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𝐾 nearest neighbors (KNN) are known as one of the simplest nonparametric classifiers but in high dimensional setting accuracy
of KNN are affected by nuisance features. In this study, we proposed the 𝐾 important neighbors (KIN) as a novel approach
for binary classification in high dimensional problems. To avoid the curse of dimensionality, we implemented smoothly clipped
absolute deviation (SCAD) logistic regression at the initial stage and considered the importance of each feature in construction of
dissimilarity measure with imposing features contribution as a function of SCAD coefficients on Euclidean distance. The nature
of this hybrid dissimilarity measure, which combines information of both features and distances, enjoys all good properties of
SCAD penalized regression and KNN simultaneously. In comparison to KNN, simulation studies showed that KIN has a good
performance in terms of both accuracy and dimension reduction. The proposed approach was found to be capable of eliminating
nearly all of the noninformative features because of utilizing oracle property of SCAD penalized regression in the construction of
dissimilarity measure. In very sparse settings, KIN also outperforms support vector machine (SVM) and random forest (RF) as the
best classifiers.

1. Introduction

The aim of classification methods is to assign true label to
a new observation. Despite the fact that classification is one
of the oldest statistical methods, finding the mechanism by
which new observations are classified with the lowest error is
still challenging. Although Fernández-Delgado et al. showed
that there was no classifier which has the highest accuracy
in all the situations, they present random forest (RF) and
support vector machine (SVM) as the best classifiers among
182 classifiers [1].𝐾 nearest neighbors (KNN) are known as one of the
simplest nonparametric classifiers. For a fixed value of 𝑘,
KNN assigns a new observation to the class of majority of the𝑘 nearest neighbors [2, 3]. Nevertheless, in high dimensional
setting, it is affected by nuisance (noninformative) features
and suffers from “curse of dimensionality” [4–6]. In recent
years, the effect of the curse of dimensionality on KNN has

been studied by many authors. For example, Pal et al. showed
that, in high dimensional setting, KNN classifier misclassifies
about half of the observations [3, 7] and Lu et al. have noted
that the nature of sparsity in high dimensional situation can
lead to unstable results [5]. As a result of dimensionality
curse, it has been argued by some authors that nearest neigh-
bor can become ill defined because all pairwise distances
concentrate around a single value (distance concentration) [3,
4, 7]. Beyer et al. stated that distance concentration can occur
evenwith as few as 15 dimensions [7]. In 2010, Radovanović et
al. introduced k-occurrences as follows: “the number of times
a point appears among the 𝑘 nearest neighbors of other points
in a data set.” They also showed the deleterious impact of
points with very high 𝑘-occurrences called hubs [6]. Another
challenge in KNN method is about ties when sample size is
small. Empirical practice showed that 𝑘 is not greater than
square root of number of training data items [2]. Therefore
for binary classification, when 𝑘 is even, there is the chance of
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ending with a tie vote. To eliminate this challenge, KNN only
considers odd numbers [2, 8].

In the last decade, dimension reduction techniques as
a remedial method for classification with KNN in high
dimensional settings have been more attentive. Fern and
Brodley proposed random projection, which was based on a
random matrix. This random matrix projects the data along
a subspace with lower dimension, so KNN classifier utilizes
the reduced subspace for classification task [9]. Deegalla and
Boström proposed principal component based projection
when the number of PCs was lower than data dimensions.
They recommended using aforementioned PCs instead of ini-
tial features for dissimilarity measure construction and find-
ing the 𝑘 nearest neighbors [10]. Another popular approach is
to employ a threshold (so called hard threshold) and truncate
less important features. In this approach, only features greater
than the threshold are contributed to KNN classifier [11]. Pal
et al. proposed a new dissimilarity measure based on mean
absolute difference of distances (MADD) to cope with curse
of dimensionality [3]. Finally in 2013, Lu et al. stated that, in
the sparse situations to enhance accuracy, a classifier should
combine both linearity and locality information [5].

In this manuscript, we suggest a hybrid method called K
important neighbors (KIN) that implements smoothly clipped
absolute deviation (SCAD) regression and uses a function of
the obtained coefficients as weights in construction of dis-
similarity measure. Proposed method combines information
of features employing logit link function (i.e., linearity infor-
mation) and distances (i.e., locality information) in the dis-
similarity measure, thereby leading to both feature selection
and classification. In facing ties, KIN assign new observation
to a class with lower amount of dissimilarity measure.

The rest of this paper is organized as follows: Section 2
presents a brief description about KNN, SCAD penalized
regression, random forest (RF), and support vector machine
(SVM). In Section 3, we present our proposed method.
Section 4 compares the accuracy of KIN with KNN, RF, and
SVM using simulation studies and benchmark data sets and
finally, we provide discussion about the proposed classifier
and conclude this manuscript in Section 5.

2. Statistical Methods

2.1. 𝐾 Nearest Neighbors (KNN). The 𝑘 nearest neighbors
classifier assigns a new observation into a class with major-
ity votes in 𝑘 nearest neighbors [12, 13]. The dissimilarity
measure in KNN is usually defined in terms of Minkowski
distance as follows:

𝑑 (𝑥𝑎, 𝑥𝑏) = ( 𝑝∑
𝑗=1

(𝑥𝑎𝑗 − 𝑥𝑏𝑗)𝑞)
1/𝑞

, (1)

where 𝑝 is the number of features, 𝑞 is a positive constant
(usually 1 or 2), and 𝑑(𝑥𝑎, 𝑥𝑏) is distance between 𝑎 and 𝑏
points. Optimum amounts of 𝑘 (number of neighbors) can
be obtained using cross validation technique [2, 8].

2.2. Smoothly Clipped Absolute Deviation (SCAD). Variable
selection is one of the key tasks in high dimensional statistical

modeling. Penalized likelihood approach by handling curse
of dimensionality performs estimation and variable selection
simultaneously [14]. Smoothly clipped absolute deviation
(SCAD) logistic regression proposed for feature selection in
high dimension and low sample size settings by Fan and Li is
as follows:

𝐿 (𝛽; 𝜆) = 𝑙𝑛 (𝛽) + 𝜆 𝑝∑
𝑗=1

𝑝 (𝛽𝑗) ,

𝑝 (𝛽𝑗) = 𝐼 (󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝜆) + (3.7𝜆 −
󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨)+2.7𝜆 𝐼 (󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 > 𝜆) ,

(2)

where 𝛽𝑇 = (𝛽1, 𝛽2, . . . , 𝛽𝑃) is vector of coefficients, 𝑙𝑛(𝛽)
is maximum likelihood estimator of regression model, 𝑝(𝛽)
is penalty function, and 𝜆 is a positive constant called
regularization (tuning) parameter [15, 16]. The amount of
penalty depends on 𝜆 which is estimated using 5- or 10-fold
cross validation technique. SCADhas goodproperties of both
best subset and ridge regression which yield continuous and
unbiased solutions. Moreover, it can estimate nuisance fea-
tures as zero and signal (informative) features as nonzerowith
probability very close to one.This advantage of SCAD regres-
sion called “oracle” property and means that SCAD is able to
estimate coefficients of all the features truly with probability
which tends to one [15]. In short, SCAD selects the correct
model as well as we hope, even in very sparse and low sample
size situations.

2.3. Random Forest (RF). Random forest (RF) is a method
for regression or classification that is based on an ensemble
of unpruned trees. In RF, each tree is built on a bootstrap
sample (almost two-thirds of the observation) and grows via
a random sample of features at each split. For classification
tasks, this random sample is the square root of the total fea-
tures.This is repeated hundreds of times for building a forest.
Optimum number of trees in RF can be estimated by out of
bag error and the class withmajority votes is considered as the
class of new observation [8, 17]. In the current study, random-
Forest package was used and default number of trees set at
500.

2.4. Support Vector Machine (SVM). The aim of support
vector machine (SVM) is to find a line which maximizes the
margin between two classes. To attain this goal, SVM incor-
porates kernel trick that allows the expansion of the feature
space. Also, support vector refers to any observation which
for its class lies on the wrong side of themargin. Expansion of
the feature space depends on the number of support vectors
estimated by cross validation [8, 18]. In the current study,
we used linear kernel and cost function ranging between
0.001 and 5 in e1071 package.

3. 𝐾 Important Neighbors (KIN) Algorithm
for Binary Classification

Suppose that 𝑅 = {(𝑦𝑖, 𝑥𝑖), 𝑖 = 1, . . . , 𝑛𝑟} is a training data
set and 𝑦𝑖 ∈ {0, 1} denotes class membership and vector of
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p predictor features for 𝑖th observation represented as xi =(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝).
After random division of data into training and testing

set, SCAD logistic regression was fitted on training data set
which leads to estimating coefficients of nuisance features
to be exactly zero. In the next step, the contribution (impor-
tance) of each feature is calculated using the following
formula:

𝑤𝑗 =
󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨∑𝑝𝑗=1 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 𝑗 = 1, 2, . . . , 𝑝, (3)

where 𝛽𝑗 is coefficient of 𝑗th feature in SCAD logistic regres-
sion. By imposing the obtained vector of contributions into

Euclidian distance, we introduce our proposed dissimilarity
measure as follows:

𝑑 (𝑥𝑎, 𝑥𝑏) = ( 𝑝∑
𝑗=1

𝑤𝑗 (𝑥𝑎𝑗 − 𝑥𝑏𝑗)2)
1/2

, (4)

where 𝑑(𝑥𝑎, 𝑥𝑏) is distance between 𝑎 and 𝑏 points.
In the next stage, we obtain optimum number of neigh-

bors (𝑘) using the proposed dissimilarity measure and con-
sidering both even and odd values. A new observation was
assigned to class one (𝑦 = 0) if 𝑘1 > 𝑘2 and assigned to class
two (𝑦 = 1) if 𝑘1 < 𝑘2 where 𝑘𝑖 is number of observations
in the 𝑖th class among 𝑘 nearest neighbors. When a tie occurs
(𝑘1 = 𝑘2) assignment rule is as follows:

𝑦 =
{{{{{{{{{{{{{

0, if ∑
𝑘
1

( 𝑝∑
𝑗=1

𝑤𝑗 (𝑥𝑎𝑗 − 𝑥𝑏𝑗)2)1/2 < ∑
𝑘
2

( 𝑝∑
𝑗=1

𝑤𝑗 (𝑥𝑎𝑗 − 𝑥𝑏𝑗)2)1/2 ,
1, if ∑

𝑘
1

( 𝑝∑
𝑗=1

𝑤𝑗 (𝑥𝑎𝑗 − 𝑥𝑏𝑗)2)1/2 > ∑
𝑘
2

( 𝑝∑
𝑗=1

𝑤𝑗 (𝑥𝑎𝑗 − 𝑥𝑏𝑗)2)1/2 ;
(5)

it means assigning new observation into class with lower
dissimilarity index.

To avoid a significant decrease in sample size of each fold,
5-fold cross validation was implemented for choosing opti-
mumnumber of neighbors (𝑘) because sample size in training
data set may be as small as 30. In 5-fold cross validation
technique, training data set (40% of total sample size in the
current study) may randomly be divided into 5 equal parts.
Each time one part is considered as validation while another
part was used for training the model.This is repeated 5 times,
so all the parts are used just once as validation set and mean
error of the 5 repeat was calculated as cross validation error.
Finally, after obtaining the optimum value 𝑘 of neighbors and
using a matrix of dissimilarity measure, testing set (60% of
total sample size in the current study) was assigned into the
groups. In order to calculate misclassification rate (MC), the
following formula was used:

MC = 1∑
𝑦=0

𝜋𝑦𝑚𝑦𝑛𝑦 , (6)

where 𝜋𝑦, 𝑚𝑦, and 𝑛𝑦 represent ratio of observation, number
of misclassifications, and sample size of the desired class,
respectively. The algorithm used is described in a flowchart
and displayed in Figure 1.

4. Numerical Comparisons

4.1. Simulation Framework. In the following scenarios, the
misclassification rate of the proposedmethod called KINwas
numerically compared with the traditional KNN, random
forest (RF), and support vectormachine (SVM)methods.The
reason for the choice of RF and SVM is that they are the
best among all of the current classifiers. All the simulations

are performed in R 3.1.3 software and 5-fold cross validation
was used to estimate optimum number of trees and support
vectors in RF and SVM, respectively, or optimum number of
neighbors in KNN and KIN methods.

We simulated 250 data sets for each scenario, com-
prising 100 or 200 observations from the model 𝑌 ∼
Bernoulli(𝑝(𝑋𝑇𝛽)), where 𝑌 denotes class membership,𝑝(𝑢) = (exp(𝑢))/(1 + exp(𝑢)), and 𝑋 is a vector of features
and each feature has standard normal distribution. Let 𝛽 =(𝛽non zero, 𝛽zero), where 𝛽non zero is a vector of 1 for their odd
components and 2 for their even components and𝛽zero is vec-
tor of zero components. Degree of sparsity was determined by𝛽zero/𝛽 which was considered as 90, 95, or 98% and number
of features was set to 100, 300, or 500. Moreover to assess
effect of correlation between features on the accuracy of the
proposed classifier, a kind of autoregressive correlation was
used. In this correlation pattern, the closer two variables are
together, the more correlation is between them as follows:
the correlation between 𝑥𝑗󸀠 and 𝑥𝑗 (two arbitrary features)
was considered as 𝜌|𝑗󸀠−𝑗| where 𝜌 was 0.8 or 0.4. In all the
scenarios, we split simulated data set randomly into training
and testing set with ratio of 40% and 60%, respectively. The
reason for choosing smaller sample size for training set was
assessing the accuracy of the proposed model compared to
the best classifiers in low sample size settings.

4.2. SimulationResults. Table 1 compares the averagemisclas-
sification rate ofKNNandKIN in all the scenarios.The results
indicate that using proposed KIN improves classification
accuracy of KNNon average of 4.9, 5.9, and 8.8%when degree
of sparsity is 90, 95, and 98%, respectively. In Table 1, we
also demonstrate oracle property of KIN in the number of
false positive variables (#FP) columns. The mean number of



4 BioMed Research International
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Figure 1: 𝐾 important neighbors (KIN) algorithm for classification.
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Figure 2: Misclassification rate of proposed KIN versus SVM, RF, and KNN for 100, 300, and 500 (up to down) features (𝑁 indicates sample
size).

false positive variables was 1.9, 2.7, and 3.0 when numbers of
variables were 100, 300, and 500, respectively. In fact, the pro-
posedmethod successfully eliminates 98.8, 98.7, and 98.8% of
noisy features in 90, 95, and 98% degree of sparsity scenarios,
respectively. Our results indicated that KIN also has good
performance in terms of assigning true weight to signal
(nonzero) features. We called this true contribution (TC).
Table 1 showed that the average true contributions were 80.2,
77.1, and 69.8% for 100, 300, and 500 predictors, respectively.

Misclassification (MC) rate of KIN was compared to
KNN, RF, and SVM for the above scenarios in Figure 2. This
figure indicates that the superiority of proposed KIN rather
than KNN is obvious in all the situations. Also in very sparse
situations where degree of sparsity is 98%, KIN outperforms
RF and SVM most of the times and has comparable accu-
racy in the other sparse situations. We also introduced the
probability of achieving the maximum accuracy (PAMA)

for each of the classifiers, as the number of scenarios for
which the classifier achieves the highest accuracy (among
4 classifiers) is divided by the total number of scenarios.
Table 2 shows the values of PAMA for each classifier in
different degrees of sparsity. We can infer that the probability
of achieving the maximum accuracy in KIN increases when
degree of sparsity increases to 100% as the highest amount of
PAMA for KIN is 66.7%, where only 2% of features are signal.
Note that PAMAvalues are very far from 100% indicating that
no classifier is the best for all settings.

Another useful measure which can be taken into con-
sideration with very near accuracy from the best classifier is
the probability of achieving more than 95% of the maximum
accuracy (P95). The P95 for each classifier is estimated as the
number of scenarios in which it achieves 95% or more of
the maximum accuracy (among 4 classifiers), divided by the
total number of scenarios. Once again, we can see that the
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Table 2: Comparison of methods in terms of probability of achieving the maximum accuracy (PAMA) and probability of achieving more
than 95% of the maximum accuracy (P95).

Degree of sparsity Method PAMA P95

90%

Random forest (RF) 45.8% 66.7%
Support vector machine (SVM) 50.0% 87.5%𝐾 nearest neighbors (KNN) 0.0% 20.8%𝐾 important neighbors (KIN) 8.3% 41.7%

95%

Random forest (RF) 50% 79.2%
Support vector machine (SVM) 29.2% 79.2%𝐾 nearest neighbors (KNN) 0.0% 29.2%𝐾 important neighbors (KIN) 20.8% 75%

98%

Random forest (RF) 20.8% 75%
Support vector machine (SVM) 12.5% 41.7%𝐾 nearest neighbors (KNN) 0.0% 33.3%𝐾 important neighbors (KIN) 66.7% 100%

Total

Random forest (RF) 38.9% 73.6%
Support vector machine (SVM) 30.6% 69.4%𝐾 nearest neighbors (KNN) 0.0% 27.8%𝐾 important neighbors (KIN) 32% 72.2%

Table 3: Accuracy of different classifiers on benchmark data sets.

Data set 𝑝 Train Test RF SVM KNN KIN
Connectionist bench 60 104 104 78.7 74.4 71.5 74.0
Ozone 72 102 410 80.6 79.5 72.4 75.4
Prostate cancer 600 70 34 69.1 75.2 66.0 72.3
Colon cancer 2000 32 32 65.7 77.9 62.5 74.3
Liver transplant 39 102 578 88.7 85.7 88.6 89.1

proposed KIN is the best classifier in terms of P95 for very
sparse situations and totally, KIN is dominant over the SVM
and KNN (Table 2).

4.3. Benchmark Data Sets. In order to further assess the
KIN classifier, we analyzed five data sets. The first two data
sets were taken from the UCI machine learning repository
(http://archive.ics.uci.edu/ml/datasets.html). Prostate cancer
data set was from SIS package (only the first 600 features) and
colon cancer data set from HiDimDA package in R software
[19, 20]. We also used liver transplant data set as described in
[21] to examine the accuracy of KIN in very unbalance class
membership situations. In liver transplant data set, only 11%
of patients were dead (𝑦 = 1) and the rest were alive (𝑦 = 0).
In these data sets, instead of using specific training and testing
set, we used random partitioning of the whole data and for
each of them, we form 200 training and testing sets and
average accuracy rate was computed over these 200 parti-
tions.

The results of classification on benchmark data sets are
summarized in Table 3. For data sets with small or moderate
number of features such as liver transplant, connectionist
bench, and ozone, there was ignorable difference between
accuracy of KIN and that of KNN. The accuracy of KIN was
higher thanKNN in very high dimensional data sets (prostate
and colon cancer). Although simulation results showed that

accuracy of KIN is affected by data sets’ degree of sparsity, in
comparison to SVM and RF as the best classifiers, proposed
KIN has comparable accuracy in high dimension and low
sample size (in training data set) settings.

5. Discussion

Regarding the idea of Lu et al. that demonstrates how to
enhance accuracy, a classifier should combine both linearity
and locality information [5], we proposed a novel dissimilar-
ity measure for 𝐾 nearest neighbors classifier. To avoid dele-
terious effects of curse of dimensionality on KNN method,
all the proposed solutions up to now can be summarized
into two main categories: (1) dimension reduction which is
based on feature selection or feature extraction [22–25] or (2)
introducing a new dissimilarity measure [3]. From this per-
spective, assigning KIN in both of the above categories can be
justified. By handling curse of dimensionality, KIN is capable
classifier to overcome distance concentration and does not
allow creating hubs. Moreover, managing ties challenge in
small sample size leads to stable results.

Proposed feature extraction techniques for dimension
reduction in KNN such as principal component analysis [10],
linear discriminant analysis [26], locality preserving projec-
tions [27], random projection [9, 10], and nearest feature sub-
space [24] have two main defects: (1) feature extraction does

http://archive.ics.uci.edu/ml/datasets.html
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not explain 100% of features information, thereby leading to
waste of some valuable information and (2) since extracted
features are combination of both signals and noises, the
importance of each feature in classificationmay not be clearly
achievable.

Our idea in present study is very close to Chan and Hall
approach in 2009.They suggested truncated nearest neighbor
which implements feature selection via a threshold before
classification task [11]. Fan and Li called this threshold hard
threshold and proposed a threshold in SCAD regression
as SCAD threshold [15]. Hence, against truncated nearest
neighbor, KIN use SCAD threshold that simultaneously
satisfies unbiasedness and sparsity [15]. Another important
difference between two aforementioned methods is that
selected features in KIN do not have the same contribution
in construction of dissimilarity measure which comprise an
obvious advantage. AlthoughMADD index as a novel dissim-
ilarity measure for KNN classifier has good accuracy in high
dimensional problems, compared to our hybrid dissimilarity
measure, it does not take into consideration importance of
features and is only based on distances [3]. Considering this
shortcoming, we can infer that, as the degree of sparsity tends
to one, MADD index becomes weaker but KIN becomes
stronger in terms of accuracy.

Consequently, imposing features contribution as a func-
tion of SCAD coefficients on Euclidean distance (novelty of
the present study) leads to four good properties:

(1) It uses information of both variables and locations
instead of usual dissimilarity measure in KNN which
ignores information of features.

(2) It performs dimension reduction because only those
variables that contribute in construction of dissimi-
larity measure have nonzero coefficients.

(3) It increases accuracy by eliminating noisy features
from classification procedure and considering relative
importance of the signal features.

(4) It does not choose necessarily the 𝑘 nearest neighbors.
The nature of this hybrid measure leads to choosing 𝑘
important neighbors (KIN); that helps to find more
complex patterns in the presence of a huge number of
noisy features.

5.1. Conclusion. In summary, KIN has a good performance
in terms of both accuracy and dimension reduction. The
proposed KIN also in very sparse settings outperforms
support vectormachine (SVM) and random forest (RF) as the
best classifiers. The KIN approach was found to be capable of
eliminating nearly all of the noninformative features because
of utilizing oracle property of SCAD penalized regression in
the construction of dissimilaritymeasure.What distinguishes
KIN fromKNN, SVM, and RF classifiers is that not only does
the proposed KIN perform classification task, but it can also
perform feature selection. In fact, KIN implements classifi-
cation only with very small subgroup of features which can
affect class assignment.
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