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Abstract

The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier 

regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It 

is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as 

cytokines, diet, and diseases can affect this barrier. These factors have been shown to increase 

intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, 

dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory 

bowel disease. Our lab and others have also shown that barrier disruption can have systemic 

effects including bone loss. In this chapter, we will discuss the current literature to understand the 

link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis and 

metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current 

suggested mechanism between intestinal barrier and bone.

1. Introduction

The gastrointestinal (GI) epithelium plays an essential role in maintaining host health 

through its ability to digest and absorb nutrients. At the same time, it is essential for 

providing a selective barrier that prevents translocation of harmful substances as well as 

pathogens and their products from the external environment to the blood stream. The 

intestinal epithelium is composed of a continuous single layer of intestinal epithelial cells 

(IECs) that are sealed together by tight junctions (TJ) proteins. This epithelial layer allows 

the movement of materials from the mucosal side of the epithelium to the serosal side via 

transcellular and paracellular pathways. A mucus layer, secreted by specialized epithelial 

cells (goblet cells), is located on the surface of the epithelium and is important for limiting 

the ability of gut bacteria and pathogens to access host cells. The lumen of the GI tract also 

harbors a variety of commensal microorganisms referred to as the gut microbiota which 

Corresponding Authors: Laura R McCabe (mccabel@msu.edu) and Narayanan Parameswaran (narap@msu.edu).
5These authors contributed equally to this work and are co-senior authors

HHS Public Access
Author manuscript
Adv Exp Med Biol. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
Adv Exp Med Biol. 2017 ; 1033: 151–183. doi:10.1007/978-3-319-66653-2_8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accounts for 90% of the cells in the human body, approximately 1014 bacteria total. The 

intestine also secretes immunoglobulins, defensins, and other antimicrobial products that 

contribute to maintaining a healthy environment. Beneath the epithelial layer is the lamina 

propria which contains immune cells, fibroblasts and plasma cells.

Disruption of the epithelial barrier can 1) affect efficient nutrient absorption, 2) facilitate 

pathogen translocation into the bloodstream and cause systemic inflammation, and 3) alter 

gut microbiota composition [1]. As a consequence, barrier disruption can trigger the 

development of GI diseases such as inflammatory bowel disease (IBD), celiac disease, and 

colon cancer [2–5]. Other systemic and metabolic diseases such as type I diabetes can also 

be influenced by barrier changes [6, 7]. However, whether barrier dysfunction is causal or 

consequence of these systemic and metabolic diseases is controversial. Recent studies from 

our lab and others demonstrate that GI barrier dysregulation can critically affect bone health 

[8, 9]. In this chapter, we will review several important aspects of intestinal epithelial barrier 

function including: tight junction protein composition, the mucus layer, epithelial barrier 

integrity measurements, barrier alterations associated with disease processes, and barrier 

dysregulation-induced bone loss during aging, dysbiosis, and metabolic diseases.

1.1 Pathophysiology of tight junction proteins

Tight junction (TJ) proteins connect adjacent epithelial cells on their apical side and 

therefore are critical for controlling paracellular permeability by selectively regulating the 

flow of ions, solutes, and small molecules across the epithelium. TJ proteins respond to a 

variety of stimuli including changes in diet, dysbiosis, viruses, inflammation, antibiotic 

treatment, and/or humoral or neuronal signals [10][1][4]. Stimuli can have positive or 

adverse effects on paracellular permeability depending on the physiological status of the 

host [1, 11–13].

TJ protein complexes are composed of junctional adhesion molecules (JAM), occludins, 

desmosomes, claudins, and cytoskeletal linker proteins such as zonula occludens (ZO) (1–3) 

(Figure 1). The ZO is a family of proteins (ZO-1, ZO-2, ZO-3) that link the TJ proteins to 

the actin cytoskeleton. This interaction, between the TJ and the actin cytoskeleton, is 

essential to maintain TJ structure and cytoskeletal regulation of the epithelial barrier. 

Desmosomes do not directly connect adjacent epithelial cells. Instead, they provide the 

adhesive force to ensure the integrity of the epithelial layer [14][1]. Alterations of the TJ 

complexes can increase paracellular permeability and pathogen translocation that can induce 

sustained activation of the mucosal immune system and tissue damage.

Several cytokines can modulate TJ complexes and affect intestinal permeability. For 

example, the proinflammatory cytokine tumor necrosis factor alpha (TNFα) can directly 

increase intestinal permeability in cultured intestinal epithelial cells and mouse epithelium 

by dysregulating TJ proteins. In vitro, in a colon epithelial cell line (Caco-2), TNFα-induced 

increases in TJ permeability were associated with increased nuclear factor kappa beta (NF-

κB) activation and nuclear translocation of NF-κB p65 [13]. TNFα has also been shown to 

increase the expression of the myosin light-chain kinase (MLCK), and inhibition of MLCK 

can prevent TNFα induced increases in permeability in intestinal epithelial cells [15, 16]. 

Similarly, interferon-γ (IFN-γ) increases paracellular permeability in T84 colonic epithelial 
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cells. IFN-γ decreases ZO-1 protein synthesis, increases internalization of the TJ proteins 

and rearranges the actin cytoskeleton [17]. Interleukin-1β (IL-1β) can also regulate 

transepithelial permeability in vitro. IL-1β caused a progressive time-dependent increase in 

transepithelial permeability in Caco-2 cells. This increase in permeability was attributed to 

the rapid activation of the NF-κB by IL-1β [18]. On the other hand, the role of the anti-

inflammatory cytokine interleukin 10 (IL-10) in TJ regulation has been demonstrated in 

IL-10 knockout mice. IL-10 knockout mice present with an increase in ileal and colonic 

permeability at 2 weeks of age. However, this effect was ablated in IL-10 gene-deficient 

mice raised under germ-free conditions, suggesting a role of the microbiota in intestinal 

permeability in IL-10 knockout mice [19].

Studies in IBD patients indicate that TNFα levels are increased in the serum, stool, and 

intestinal mucosa [20] and, correspondingly, patients display increased intestinal paracellular 

permeability that is characterized by suppression and re-distribution of occludins, and 

claudins 5,8, whereas claudin-2 expression was upregulated [21]. Interestingly, people at 

high risk of developing Crohn’s disease exhibit increases in small intestinal permeability 

[22]. Together, these studies demonstrate that TJ proteins are regulated by cytokines, modify 

intestinal permeability and are linked to disease pathogenesis.

1.2 GI Mucus Layer

The GI epithelium is covered by a layer of mucus that creates a physical barrier. This barrier 

prevents the interaction of luminal microorganism with the surface of the epithelium. It also 

serves as the first line of host defense and allows the exchange of water, nutrients and gases 

with the underlying epithelium. This layer is formed by high molecular weight glycoproteins 

called mucins (MUC) that are synthesized and secreted by goblet cells. Mucins are produced 

and stored in granules in the goblet cell and then are transported and secreted into the lumen. 

They can be secreted by continuous fusion (constitutive/basal secretion) or by exocytosis 

(exocytosis/regulated secretion). There are two groups of mucins: secreted mucins and 

transmembrane mucins. MUC2, MUC5AC, MUC5B and MUC6 constitute the secreted 

mucins and are responsible for the formation of the mucus layer. The transmembrane mucins 

(MUC1, MUC4, MUC13 and MUC16) don’t play a role in mucus production. Under normal 

physiological conditions, goblet cells continually produce mucins, however, factors such as 

cytokines, toxins, microbes and microbial product can negative or positively regulate this 

process [23]. Disruption of this process has been associated with GI diseases.

Inflammatory cytokines such as TNFα, IL-1β, and IL-6 are known to be major regulators of 

mucin synthesis and exocytosis. In vitro, in colon cells, TNFα and IL-6 increased the 

expression of the secreted gel-forming mucins (MUC2, MUC5AC, MUC5B and MUC6) 

[24]. TNF-α enhanced MUC2 transcription through the activation of the NF-κB pathway in 

colon cells [25]. Similarly, the anti-inflammatory cytokine IL-10 enhances MUC2 

expression in goblet cells [26].

The gut microbiota depends on the mucus layer which serves as an energy source for 

bacteria. The mucus layer also serves as a matrix for commensal bacteria attachment and 

colonization that ultimately prevents opportunistic pathogenic bacteria from binding/

growing within the mucus. Cross talk between the intestinal microbiota and mucus layer 
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contributes to the regulated production of mucin by goblet cells [27–29]. Studies in germ-

free mice demonstrate that microbiota-deficiency leads to fewer goblet cells and thinner 

mucus layer in comparison with conventionally-raised mice; supporting the role of the 

microbiota and/or microbial products in modulation of mucin synthesis and secretion [27]. 

Correspondingly, treatment of intestinal epithelial cells (HT-29) with the probiotic 

Lactobacillus planetarium enhanced MUC2 and MUC3 mRNA expression levels [30]. 

Similarly, commensal microbiota break down non-digestible carbohydrates into short-chain 

fatty acids (SCFAs) such as acetate, propionate, and especially butyrate, which at low 

concentration can increase mucus production and secretion [28, 29, 31]. Other microbial 

products, such as lipopolysaccharides and flagellin, also increase mucin synthesis [32]. If 

mucin production is chronically stimulated, goblet cells become depleted of mucin and the 

lack of mucus secretion can lead to increased permeability and disease [33]. Taken together, 

mucus secretion is highly regulated by a variety of conditions/factors and, along with tight 

junctions, contributes to intestinal barrier integrity.

2. Epithelial barrier integrity measurements

The intestinal epithelial barrier plays an essential role in host health as well as in GI 

diseases. Several tests have been developed to improve the diagnosis of GI diseases such as 

IBD. These tests (discussed below and in Table 1) include measures of serum, fecal, and 

urine biomarkers that are altered as a consequence of intestinal barrier dysfunction (i.e., 

inflammation) or that directly assess barrier permeability (i.e., endotoxin).

2.1. Serum

Serologic markers for epithelial barrier integrity in IBD patients includes C-reactive protein 

(CRP) measurements [34, 35]. CRP levels are elevated in the serum of patients with acute 

IBD, with almost 100% of patients with CD showing an increase of this protein in the serum 

[34][36]. Serum measurements of inflammatory markers such as cytokines and neutrophils 

can also be performed. However, plasma/serum levels of inflammatory markers, including 

CRP, are not specific for gut inflammation since they can also be increased in other 

inflammatory conditions.

Breakdown of the epithelial barrier can lead to the translocation of the microbiota or their 

toxic products. Markers of bacterial antibodies for Escherichia coli and Pseudomonas 
fluorescens have been used to identify children with IBD with 67% sensitivity and 76% 

specificity [37]. Bacterial metabolic products, such as D-lactate or cell wall components 

such as LPS/endotoxin, are also commonly measured. Baseline levels of these markers are 

low in healthy individuals, whereas increased circulating LPS/endotoxin levels are related to 

an impaired mucosal barrier and increased levels of D-lactate are correlated with intestinal 

injury [38].

To estimate enterocyte damage, measurement of the fatty acid binding proteins (FABP) can 

be performed in the urine or plasma. FABP is located on top of the villi and an increase in 

FABP in the blood or urine can be used as a marker of early stage intestinal diseases [39–

41]. Levels of FABP rise rapidly after GI inflammation and have been correlated with the 

histological status of the epithelium after GI inflammation.
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2.2 Feces

Invasive methods to test gut epithelial barrier inflammation in humans are not feasible. 

However, fecal proteins such as calprotectin and lactoferrin are specific markers for mucosal 

inflammation in intestinal diseases [42] and can identify patients with IBD, assess disease 

activity, and predict relapse [43, 44]. Calprotectin is a 36 kDa calcium- and zinc-binding 

protein. Approximately 60% of the cytosolic protein content in the neutrophils is made up of 

calprotectin. During intestinal inflammation, neutrophils migrate to the mucosa and any 

break in the mucosal barrier results in the leakage of neutrophils into the lumen. Hence the 

presence of calprotectin in the feces indicates the migration of neutrophils to the intestinal 

mucosa and potential leakage of these cells into the lumen. Calprotecin is stable in feces, 

and its concentration represents an indirect measure of neutrophil infiltration and barrier 

breaks. Lactoferrin is an iron-binding protein that is also found in neutrophils, specifically 

neutrophil granules. Lactoferrin is secreted during inflammation; when the intestine is 

inflamed and neutrophils are present, lactoferrin levels increase in the lumen and stool [42]

[45].

2.3 Urine

Intestinal permeability can also be assessed by using small to large-sized probe molecules 

[46, 47]. This approach involves oral ingestion of sugars, such as mannitol and lactulose, and 

measuring their subsequent concentration in the urine over a period of time (usually 5 

hours). Mannitol is a monosaccharide with a molecular weight (MW) of 182 Da and a 

molecular radius of ≤ 0.4 nm. Lactulose is a disaccharide with an MW of 342 Da and a 

molecular radius of 0.42 nm. The different sizes of the molecules allows for the 

measurement of transcellular and paracellular routes of permeability across the epithelia 

[45]. Large molecules, such as lactulose, are thought to traverse the epithelium by 

paracellular pathways. Small molecules, such as mannitol, cross the epithelium 

predominantly by the transcellular pathways. Neither sugar should be fermented by bacteria 

or metabolized in the body. Thus, the ratio of urinary excretion of the relatively large 

molecule is compared with that of the relatively small molecule and permeability is 

expressed as the ratio [46].

One concern with this approach is that many factors can influence the uptake of these sugars 

by epithelial cells, including (1) GI motility, (2) the use of medications such as nonsteroidal 

anti-inflammatory drugs, (3) intestinal transit time and surface area, (4) mucosal blood flow 

and (5) renal clearance; these effects can potentially yield false-positive results. However, 

when both the large and small molecules are combined in the test solution at a fixed 

concentration ratio, the effects of variables, such as gastric emptying, intestinal transit time, 

and renal clearance will apply equally to both. Thus, the urinary excretion ratio will be 

influenced only by the difference in gut permeability for each molecule.

Polyethylene glycols (PEG) have also been used to test intestinal barrier function. PEGs that 

have a molecular weight of 400–4000 Da can only cross the intestinal mucosa under 

conditions of barrier integrity loss. PEG can be used to measure both small and large 

intestinal permeability and are not degraded by bacteria. PEG have been used to test changes 

in permeability in IBD and Crohn’s patients [48, 49].
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3. Barrier pathophysiology in development

3.1 Pediatrics

The intestine at birth is not fully developed and many factors, such as diet, stress and 

microbiota have been implicated in influencing its permeability during development [50][51]

[52]. Increased intestinal permeability in infancy may lead to diseases that persist throughout 

childhood as well as those that appear later in life, such as IBD. Immune system 

involvement, which is developed alongside microbiota and diet changes, is also a significant 

indicator of the health of the intestinal barrier. Because of the fundamental differences in 

development between children and adults, it is important to consider pediatric intestinal 

barrier physiology separately.

The intestinal mucosal barrier significantly matures after birth, coinciding with changes in 

microbial composition and diet changes. At birth, the child is introduced to microbes, 

traditionally through contact with the birth canal, that colonize the intestine. It has been 

shown that vaginally born infants have higher numbers of Bifidobacteria and Bacteroides 
when compared with infants born through cesarean section [53]. In addition, the presence of 

Bifidobacteria in breast-fed infants, corresponds with breast-fed infants having lower 

intestinal permeability than cow’s milk formula-fed infants [54]. Other studies have shown 

that B. infantis promotes intestinal barrier function by regulating tight junctions. Infant mice 

treated with B. infantis exhibited decreased internalization of claudin 4 and occludin, which 

effectively decreased the incidence of necrotizing enterocolitis [55]. Mucin production also 

contributes to barrier integrity due to its importance in building the mucosal layer. In mice, 

the maturation and production of these glycoproteins occurs after weaning, signifying the 

role of diet as well as hormonal and other age-associated factors in barrier development [56].

Increased intestinal permeability is associated with a variety of intestinal as well as extra-

intestinal diseases, many of which persist or manifest in adulthood. Since the intestinal 

microbiota takes approximately 2.5 years to become functionally mature, the clinical impact 

of any large shifts in microbial composition during this developmental period can 

significantly impact intestinal permeability [57]. It has been suggested that traumatic GI 

events in early infancy, during the period of barrier maturation, are more powerful indicators 

of eventual disease than events occurring outside this “critical window”. As evidence for the 

possibility of an early life disturbance creating lasting effects on barrier function, the trauma 

of maternal separation during weaning has been shown to predispose adult rats to enhanced 

intestinal permeability in response to stress [51].

The intestinal immune system in infants develops upon antigen exposure, directing attention 

to the importance of gut microbial colonization in relation to successful barrier function. 

Immunoglobulin A (IgA) is a class of antibody first received in breast milk and is then 

produced by the gut mucosa. Interestingly, by 24 months, both mono- and dizygotic twins 

had IgA responses comparable to unrelated children although significant differences were 

observed at older ages, suggesting a level of maturation acquired by age two [58]. This 

roughly coincides with the stabilization of the makeup of the microbiome at 2.5 years. The 

interplay among microbial colonization, diet, immune system and the intestinal barrier is 

fundamental to the health of the gastrointestinal tract. Insults to the intestinal barrier at a 
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young age can induce diseases such as IBD that appear in childhood and possibly persist 

through adulthood.

Early life disturbances such as premature birth, which can increase intestinal permeability, 

can also affect bone density [59]. In fact, 16–40 % of very low birth weight (VLBW, <1.500 

kg) and extremely low birth weight (ELBW, <1.000 kg) infants are estimated to develop 

bone metabolic diseases [60]. Examination of growth and bone mineralization among 

children born prematurely (birth weight less than 1.5 kg) indicates reduced lumbar bone 

mineral density and content compared to full-term children [60]. During this early period of 

life, the intestinal barrier is particulary permeable to allow antibodies in the mother’s 

colostrum to cross into the infant’s blood. This increased permeability in neonates can cause 

intestinal inflammation and can lead to necrotizing enterocolitis (NEC) [61]. While a direct 

link between early changes in bone density with reduced barrier function in neonates and 

children has yet to be proven, studies in inflammatory bowel patients and animal models 

support this link (see section on IBD below). For example, chemically increasing barrier 

permeability in young (5 week old) growing mice causes reduced bone density and stunted 

growth compared to control mice [62]. It is noteworthy, that when the inflammatory insult is 

removed the young mice are able to fully regain bone density and length 5 weeks later [62]. 

Taken together, the data support the need for more studies to understand the role of the gut 

epithelial barrier in early life disturbances in bone physiology.

3.2 Aging

Several studies have shown that aging can have profound effects on the GI tract. 

Approximately 35–40% of elderly patients report having at least one GI tract complication 

during a routine medical exam [63]. Effects of aging in the GI tract includes changes in 

permeability, motility, inflammation, and disruption of the gut microbiota. However, the 

mechanisms by which aging contribute to shifts in any of these effects and their influence on 

epithelial barrier and bone health are poorly understood. This is in part because it is difficult 

to discern if changes are due to normal aging, common age-related disorders, or result from 

disease treatments. This section will discuss the effects of aging on intestinal permeability, 

inflammation and microbiome and while no papers directly link barrier changes with age 

related bone loss, we will discuss potential connections.

3.2.1 Changes in permeability—Several studies have shown that aging can have 

detrimental effects on intestinal barrier permeability. A study looking at 34 vs. 133-week-old 

rats demonstrated that the younger rats excreted 34.3% of the administrated PEG 400 in the 

urine, while 43.6% was excreted by the older rats [64]. Similarly, another study showed that 

as rats age (12–112 weeks), intestinal permeability to PEG 400 and mannitol increased [65]. 

Colonic mucosal biopsies from young and old non-human primates (baboons) demonstrate 

significant differences in permeability and TJ proteins. The older baboons displayed a 

significant decrease in ZO-1, occludin, and JAM-A proteins, and an increase in claudin-2 

expression, all of which correlated with increased permeability in the old aged group [66]. 

Another study in monkeys found that old monkeys have an increase in FITC dextran flux 

compared to young monkeys [67].
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A cross-sectional study of non-smoking healthy adults, between 60 and 85 years old, 

showed no difference in the permeability index (PI= lactulose/mannitol) between young and 

older humans. However, the study had some limitations such as that the older age group 

consisted of predominantly males and sex difference may play a role in intestinal 

permeability [68]. In an ex vivo assay by Man et.al [69], the authors demonstrated that the 

transepithelial electric resistance (TEER) is affected in the aged humans. In their study, the 

effects of age on TEER was tested using ileal biopsies from healthy humans, young (7–12 

years), adult (20–40 years), and aging (67–77 years). The TEER was significantly reduced in 

the aging biopsies whereas no difference was observed between the two younger groups. 

The increase in permeability in the aging group appeared to be restricted to solutes since the 

permeability to macromolecules was not affected by aging [69]. There were no changes in 

mRNA expression of ZO-1, occludin, and JAMA-1 in the aging group compared with adults 

and young individuals. On the other hand, they observed that levels of claudin-2 were 

significantly increased in the aging group and not in the adult group; suggesting that 

claudin-2 play an important role in intestinal permeability [69]. It has also been proposed 

that the changes seen in intestinal permeability in aging people can be due to an increase in 

inflammation and/or disruption of the gut microbiota.

3.2.2 Changes in mucosal immune system—Aging is associated with a decline in the 

immune response [70, 71]. About 50% of the older age group are affected by low-grade 

chronic inflammation known as “inflammageing” [72]. In a steady-state situation, the IECs 

communicate with the intestinal immune system to regulate intestinal homeostasis. IECs 

regulate the intestinal immune homeostasis through the secretion of cytokines that control 

dendritic cells and T-regulatory cells. This interaction helps to discriminate between invasive 

pathogenic organisms and harmless antigens. Several studies have reported a dysregulation 

in the intestinal immune homeostasis in different models of aging. Specifically, it has been 

shown that the function of the gut-associated immune system is impaired in elderly humans 

[67, 69, 73, 74].

Using monkeys as a model of human aging, researchers found that old monkeys have greater 

systemic inflammation as compared to young monkeys. This increase in inflammation was 

attributed to an increase in serum CRP [67]. In a similar study using baboons, it was found 

that aged baboons have a significant increase in IFN-γ, IL-6, and IL-β in colonic biopsies. 

In the same study, the old animals presented an increase in colonic permeability [75]. These 

results suggest that dysregulation of the immune system can alter intestinal permeability.

Several studies in humans have also confirmed the effects of aging on the intestinal immune 

response. Ileal biopsies from young (7–12 years), adult (20–40 years) and aging (67–77 

years) individuals were assessed for inflammatory cytokines levels. They noticed an increase 

in the expression of IL-6, but not IFNγ, TNF-α, and IL-1β in the aging group. The increase 

in IL-6 was attributed to an increase in dendritic cells. They also demonstrated a correlation 

between IL-6, claudin 2 and permeability [69]. Many studies indicate that IL-6 expression is 

induced with aging. Animal studies showed that the decline in the production of IL-1 β, 

TNFα, and IL-12, in response to LPS in aging is restored in aging IL-6-deficient knock-out 

mice, suggesting that IL-6 is responsible for the changes in the mucosal immune system 
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during aging [76]. In conclusion, the pro-inflammatory state observed in aging populations 

may be related to dysfunction of the intestinal barrier.

3.2.3 Changes in intestinal microbiota—In a healthy intestinal tract, the microbiota 

and the gut immune system interact to maintain a homeostatic equilibrium. Perturbation of 

this homeostatic equilibrium has been strongly associated with many human diseases such 

as obesity and IBD [77, 78]. The intestinal microbiota supplies nutrients as well as protects 

the intestinal barrier against pathogens [79]. A variety of factors including the host, 

microbiological, dietary and environmental factors can disrupt the gut microbiota. Because 

of the crucial role of the intestinal microbiota in host homeostasis, it is important to study 

the age-related differences in microbiota and how it influences intestinal function.

It has been demonstrated that the human intestinal microbiota undergoes maturation from 

birth to adulthood and is further altered with aging. A study looking at age-related 

differences in the gut microbiota composition among young (average 31-years old), elderly 

(average 72-years old), and centenarians humans (average 100- years old) demonstrated that 

the composition and diversity of the gut microbiota do not differ between young adults and 

elderly groups. However, there was a significant difference between the elderly and 

centenaries [80]. These differences were attributed to an increase in facultative anaerobes, 

mostly belonging to Proteobacteria and Bacilli in the centenarians group. The Firmicutes/

Bacteroidetes ratios did not differ between the young and centenarian groups. In the same 

study, measurements of inflammatory cytokines were performed. An increase in IL-6 and 

IL-8 was observed, but not TNFα. They also found a positive correlation between bacteria 

belonging to the phylum Proteobacteria with IL-6 and IL-8 [80]. Species diversity was found 

to change with age in bacteria isolated from fecal samples from healthy young and elderly 

adults. On the other hand, the overall numbers of organisms were similar at the genus level 

[81]. In a different study, the results showed a change in bacterial genera with age and a 

reduction in the numbers Bacteroides and Bifidobacteria in the elderly group. These 

reductions were accompanied by reduced species diversity [82]. The Firmicutes/

Bacteroidetes ratio of the human microbiota increased with age [83]. This shift in microbiota 

composition might result in a greater susceptibility to diseases by altering intestinal 

permeability among other consequences.

3.2.4 Intestinal changes and bone health—While we do not know of any study 

directly linking the effect of aging on gut barrier-to-bone signaling, the intestinal changes 

that occur with aging are associated with bone loss in other conditions. Specifically, the 

strongest link between gut permeability and bone loss comes from colitis studies where 

barrier disruption in adult animal models leads to bone loss, even without weight loss [84]

[85][62]. Thus, as animals and humans age, intestinal permeability increases [64][65][66]

[67][62][69] and could contributes to age-related bone loss. In addition, increased 

permeability likely promotes the low-grade chronic inflammation, termed “inflammageing” 

[72][67][75], and many studies link low grade inflammation with bone loss [84][85][62]. In 

the future, studies are need to test if a direct link exists between barrier function and bone 

health in the elderly, since this could be a promising target for new therapeutics.
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3.3 Menopause

Menopause is the natural cessation of menstruation and decline in reproductive hormones. 

One of the most significant reproductive hormones in females is estrogen, produced 

primarily in the ovaries. It is also produced at extra-gonadal sites including adipose tissue, 

skin, osteoblasts, osteoclasts, aorta, and the brain. After menopause, adipose tissue is the 

main source of estrogen. There are several forms of estrogen, 17β estradiol being the most 

prevalent circulating estrogen. Only a small amount in the plasma is free and active, most is 

bound to globulin or albumin. The two primary receptors for estrogen are estrogen receptor 

α (ERα) and estrogen receptor β (ERβ), both of which are nuclear receptors. ERα is 

typically associated with secondary sex characteristics and regulation of the menstrual cycle 

in females and sperm maturation in males [86]. ERβ has less of a role in the classical 

estrogen target tissues and has been found to be more dominant in the brain, cardiovascular 

system and the colon [87, 88]. A decrease in estrogen levels during menopause has been 

attributed to osteoporosis that occurs in post-menopausal women but the role of declining 

estrogen in intestinal permeability is only beginning to be understood. In ovariectomized 

Wistar rats, colonic paracellular permeability was increased significantly and this was 

reversed by estrogen treatment (oestradiol benzoate) [89]. Consistent with this, colonic 

paracellular permeability decreases during the oestrus phase (high levels of estrogen) of the 

rat when compared to the dioestrus phase (low levels of estrogen) [89]. Although estrogen 

treatment has been shown to predispose ovariectomized rats to development of ulcerative 

colitis-induced tumor development [90], most studies to-date have shown that estrogen 

treatment decreases colonic paracellular permeability and reduces IBD symptom severity 

[89, 91, 92]. ERβ is the predominant estrogen receptor in the intestinal tract. Whole body 

ERβ knockout mice display altered intestinal cell proliferation, decreased apoptosis and 

abnormal villus/crypt architecture throughout the intestine [93]. One potential mechanism 

that could account for estrogen effects on the intestine is through its alterations in TJ and 

adhesion molecules which would alter intestinal permeability [94]. In models of IBD (IL-10 

deficient mice and HLA-B27 rats), ERβ mRNA levels were decreased and colonic 

permeability increased [92]. Similarly, treatment of cell culture models of intestinal 

epithelial layers (HT-29, T84, Caco-2) with estrogen receptor antagonists increases 

permeability while estrogen treatment prevents this outcome [89, 92]. Our lab demonstrated 

a significant increase in intestinal permeability 1 week post-surgery in the absence of 

estrogen (OVX model) in mice. Section specific changes in permeability were also measured 

ex vivo by Ussing chambers which demonstrated that the ileum had the most dynamic 

changes. This study indicates that estrogen deficiency induces region-specific effects on 

intestinal permeability [94]. Thus, estrogen appears to predominantly inhibit increases in 

intestinal permeability and therefore an increase in permeability during menopause could 

lead to increase in systemic and bone inflammation that could contribute to bone loss.

In addition to altering epithelial barrier function, estrogen has also been shown to impact 

calcium absorption in the intestine, which is important for bone maintenance. Several studies 

identified decreases in intestinal and renal calcium absorption following estrogen deficiency 

[95–100]. Though the exact mechanism is not well understood, it is thought that estrogen 

deficiency leads to down regulation of the expression of transcellular calcium transport 

proteins plasma membrane calcium pump 1b (PMCA1b), transient receptor potential cation 
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channel subfamily V member 5 (TRPV5) and calbindin-D 28K (CaBP28k) [95]. 

Furthermore, estrogen has been found to increase vitamin D receptor (VDR) gene and 

protein expression as well as 1,25(OH)2D3 activity in the colon, which leads to increased 

intestinal calcium absorption [101, 102]. Taken together, these studies suggest that estrogen 

could modulate bone heath via multiple mechanisms that depend on intestinal barrier 

function (permeability and calcium/vitamin-D metabolism).

Given that one out of two postmenopausal women will fracture a bone [103], the potential 

for using the gut as a therapeutic target to treat osteoporosis has increased research in this 

area. Recent studies support a role for intestinal health in the prevention of bone loss in 

ovariectomy (Ovx) mice [104][8]. Decreasing intestinal inflammation or altering the gut 

microbiome leads to the prevention of bone loss [104][8]. Our lab has shown that treatment 

with the probiotic Lactobacillus reuteri significantly protected Ovx mice from bone loss. 

This prevention of bone loss by Lactobacillus reuteri was attributed to a decrease in 

osteoclastogenesis and an increase in bone marrow CD4+ T-lymphocytes. Lactobacillus 
reuteri also modifies microbial communities in the Ovx mouse gut [104]. In a different 

study, researchers found an increase in gut permeability and cytokines (TNFα and IL-17) in 

the small intestine of Ovx mice. Surprisingly, in the germ-free mice the effect of estrogen 

deficiency in gut permeability and cytokines dysregulation was ablated; suggesting a role of 

the gut microbiota in Ovx induce bone loss. Treatment with the probiotic Lactobacillus 
rhamnosus GG (LGG) or the probiotic supplement VSL#3 reduces gut permeability, 

intestinal inflammation, and completely protects against bone loss induced by estrogen 

deficiency [8]. Together, these data highlight the role that of the gut epithelial barrier and 

microbiota in bone loss induced by estrogen-deficiency.

4. Barrier pathophysiology in disease

4.1 Dysbiosis

The intestinal microbiota has been described as a virtual organ that exhibits a complex 

bidirectional crosstalk with the environment and other systems throughout the body [105, 

106]. The intestinal barrier acts as a wall between the intestinal microbiota, and the host’s 

immune system. Under normal conditions the intestinal epithelium has numerous 

adaptations such as anti-microbial peptides and mucins that keep the intestinal microbiota 

away from the gut epithelial layer [107–110]. The TJ also impede microbial invasion into 

the host tissue [111]. This intestinal epithelial barrier and its adaptations are not static, but 

can be regulated by a variety of external factors such as alteration to the gut microbiota (i.e. 

dysbiosis).

A number of factors can alter intestinal microbial composition. These include medications 

such as antibiotics, psychological and physical stress, radiation, altered peristalsis and 

dietary changes [112–116]. This can lead to alterations in bacterial metabolism as well as 

overgrowth of potential pathogenic bacteria [117]. Changes to the gut microbiota during 

dysbiosis have now been linked to a myriad of diseases such as IBD, irritable bowel 

syndrome (IBS), obesity and rheumatoid arthritis [118–121]. Importantly, dysbiosis can also 

lead to disruption of epithelial barrier leading to unwanted consequences [50] (Figure 2).
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Altered gut microbiota can signal through pattern recognition receptors on gut epithelial 

cells, activating the NF-κB pathway and leading to changes in gut homeostasis [122]. 

Epithelial cell NF-κB activation increases pro-inflammatory cytokines such as TNFα, IL-1, 

and INFγ [123]. An increase in gut INFγ and TNFα protein levels have been shown to 

increase intestinal permeability [124, 125]. This altered protein composition decreases 

barrier properties and leads to leaky gut properties. The exact mechanism behind these 

effects is not well characterized (20). Dysbiosis has also been linked to increase in IL-1β, 

which has also been shown to increase permeability by decreasing TJ protein occludin 

expression [18].

Additionally, dysbiosis of the gut microbiota also influences other adaptations such as mucin 

production which in turn influences gut barrier function. Intestinal mucins can inhibit 

bacterial adhesion to the intestinal epithelial cells, limiting immune responses and 

maintaining barrier function. The commensal microbiota has been shown to regulate 

production of intestinal mucins [126]. The abundance of mucolytic bacterium, which has the 

ability to degrade mucins, has been shown to increase 100 fold during dysbiosis observed in 

IBD [127]. In addition, under dysbiosis pathogens can secrete proteases that have been 

shown to cleave MUC2, the main mucin-component, thereby decreasing mucin levels [128]. 

Decreases in the mucin layers have been shown to compromise the intestinal barrier function 

leading to increases in intestinal permeability and microbe penetration [129]. All of the 

effects of dysbiosis on the gut barrier function can also lead to systemic changes in the body 

including bone loss [130–132].

Intestinal dybiosis has also been shown to affect bone density [8, 104, 133–135]. The role of 

the microbiome in regulating bone remodeling was shown in germ free mice (in C57BL/6 

background) which have increased femoral bone density (both trabecular and cortical) when 

compared to conventionally raised mice [132]. This increase in bone density was attributed 

to a decrease in osteoclast, as well as, inflammatory cytokines in the bone and bone marrow 

in the germ free mice vs conventionally raised mice [132]. However, the effects of 

microbiome on bone density, as determined by studies using germ free mice, are not 

consistent across mouse strains and/or sex [136][8][130][132]. In addition, the impact of the 

microbiota changes on the epithelial barrier were not been fully examined. It is possible that 

changes in the microbiome that promote greater barrier function could benefit bone density 

while a more pro-inflammatory microbiome could cause bone loss, thereby explaining the 

inconsistencies between studies.

Previous work has demonstrated that gut dysbiosis promotes inflammation in the bone 

marrow that correlates with bone loss [137]. It has been hypothesized, that dysbiosis disrupts 

barrier function leading to increases in inflammation and activates T-cells leading to 

enhanced expression of TNFα in bone marrow [138, 139]. The increase in TNFα stimulates 

osteoclastogenesis and/or enhances osteoblast apoptosis, thus disrupting normal bone 

homeostasis leading to bone loss [138, 139]. The mechanism by which activated T-cells are 

increased in the bone marrow in response to changes in the gut microbiota are not 

completely understood; T-cell activation could be due to gut antigens crossing the intestinal 

barrier consequent to dysbiosis [140].
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The finding that dysbiosis can alter bone density led to studies investigating the role of both 

pre- and probiotics in bone health. Prebiotics are non-digestible fermentable nutrients which 

promote the growth of beneficial microorganisms [141]. In vitro studies indicate that 

prebiotics can enhance intestinal epithelial barrier function and increase tight junction 

protein expression [142]. Under healthy and estrogen-deficient conditions, prebiotics (such 

as fructo-oligosaccharides (FOS) and inulin) also increase bone health parameters [143, 144]

[145, 146]. In addition, probiotics (live microorganisms which have a beneficial effect on the 

host) have been shown to increase barrier function and bone health. The probiotic 

Lactobacillus reuteri has anti-TNFα properties, reduces gut inflammation, and strengthens 

gut barrier function in vitro [104][134][147]. When given to mice, L. reuteri treatment was 

found to increase bone density in healthy male mice in addition to preventing bone loss in 

both female ovariectomized mice and type 1 diabetic male mice[134][104, 148][149]. Taken 

together, these data demonstrate the role of the microbiome and intestine in maintaining 

bone density.

4.2 Colitis/IBD

Inflammatory bowel disease is characterized by damage to the intestinal epithelial barrier 

resulting in increased permeability and the resultant dissemination of the commensal 

microbiota. This translocation of the luminal contents into the lamina propria persistently 

stimulates the immune system leading to its hyper-activation and eventual damage to the 

intestine. IBD can occur in two different forms, through either ulcerative colitis, which 

affects only the large intestine, or Crohn’s Disease, which can occur anywhere in the 

gastrointestinal tract. This idea that IBD is caused by the improper localization of the 

microbiota and other luminal contents is largely supported through animal models of 

intestinal inflammation in that it is difficult to elicit these diseases in germ-free conditions 

[150]. In animal models, decreased epithelial resistance has been shown to precede 

microscopic inflammation [151]. This highlights the importance of maintaining a healthy 

epithelial barrier to protect and regulate the permeability and translocation of the microbiota.

An important element in maintaining this healthy barrier is the constant maintenance and 

restoration of the epithelial cells comprising this barrier as these cells age and eventually 

undergo apoptosis (approximately every week). To maintain a healthy barrier the epithelial 

cells are constantly in a balance of proliferation, migration, and differentiation, migrating 

from the base of the crypts to the crypt surface or villous tip. Once their journey is complete, 

these epithelial cells are removed through shedding/apoptosis that does not result in 

inflammation, normally associated with mass apoptosis. In a disease state, such as IBD, this 

apoptosis is greatly upregulated resulting in damage and increased permeability in the 

epithelial barrier and impairment of its basic functions.

As mentioned before, one of the key factors maintaining the integrity and permeability of the 

epithelial barrier are the TJ. Additionally, inflammatory conditions can influence this 

regulation resulting in alterations in the mucosal barrier. Increases in proinflammatory 

cytokine such as TNFα, IL-4, IL-6 and IL-13 have all been shown to increase epithelial 

permeability and have been tied to increased expression of claudin-2 in animal and human 

models as well as decreased expression of JAM-A and occludin [152, 153]. For example, 
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TNFα is responsible for the removal of claudin-1 from tight junctions. TNFα also induces 

occludin degradation while promoting MLCK phosphorylation thus resulting in augmented 

paracellular permeability [154, 155]. Not only can the expression of these TJ proteins be 

influenced but also their localization within the cell can be dysregulated. Claudins 3, 5 and 8 

as well as occludin and JAM-A have all been observed to be internalized rather than 

expressed on the membrane in biopsies from patients with colitis [156]. These effects on the 

TJ proteins by inflammatory cytokines is in part mediated by myosin light-chain 

phosphorylation through myosin light-chain kinase (MLCK). This phosphorylation induces 

actomyosin contraction that can lead to openings in the junctional gap. In fact, mice 

continuously expressing MLCK are more susceptible to experimental colitis [157]. 

Furthermore, improper activation of protein kinase C and Rho can modulate the actin 

cytoskeleton and influence tight junction regulation and function [158].

In addition to causing a leaky barrier, IBD and ulcerative colitis negatively impact bone [62, 

137, 159, 160]. Patients with IBD have a 40% higher risk of developing osteoporosis than 

the general population [161]. Inflammatory cytokines also increase in IBD and it is know 

that they can have negative effects in the bone [162]. Although it is not well known whether 

loss of intestinal barrier per se in IBD patients is causal to bone loss in these patients (see 

chapter on IBD and bone for further details), our lab has shown that intestinal inflammation 

without weight loss in an IBD model can lead to significant bone loss suggesting a link [85]. 

Despite these results, more studies need to be perform to further understand the role of 

intestinal disruption in IBD effects on bone.

4.3 Type 1 Diabetes

Type 1 diabetes (T1D) is characterized by hyperglycemia and hypoinsulinemia and requires 

treatment with exogenous insulin therapy. Intestinal health has been shown to play a key role 

in the development of T1D [163–165]. Additionally, T1D induced changes in intestinal 

health and function have been suggested to contribute to further T1D complications, such as 

osteoporosis [166]. Intestinal changes that have been reported to precede or be caused by 

T1D which can influence bone health include intestinal barrier function or permeability and 

the intestinal microbiota [167–174].

Intestinal barrier function has been implicated in the development of T1D [167, 171, 174–

177]. In rodent models of T1D, intestinal permeability or the “leakiness” of the gut has been 

studied by measuring the amount of disaccharides and monosaccharides in the urine 

following their oral administration. The spontaneously diabetic biobreeding (BB) rat model 

of T1D shows an increased amount of permeability in the stomach, small intestine and the 

colon [169]. The increased permeability in both the stomach and small intestine appear prior 

to the development of overt diabetic symptoms [169]. During the pre-diabetes stage, BB rats 

that are diabetes prone have increased intestinal permeability, altered tight junction proteins 

(specifically claudin 7), increased gut infiltration by neutrophils and decreased numbers of 

gut natural killer cells in comparison to BB rats which were diabetes resistant [168, 178].

Examination of intestinal permeability in human patients with T1D has been limited and has 

shown diverse outcomes. An initial study examining the permeability of the monosaccharide 

mannitol in T1D patients showed an increase in intestinal permeability [172, 179]. However, 

Rios-Arce et al. Page 14

Adv Exp Med Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a subsequent study using pediatric T1D patients showed no difference in the permeability to 

lactulose or mannitol except in patients with a high-risk allele for celiac disease [172]. As of 

now, the role of gut permeability in T1D is not well understood and further research is 

needed to understand how hypoinsulinemia affects barrier function.

The gastrointestinal system has the largest immune population in the body and creates an 

interface between the external environment and the host and has been linked with numerous 

other autoimmune diseases [180] in addition to T1D. T1D is an autoimmune condition 

resulting from T-cell mediated destruction of insulin-secreting pancreatic β cells. As the gut 

houses the largest population of immune cells, it is not surprising that alterations in the 

intestine can predispose patients to the development of T1D. Furthermore, microbial 

communities within the intestine have also been shown to alter immune cell number and 

differentiation [181–186].

Development of T1D has been shown to be preceded by changes in the microbiome in both 

human and rodent studies. Studies examining the microbiome in T1D patients and control 

subjects found that T1D patients had less microbial diversity, less microbial population 

similarities between individual patients, as well as an increase in non-butyrate producing 

bacteria when compared with non-diabetic subjects [187]. In a study examining the 

microbiota in children prior to the development to T1D (children were negative for anti-islet 

antibodies, however, they possessed the predisposing HLA genotypes), several bacterial taxa 

correlated with the development of anti-islet antibodies found in T1D children; indicating 

that alterations in the microbiome may precede the development of T1D [188]. In rodent 

models of T1D (non-obese diabetic (NOD) mouse and biobreeding rat (BBR)), exposure to 

specific bacterial strains or metabolic products as well as vivarium hygiene can modulate 

T1D incidence [189–199]. Furthermore, comparison of the microbiome between NOD and 

the genetically related, but T1D-resistant mouse (NOR) demonstrated an increase in 

beneficial microbe populations in NOR mice [200]. Fecal transplant of NOD stool into NOR 

mice increased insulin resistance, however NOR stool transplant into NOD mice did not 

prevent the development of T1D [200]. As the microbiome is highly influential in the 

development and activity of the immune system within the gut, researchers have sought to 

determine the role of intestinal immune function in the development of T1D. In humans with 

T1D, duodenal samples had increased expression of pro-inflammatory cytokines, increased 

leukocytic infiltration, as well as alterations in microbial populations within the microbiome 

(increase in Firmicutes), which all contributed to a pro-inflammatory environment as 

compared to healthy controls [201].

As the microbiome was found to be altered in both human and rodents with T1D, studies 

have gone on to show that T1D prevention can be achieved by supplementation with both 

prebiotics and probiotics. Recently, in the non-obese diabetic (NOD) mouse model, T1D 

severity was shown to be inversely correlated with levels of acetate and butyrate, microbial 

metabolites. When these metabolites were replaced in the diet, NOD mice were protected 

from the development of T1D [202]. Furthermore, the authors found that acetate 

supplementation decreased the activation of autoreactive T cells while butyrate 

supplementation increased the number and function of regulatory T cells, thereby preventing 

autoimmune development of T1D [202]. Several studies examining different probiotics have 
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shown that altering the microbiome can influence both the inflammatory state of the 

intestine as well as prevent the progression of T1D [203].

In addition to intestinal changes, T1D is associated with many complications including bone 

loss [204][205][206] (Figure 3). Our lab demonstrated that treatment with the probiotic 

Lactobacillus reuteri 6475 prevents T1D-induced bone loss in mice; suggesting a role of the 

gut microbiota in T1D-induce bone loss. Interestingly, the probiotic treatment prevented 

several of the bone pathologies of T1D including marrow adiposity, suprpressed Wnt10b 

expression and suppressed osteoblast activity [149]. The prevention of bone loss occurred 

despite metabolic dysregulation as indicated by high blood glucose levels. It remains to be 

seen whether T1D-induced changes in gut permeability can directly influence T1D bone 

loss. Even if not causal, it would be of interest to examine if reversing increases in T1D-

induced intestinal permeability can also reverse T1D bone loss.

4.4 Obesity

Obesity is typically associated with several metabolic disorders and is characterized by low-

grade inflammation; the molecular origin of which remains unclear [207]. Several studies 

have reported that serum levels of bacterial LPS are modestly increased in a high-fat diet and 

that LPS is capable of inducing metabolic disease onset [208–211]. This increase in serum 

LPS suggests that in obesity the intestinal barrier is compromised. In vivo, animal models of 

obesity have demonstrated increased whole intestinal permeability via measurement of 4kD 

FITC-dextran transport to the serum [209, 210] (Figure 3). Ex vivo, studies utilizing the 

Ussing chamber have reported increased permeability in the small intestine [211]. 

Interestingly, while the large intestine has the highest bacterial density and highest levels of 

LPS, experimental models do not support a definitive causative role for colonic gut barrier 

dysfunction in obesity. However, a role for increased colonic permeability in obesity cannot 

be conclusively ruled out as further specific studies are required [212].

The effect of obesity on intestinal permeability in humans is inconclusive. Studies using 

lactulose (L) and mannitol (M), two sugar probes commonly used to evaluate small 

intestinal permeability in humans, have shown either no change or modestly increased 

permeability [212]. In a study investigating obese patients with nonalcoholic steatohepatitis 

(NASH) the ratio of L/M excreted was similar to healthy controls suggesting no change in 

intestinal permeability [213]. This is supported in a study by Brignardello et al [214] that 

looked at gut permeability in asymptomatic, non-smoking obese volunteers and observed no 

differences compared to healthy controls. In contrast, a study by Teixeira et al [215] reported 

obese females exhibited higher levels of lactulose excretion but not mannitol than the lean 

controls; suggesting that small intestinal paracellular permeability may be altered in obese 

individuals.

Investigations into the mechanisms behind the increased intestinal permeability in animal 

models have focused on expression of the TJ proteins. In a study by Brun et al [211] using 

ob/ob and db/db mice, distribution of occludin and zonula occludens-1 (ZO-1) were reported 

to be profoundly modified in the small intestine; suggesting disruption of TJ links with the 

cytoskeleton, a condition known to compromise the sealing properties of TJs [211]. Obesity-

induced changes to TJ expression are further supported in studies by Cani et al [209, 210]. 
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In these studies, small intestine gene expression of ZO-1 and occludin were reduced in mice 

fed a high-fat diet and distribution altered in ob/ob mice. Expression of these genes had a 

significant negative correlation with intestinal permeability [209, 210].

An increase in body weight due to obesity has been commonly considered to have a positive 

effect on bone. However, recent studies demonstrated that bone quality can be compromised 

in obesity [216, 217]. As mentioned before, obesity can have several effects on gut 

epithelium, but their effects on bone density are not well known. It has been suggested that a 

high fat diet may affect intestinal calcium absorption and therefore decrease bone formation. 

Free fatty acids can form unabsorbable insoluble calcium soaps and therefore decrease 

calcium absorption [218]. Several gut peptides whose levels are altered in obesity, such as 

ghrelin and incretins, may be involved in bone metabolism [219][220][221]. Future studies 

need to be perform to further understand the role of obesity and complex effects on the 

intestine and their subsequent impact on bone health.

Conclusions

In this chapter, we discussed the importance of the intestinal barrier in maintaining host 

homeostasis. We discussed different non-invasive methods such as serum, fecal, and urine 

biomarkers, to further understand intestinal health. We also present information in how 

disruption of this barrier can have detrimental effects in the host including effects on bone. 

Factors such as inflammation, changes in microbiota, aging, menopause and disease have 

been shown to dysregulate this barrier. In addition, there is now emerging evidence that 

dysregulation of the intestinal barrier can affect distant organs such as the bone.
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Figure 1. Schematic representation of the intestinal tight junctions proteins and their location
Tight junctions are protein complexes that span between epithelial cells to form a tight 

barrier. They are comprised of transmembrane proteins, such as occludin (red) and claudins 

(purple) and they are connected to the actin cytoskeleton via a zona occludens (ZO-1 and 

ZO-2 (grey)). The transmembrane receptor JAM (junctional adhesion molecule (blue)) is 

also found at tight junctions complexes. Abbreviations: JAM, junctional adhesion molecule; 

ZO, zona occludens.
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Figure 2. Schematic representation of the gut epithelial layer in healthy gut vs dysbiosis
In the normal state, the mucus layer prevents the interaction between the gut microbiota and 

the intestinal epithelial barrier. Underneath the epithelial layer is the lamina propria. The 

lamina propria is composed of connective tissue and cells of the innate and adaptive immune 

system: mast cells, macrophages, dendritic cells, and lymphocytes (T and B). The 

composition of the intestinal epithelial layer can be influenced by many factors including 

antibiotic treatment, psychological and physical stress, radiation, age, and diet. This can lead 

to alterations in bacterial metabolism as well as overgrowth of potential pathogenic bacteria. 

This dysbiosis is associated with increased levels of permeability, bacterial translocation and 

inflammation.
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Figure 3. Model of intestinal epithelial disruption signals that can regulate bone density
Many factors such as aging, menopause and metabolic diseases are known to disrupt the 

intestinal epithelial layer. They can modulate gut microbiota composition and activity, 

increase intestinal permeability, inflammation and decrease nutrient absorption. These 

changes can result in local and systemic responses that can affect bone density.
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Table 1

Methods for the assessment of intestinal epithelial barrier integrity.

Test Measured in Advantages Disadvantages

Ex vivo

Ussing chamber Small and large intestine Site specific Invasive

In vivo

C-reactive protein (CRP) Serum Non-invasive Low sensitivity

Inflammatory markers (e.g. cytokines) Serum Non-invasive Non- specific

Bacteria metabolic products (e.g. LPS) Serum Non-invasive High sensitivity

Fatty acid binding proteins (FABP) Seum /urine Non-invasive

Calprotectin and lactoferrin Feces Non-invasive Non-specific

Dual sugar test (e.g. mannitol, lactulose) Urine Non-invasive Time consuming

Polyethylene glycols (PEG) Urine Non-invasive Time consuming

Small and large intestine
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