. (2013) chose α = 1.0 × 10−3 for cis-eQTLs (within 1Mb of the 

gene) and α = 5.0 × 10−5 for trans-eQTLs. When Z = 0, the gene is irrelevant to the disease 

and thus Uj and Vj are independent. When Z = 1 and Uj =0, this SNP is not an eQTL and 

thus Uj and Vj are also independent. In both cases, Vj is a Bernoulli variable with the 

success probability β, which is the prior probability of a SNP being associated the disease. 

He et al. (2013) chosen β = 1.0 × 10−3. When Z = 1 and Uj = 1, Vj should always be 1, as a 

true eQTL of the gene is expected to be associated with the disease. The probabilities 

P(peQTL,j | Uj) and P(pGWAS,j | Vj) reflect the distributions of p-values under the null or 

alternative hypothesis. Let TeQTL,j and TGWAS,j be the test statistics corresponding to peQTL,j 

and pGWAS,j, respectively. Under the null, P(TeQTL,j | Uj = 0) and P(TGWAS,j | Vj = 0) follow 

the standard normal distribution. Under the alternative, P(TeQTL,j | Uj = 1) and P(TGWAS,j | 

Vj = 1) depend on the tests through which the test statistics are derived and the effect size of 

the SNP. Finally, the BF of the jth SNP, Bj, can be expressed as

where

are BFs measuring the association of the jth SNP with the expression and the disease, 

respectively. Thus the BF of the gene being tested depends only on α, β, and SNP-level BFs. 

(If Bayesian inference has been performed in both the eQTL and GWAS analysis, it is 

straightforward to combine the resulting BFs to obtain the BF for the gene.) To assess the 

statistical significance of BF, a simulation approach was proposed to compute the p-value of 

the BF for a gene.

Because this method does not directly test the relationships between genotypes, gene 

expression, and disease outcomes, but only requires p-values, the eQTL and GWAS data do 

not have to come from the same subjects. This method is also generalizable to molecular 

traits other than gene expression, such as metabolites, non-coding RNAs, and epigenetic 

modifications. It has been implemented in a software program called Sherlock. The name 

implies that the method works as a detective, comparing the fingerprint from a crime scene 
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(the GWAS signature) against a database of fingerprints (the eQTL signature of all genes) to 

determine the real culprit (disease-associated genes).

4.3 Aggregating evidence of multi-omics data over gene set/pathway

Xiong et al. (2012) developed a statistical framework, called Gene Set Association Analysis 

(GSAA), that aggregates genetic and gene expression evidence in terms of “association 

scores” at the level of gene sets or pathways for genome-wide association analysis of gene 

sets or pathways. The gene expression data and the SNP genotype data are allowed to be 

collected on the same samples or different samples. The dashed box in Figure 5 illustrates 

the three-step aggregation procedure of GSAA without consideration of DNA methylation 

sites, proteins and metabolites.

First, the SNP set association score and the gene expression association score are calculated 

respectively. The gene expression association score that reflects the degree to which a gene 

is differential expressed between cases and controls is calculated as the difference of the 

group means scaled by the standard deviation. The SNP set association score is the 

maximum of the single-SNP score over all the SNPs mapped to the gene region, where the 

single-SNP score is calculated as the genotype- or allele-based χ2 statistic and the gene 

region is a pre-defined genomic interval encompassing the gene and the upstream of and 

downstream from the transcribed region.

Second, the SNP set association score and the gene expression association score are 

combined to generate a gene association score. This step integrates evidence for association 

across the gene expression and SNP data. Before the integration of expression and SNP data, 

the absolute values of the gene expression scores are taken in order to capture both up-

regulation and down-regulation in pathways and to be consistent with the magnitude of the 

SNP set association scores. Both gene expression score and SNP set score are also 

standardized by the mean and standard deviation of its respective null distributions, which 

are generated by a phenotype-based permutation procedure, so that the scores from different 

statistical tests or on different scales are brought on a common scale and thus directly 

comparable with each other. The gene association score is the sum of the two standardized 

scores.

Third, the gene set is evaluated by a weighted Kolmogorov-Smirnov (K-S) statistic (i.e., 

gene set association score) to determine whether the genes belonging to this gene set are 

preferentially near the top of the ranked ordered list based on gene association scores. Based 

on a phenotype-based permutation procedure that preserves LD structure in SNP data and 

gene-gene correlation structure in gene expression data, the false discovery rate (FDR) or the 

family-wise error rate (FWER) can be calculated and the significant gene sets are declared 

controlling for FDR or FWER below a certain threshold.

Although Xiong et al. (2012) only focused on integrating the gene expression and SNP 

genotype data, the flexibility of this framework allows integration of other omic data such as 

DNA methylation, proteomics, and metabolomics data (Figure 5). Analogous to the SNP set 

association score, we can first calculate the χ2 statistic at single CpG sites based on the beta 

values (measuring DNA methylation level) and then obtain a CpG-set association score for 
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the gene using a maximum statistic. We can also calculate the χ2 statistic at each protein. 

These statistics are aggregated into the gene association score after proper standardization, 

along with those for SNP sets and gene expression. Finally, we perform a weighted K-S test 

for metabolites within each pathway to obtain a metabolite-set association score. The 

pathway association scores are the sums of the gene- and metabolite-set association scores.

5. Discussion

The thorough scan of a single type of biologically function features (e.g., GWAS and 

EWAS) continues to provide insights into the mechanism and etiology of human diseases. 

To fully elucidate the dynamic molecular system and understand the biological processes 

involved in disease development, we need to not only look through the right lens (i.e. omic 

layer) at the right time, but also to capture multiple dimensions of biological information 

flow together. Despite of its appealing scientific gain, the materialization of the multi-omics 

study has been hampered mainly due to the lack of feasible technologies for large-scale 

population studies, availability of biospecimens and the high cost attached to them. In recent 

years, the core technologies behind the high-throughput assays, such as sequencing and 

mass spectrometry, have become more and more sensitive, accurate, and affordable. 

Interrogation of complementary omics beyond a single omic layer has been explored for 

several diseases and model systems to demonstrate the utility and feasibility of multi-omics 

research. Multi-omics approach has emerged as a promising and power tool to 

comprehensive study human diseases at a system level across several types of functional 

layers over time.

Because of the known issues of experimental and biological variations, each layer of omic 

data needs to be cautiously processed, controlled for data quality, corrected for technical bias 

and properly adjusted in the analysis. To conduct a meaningful multi-omic study, the 

collection and production of a high-quality data set is an essential step and should never be 

underestimated. Although the technical and analytical details for preparing each type of 

omic data are beyond the scope of this article, we want to emphasize the data quality issues 

of multi-omic analysis. A close collaboration and continuous communication between 

scientists with different expertise in each related subject area (e.g., laboratory science, 

genomics, epidemiology, statistics and bioinformatics) is essential to fully address these 

issues.

Current multi-omics research of human diseases demands a large amount of resources to 

carry out a population study. The biomedical research community should invest not only in 

the technological innovation and data generation, but also in the design and development of 

analytical strategies to fully use of the big data from these new technologies. The 

consideration of multi-omic analysis should be integrated into the early phase of study 

design, rather than a post-hoc process after the data production. Given the rapid development 

in both laboratory assays and analytical capabilities, we anticipate that the multi-omics 

approach will grow rapidly to provide novel means to study human health and diseases. 

Such approach can be extremely effective to investigate understudied and rare diseases 

where the biological and pathophysiological mechanisms are largely unknown. With 

available clinical and epidemiologic samples, the multi-omics approach can facilitate a giant 
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leap in understanding these disease conditions, and to offer effective treatment and 

prevention strategies in the era of precision medicine. In not too distant future, one or several 

of the omics technologies can be part of the standard precision medicine panel, in addition to 

the genomic data, which will accurately profile an individual’s genetic predisposition and 

environmental risk to guide diagnosis, and to optimize treatment and prevention of varies 

human diseases.
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Figure 1. Conceptual model of multi-omics and human disease
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Figure 2. Causal diagram of SNP (G), gene expression (E), and disease outcome (Y)
Gene expression is a potential mediator of genetic effects on the disease outcome.
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Figure 3. Causal diagram of SNP (G), DNA methylation (Me), gene expression (E), and disease 
outcome (Y)
Three path-specific effects are 1) Direct effect of SNPs on outcome (dashed red line), 2). 

Indirect effect of SNP mediated through gene expression but not through methylation 

(dotted blue lines), and 3). Indirect effect of SNP mediated through methylation (solid black 

lines).
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Figure 4. Matching the genetic signatures of gene expression traits (eQTLs) to that of the disease 
trait to identify gene expression-disease associations
Ui: binary indicator variables to represent the true SNP-gene expression causal relationship;, 

Vi: binary indicator variables for the true SNP-disease relationship. Z is a binary variable 

indicating whether the gene expression trait influences the disease.
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Figure 5. Aggregation model of multi-omics evidence
An omnibus test of pathways enriched for trait-associated SNPs, gene expressions, CpG 

sites, proteins and metabolomic features. This multi-layer approach allows aggregation of 

single association signals from individual markers to genes to pathways. The original 

aggregation model limited to SNPs and gene expression levels within the dashed box.
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