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Abstract

Significant progress has been made in understanding the principles underlying the development of 

liver fibrosis. This includes appreciating its dynamic nature, the importance of active fibrolysis in 

fibrosis regression, and the plasticity of cell populations endowing them with fibrogenic or 

fibrolytic properties. This is complemented by an increasing array of therapeutic targets with 

known roles in the progression or regression of fibrosis. With a key role for fibrosis in determining 

clinical outcomes and encouraging data from recently Food and Drug Administration-approved 

antifibrotics for pulmonary fibrosis, the development and validation of antifibrotic therapies has 

taken center stage in translational hepatology. In addition to summarizing the recent progress in 

antifibrotic therapies, the authors discuss some of the challenges ahead, such as achieving a better 

understanding of the interindividual heterogeneity of the fibrotic response, how to match 

interventions with the ideal patient population, and the development of better noninvasive methods 

to assess the dynamics of fibrogenesis and fibrolysis. Together, these advances will permit a better 

targeting and dose titration of individualized therapies. Finally, the authors discuss combination 

therapy with different antifibrotics as possibly the most potent approach for treating fibrosis in the 

liver.
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Our understanding of the mechanisms and specific components underlying the development 

and regression of liver fibrosis has matured toward clinical translation.1 Specialized cell 

types such as activated hepatic stellate cells (HSCs) and myofibroblasts (MFs)2,3 are central 

effectors of fibrogenesis (see “Origin and Function of Myofibroblasts in the Liver” by Wells 

and Schwabe in this issue), and other cells such as liver macrophages can promote either 
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fibrogenesis or fibrolysis in a context-dependent manner (see “Resolution of Liver Fibrosis: 

Basic Mechanisms and Clinical Relevance” by Ramachandran, Iredale, and Fallowfield in 

this issue). Moreover, the underlying etiology of chronic liver damage determines both the 

mechanism and pattern of liver fibrosis, likely necessitating different approaches to 

antifibrotic therapy (see below). Instead of mere quantification of collagen and considering 

fibrosis as an endpoint, the dynamic processes of fibrogenesis and fibrolysis—the de novo 

formation and removal of connective tissue, respectively, that capture the dynamic nature of 

even advanced fibrosis— have taken center stage. Tissue injury is the most common 

stimulus for fibrogenesis, and immediately results in multiple coordinated processes aimed 

at initiating repair and regeneration, and at activating host defense.4 At early stages, 

initiating signals (DNA, adenosine triphosphate, other nucleotides and adenosine), 

responding cells (macrophages, platelets, liver sinusoidal endothelial cells [LSECs]), and 

soluble mediators (platelet-derived growth factor [PDGF], transforming growth factor-beta 

[TGF-β]) induce concomitant wound-healing responses, initiating repair, regeneration, and 

activation of host defense. With time, cells, cytokine responses, and matrix components 

become more specialized, but continue to have potent interactions with each other. 

Inflammation can either enhance the fibrogenic signal, for example, via secretion of soluble 

mediators (interleukin [IL] 1-β, IL-13, IL-17, and PDGF-BB), or induce fibrolysis 

(interferon- [IFN-] γ or IL-12). On the other hand, chronic inflammation is often regulated 

and dominated by the immunosuppressive TGF-β1, which is a highly potent fibrogenic 

factor. These interactions make inflammatory responses an attractive target, and focused 

anti-inflammatory approaches are expected to reduce tissue injury and fibrogenesis, without 

compromising liver regeneration, which is particularly attractive in inflammatory 

pathologies such as alcoholic and nonalcoholic hepatitis.

The differences between individuals that determine why some repair with a scar-free liver 

while others proceed to cirrhosis are determined by genetic and environmental factors 

(“second hits”), and the quantity of these different contributing factors appear to determine 

the outcome. Thus, the contribution of each cellular or signaling pathway may vary between 

groups of individuals. However, from a therapeutic perspective the situation seems 

manageable because the pathways that lead to fibrogenesis or induce fibrolysis are common 

between individuals, and only differ quantitatively. It also stresses the necessity of a 

personalized approach to treatment of fibrosis, using, for example, several biomarkers that 

quantify key fibrogenic or fibrolytic pathways. Notably, most of the pathways found for the 

liver are also central pathways in the development or regression of fibrosis in other organs 

and vice versa.1,5

It is important to recognize that fibrolysis is as complex and dynamic a process as 

fibrogenesis and provides additional therapeutic targets. Furthermore, cellular plasticity with 

economy of cellular populations is a common organizing principle. This is best 

demonstrated for liver macrophages that are key to the development of fibrogenesis as well 

as fibrolysis (see review by Ramachandran et al in this issue). This makes therapies that aim 

to delete cell populations deemed to be fibrogenic a blunt approach, which is likely to also 

limit fibrolysis.
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Recognition of the full spectrum of changes associated with severe liver fibrosis is vital. In 

addition to quantitative and qualitative changes of the extracellular matrix (ECM), including 

increased ECM crosslinking and stiffness, liver fibrosis is associated with loss of 

hepatocytes, vascular remodeling, changes in cellular populations, and overall architectural 

distortion. The regenerative capacity of the liver is a great asset to all therapeutic strategies. 

However, therapies that aim to simply remove the ECM may not be effective against all the 

other pathological changes, and could even further impair liver function or increase the risk 

of liver cancer.

Principles of Antifibrotic Therapies

The recognition of heterogeneity in many aspects of fibrosis is a necessary step in 

therapeutic development. The fibrogenic pathways that are activated, and the relative 

amplitude of the inflammatory and fibrogenic responses vary significantly depending on the 

insult and its primary target cell, as exemplified by Schistosoma eggs (myeloid cells, 

lymphocytes), nonalcoholic steatohepatitis (NASH; hepatocytes, macrophages), or biliary 

obstruction (cholangiocytes). Inhibition of a single pathway upstream of the fibrogenic 

effector cells (HSCs and MFs) will likely generate a very different response in each of these 

conditions. Similarly, differences between early and advanced fibrosis will be extensive, as 

will be therapeutic responses. Further heterogeneity is present in the variable degree of 

fibrosis within the same liver. The very limited liver sampling possible by biopsy has 

entirely missed the variation that is present, and is now being revealed by noninvasive testing 

including elastography.

In view of this heterogeneity and the recent success of antiviral therapy, combination therapy 

for fibrosis is very attractive.6 The simplest approach in combination therapy is to target two 

vital but very different pathways to reduce upstream (chronic) inflammation and 

downstream ECM deposition. Combination therapy is also necessary because rapid, 

homogeneous, and monocausal fibrosis development in animal experimental data typically 

reveal single targets as being central to fibrogenesis, whereas modulation of such single 

molecules or pathways does not prove to be highly efficient in man. From the perspective of 

clinical drug development, the demonstration of antifibrotic efficacy in one organ makes the 

agent a candidate as an antifibrotic in other organs, and also a candidate for a second drug to 

be added as combination therapy.

Preclinical Testing

In Vitro and In Vivo Models

In vitro models are necessary for early drug discovery to advance our understanding of the 

molecular pathogenesis of liver fibrosis, and for high throughput testing once a target has 

been identified.7 These include culture-activated HSCs and HSC lines as well as other liver 

cells that are contributory to the fibrogenic or fibrolytic process. However, advanced 

preclinical proof of efficacy requires selected animal models, preferably mouse models that 

permit assessment of antifibrotic efficacy in the complex multicellular context and provide 

information on bioavailability, pharmacokinetics, pharmacodynamics, and toxicity. Because 

these models are only an approximation to the human scenario, there has been a tendency to 
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omit a thorough in vivo preclinical validation before initiating larger phase 2 clinical studies. 

Examples are the 2-year studies of interferon-γ and the highly potent peroxisome 

proliferator activated receptor-γ (PPARγ) agonist Farglitazar in patients with advanced-

stage hepatitis C, which yielded no effect by state-of-the-art biopsy-based fibrosis 

readouts.8,9

Animal models should reproduce the varied features of human liver fibrosis. These features 

include the degree and pattern of inflammation, biliary versus parenchymal damage, time 

course, and reversibility. Incorporation of the causative agent—hepatotropic virus, alcohol, 

or metabolic syndrome—is ideal, but can only be achieved for some disease or using 

humanized mice.10 Although no single model will perfectly represent even a given human 

etiology, useful predictions as to antifibrotic efficacy appear to be possible by using 

combinations. Thus, mice that lack the hepatocyte phospholipid flippase Mdr2 provide a 

model of spontaneous biliary fibrosis progression resembling primary sclerosing cholangitis, 

and discontinuation of toxin-administration in advanced toxin-induced fibrosis mimics 

advanced human parenchymal fibrosis with little tendency to reverse.11,12 Both models are 

characterized by only low-level inflammation and therefore show similarities to the target 

patients with advanced fibrosis of low-to-moderate inflammatory activity. Drugs that work 

in both models (inhibiting progression and inducing regression, respectively) may have a 

relatively high probability to be effective in man.

There has been significant progress in the development of rodent models of NASH. Earlier 

models produced components of NASH including steatosis and inflammation.13,14 Recently, 

diet-based models that use high-fat diets supplemented with cholesterol and fructose have 

captured central features of NASH including the metabolic syndrome, steatosis, 

inflammation, and fibrosis.15

An additional limitation is that the vast majority of studies are performed in a single strain of 

mice (typically C57BL/6), yet there are significant differences in fibrosis susceptibility 

between strains. Experiments are also typically done with young (6–12-week-old) mice, 

whereas liver fibrosis is usually a disease of older age, with older age as a risk factor for 

faster fibrosis progression.

Transgenic and Gene Deletion Models

Genetic models can confirm factors and mechanisms that drive fibrogenesis or fibrolysis in 

vivo, for example, transgenic mice with overexpression of PDGF-B, PDGF-C, or 

TGFβ1.16–18 However, these models do not reflect the multifaceted nature of human liver 

fibrosis, and lack chronic inflammatory liver injury, a key component in the development of 

fibrosis and long-term complications.19

Finally, in vivo models have to be done in an optimal and standardized quality, coupled with 

fibrosis readouts that accord to state of the art. This includes (1) group sizes of > 10 animals, 

(2) analysis of samples of sufficient size (5%–10% of the liver), and (3) use of 

complementary quantitative fibrosis and fibrolysis readouts. Notably, several past studies do 

not satisfy these criteria.7
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Precision-Cut Tissue Slices

A criticism of animal studies is their unclear transferability to the humans, which may vary 

with the pharmacological target. Human precision-cut tissue slices (PCTS) that can be 

cultured for several days are ∼200-μm-thick punches of liver that partly reflect the 

multicellular human context.20,21 Precision-cut tissue slices can be obtained either from 

normal livers (resections, spontaneous fibrogenic activation ex vivo) or from cirrhotic 

explants. Multiple drugs can be tested in slices prepared from a small tissue block. This 

technology may serve as a preclinical bridge between animal models and the patient setting. 

However, more studies are needed for its validation.

One major obstacle is the species difference, with significant biological differences between 

rodents and humans.22 An approach to identify pathways that are important for fibrosis in 

humans is the concept of core pathways that are required for fibrosis in multiple organs and 

species.23 Increased testing of pathways in multiple organs in rodents is relatively 

straightforward, and able to provide a greater degree of certainty that the pathway will be 

important across different species. A second important issue is the high degree of 

homogeneity in experimental models. The test and control populations in experimental 

models are homogeneous across a wide range of parameters, including, age, sex, genetic 

background, diet, microbiome, etc. None of these will apply to the eventual human 

population, and it is relevant to ask if the efficacy of a compound as an antifibrotic is 

maintained if there is a controlled break in homogeneity in experimental models.

The Immune Response as an Antifibrotic Target

The immune response interacts with fibrogenesis and fibrolysis at multiple points, and is an 

attractive candidate for therapy.24 The healthy liver is notable for a very vigorous innate and 

subdued adaptive immune response.25 Among the innate cell population, liver macrophages 

have been most thoroughly investigated and have key functions in fibrogenesis and 

fibrolysis. The well-recognized resident macrophage population of the healthy liver (Kupffer 

cells [KCs]) are present at birth and are self-renewing.26 After injury, KCs initiate a fibrotic 

response via recruitment of additional innate immune cells, including large numbers of 

Ly6Chi inflammatory blood monocytes27 that quickly acquire the macrophage phenotype 

CD11b+ F4/80+ (Fig. 1).28–31 These infiltrating cells have the capacity to produce a wide 

range of cytokines, many of which have potent proinflammatory or direct profibrotic actions 

on HSCs and MFs, such as TNFα, IL-1β, TGF-β1, and PDGF-BB, respectively.32,33 They 

also express a range of chemokines like CCL-2, CCL-3, CCL-5, CCL-7, and CCL-8, which 

recruit MFs and other leukocytes.34 Targeting some of these molecules promises to be an 

effective antifibrotic strategy. To take TGF-β1 as an example, several strategies to block its 

activity have demonstrated efficacy in rodent models of liver fibrosis. These strategies 

include a fully humanized anti-TGF-β1 antibody (Lerdelimumab), soluble TGF-β1 

receptors, blocking peptides, and a small molecule to block downstream activin receptor-like 

kinase activity (SB431542; NCT 00125385, 01665391, 01262001).35–39 Similarly, 

inhibition of several chemokines and their receptors demonstrated antifibrotic efficacy, 

including CCR5, CXCR4, and CXCR3 antagonists (NCT 00393120, 01413568).40,41 A 

shared concern is that these mediators affect different cell types and are involved in many 

processes including angiogenesis, and cellular proliferation and differentiation; their 
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inhibition may have significant off-target effects as well.42 Some of these factors, especially 

chemokines, will also act differently if not in an opposite, fibrolytic way upon removal of 

the primary insult. Liver macrophage populations that have been vital for fibrogenesis 

undergo a major phenotypic switch, with enhanced production of e.g., matrix 

metalloproteinases (MMPs) to degrade the excess ECM and the release of proapoptotic 

ligands such as TRAIL, which can induce HSC and MF apoptosis.43–45 These proresolution 

macrophages have a distinct phenotype (CD11bhiF4/80intLY6Clow) and gene expression 

profile.32 For established fibrosis, enabling this phenotypic switch and enhancing the 

number of pro-resolution macrophages is an attractive antifibrotic approach.

The relative weight of the Th1 and Th2 T cell balance is an important determinant of fibrosis 

for innate immune and T cells.46,47 Thus the classically proinflammatory Th1 cytokines 

IFNγ and IL-12 are considered antifibrotic/fibrolytic, whereas the Th2 cytokines IL-4 and 

IL-13 are profibrogenic.47,48 The Th2 cytokines may be addressable by antibody-based 

therapies such as a bispecific antibody targeting IL-4 and IL-13.49 By analogy, macrophages 

can show a classical (M1) and an alternative (M2) polarization, which is induced by the 

same or similar cytokines that also induce Th1 versus Th2 polarization.50 However, there 

exist several subtypes of M2 macro-phages, with some of them possibly exhibiting 

antifibrotic effects, complicating simple Th1/M1 vs Th2/M2 polarizing approaches using 

cytokine (blocking) approaches.51,52 Therefore, skewing of this balance specifically toward 

Th1 (and M1) is more attractive than general inhibition of the Th2/M2 pathway, although 

such an approach needs to be balanced because it may enhance classical inflammation and 

tissue destruction.

The two related innate immune cell populations natural killer (NK) and natural killer T 

(NKT) cells have opposite effects. Natural killer cells have an important role in limiting 

fibrosis by inducing cell-cycle arrest and apoptosis of activated HSCs.53,54 Conversely, 

depletion and adoptive transfer experiments suggest that NKT cells can promote 

fibrogenesis, but the mechanism of their profibrotic action is not well characterized.55 More 

recently, type 2 innate lymphoid cells (ILC-2), which resemble Th2 T cells, have been 

demonstrated to be profibrogenic via secretion of IL13 and IL33, which directly activate 

HSCs.56

All antifibrotic therapies, particularly those that exert a regulatory activity, need to consider 

that the liver is never affected by fibrosis alone, but also by the underlying (usually 

inflammatory) disease. In this respect, fibrosis needs to be addressed in the context of the 

original disease. Antifibrotic therapies will affect many pathways. To increase efficacy and 

reduce side effects, therapies for specific fibrotic diseases will have to be well selected.

Regulating Platelet and Endothelial Function

Hepatic stellate cells are positioned adjacent to liver sinusoidal endothelial cells (LSECs), 

and the two have close functional interactions.57 After liver injury and the initiation of 

fibrosis are a loss of fenestrations in LSECs, increased expression of vasoconstrictors (ET-1 

and angiotensin II), and decreased activity of vasodilators, most prominently nitric oxide 

(NO).58 In addition to these classic vascular changes, LSECs contribute to deposition of 

ECM (e.g., fibronectin and collagens I and IV), and cytokine production (e.g., TGF-β1 and 
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PDGF-BB).59 Liver sinusoidal endothelial cells can also respond to changes in sinusoidal 

shear stress, with enhanced production of NO.60–62

Therapeutic targeting of LSECs in fibrosis has focused on their predominant role in 

regulating the dynamic part of intrahepatic portal hypertension, which is a major cause of 

morbidity and mortality in cirrhosis. Interventions have included broad spectrum kinase 

inhibitors such as sorafenib or sunitinib, and inhibitors of vascular endothelial growth factor 

and endothelial growth factor. Such interventions have resulted in changes that go beyond 

the hemodynamic to include reduction of fibrotic matrix.63,64 It is unclear how much of this 

reduction in fibrosis is due to regulation by LSECs, and how much of it is due to non-LSEC 

actions of these agents. However, as in inflammation, angiogenic mediators, while being 

profibrogenic during progression, can promote fibrolysis during regression.65 Liver 

sinusoidal endothelial cells also have a key role in regulating the relative response between 

liver regeneration and fibrosis. This is due to a stromal factor derived pathway, which can 

activate the chemokine receptors CXCR7 and CXCR4.66 After acute injury, activation of the 

CXCR7 pathway with recruitment of the downstream transcription factor Id1 results in a 

regenerative response. Chronic injury, however, results in a persistent activation of the FGF 

receptor 1 in LSEC that dampens the CXCR7-Id1 pathway, and activates a CXCR4 driven 

profibrotic pathway. Such pathways that regulate the switch between regeneration and 

fibrosis are excellent candidates for therapeutic intervention.67

Platelets are a rich source of profibrogenic factors, such as PDGF-BB and TGF-β1, but the 

role of platelets in fibrogenesis had been understudied.65,68,69 Recent reports have 

demonstrated that most if not all PDGF-BB in liver fibrosis derives from activated platelets 

and that its specific inhibition with a therapeutic antibody strongly attenuates fibrogenesis. 

Importantly, this effect is replicated with aspirin,8 a cheap and frequently used drug with an 

acceptable safety profile in early-to-moderate stages of liver disease. This finding 

demonstrates that we can expect marked (synergistic) antifibrotic effects by repurposing 

well-known drugs that are in use for other indications.

The ECM and Integrins as Antifibrotic Targets

A change in the composition and an increase in the amount of the ECM is the defining 

feature of all forms of fibrosis. In the normal liver, the extracellular matrix is composed 

predominantly of macromolecules including collagens (mainly the interstitial types I, III, V, 

VI, and the basement membrane types IV, XV, XVIII, and XIX), and a range of 

glycoproteins such as laminin isoforms and fibronectin, and several proteoglycans.70–72 

During the development of rodent and human cirrhosis, there is a 5- to 10-fold increase in 

the content of collagens, particularly of fibril-forming types I and III, and an increase of 

elastin, laminins, and proteoglycans,73 which is accompanied by more highly crosslinked 

collagen fibers. The total amount of ECM is not only dependent on the rate of production, 

but also largely on the balance between the matrix degrading MMPs, and the inhibitors of 

metalloproteinases (TIMPs), especially TIMP-1.31 The MMPs are a family of 

endopeptidases that are produced by a wide range of cells, and taken together can degrade 

all the major constituents of the ECM.74 The TIMPs reduce MMP functionality by several 

mechanisms including stabilizing the proenzyme and also direct inhibition. Expression of 
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TIMPs is more restricted than that of MMPs, and is high in activated HSCs. Several 

experiments have shown that alteration in either MMPs or TIMPs results in significant 

change in ECM deposition.

The ECM is not simply a downstream end product of the fibrotic cascade, but also directly 

feeds back onto it.71,75 An increase in the stiffness of the fibrotic matrix initially results in 

HSC and MF activation via receptor- (mainly integrin) mediated signal transduction from 

the altered ECM to the cellular cytoplasm and back to the ECM.76 Integrin receptors that (1) 

sense the collagen matrix and collagen-derived fragments, such as α1β1, α2β1, αvβ1, and 

αvβ3; (2) bind to fibronectin, such as αvβ3 and αvβ5; or (3) release active TGF-β1 (αvβ6 

and αvβ8), which plays an important role in fibrogenesis.71,77,78 Taken together, these 

integrins and other ECM receptors mediate critical interactions between the ECM and 

hepatic cell populations, resulting in functional changes including adhesion, migration, 

proliferation, differentiation, and apoptosis, as well as modulation of cytokine, chemokine, 

and growth factor mediated signaling.71,79 Functional integrins are formed by noncovalent 

bonding of an α and a β subunit, with 24 known members in humans.80–82 In fibrosis, 

interest has focused on the role of αvβ6 and αvβ8 as activators of extracellular stored latent 

TGFβ1, which is proteolytically processed to active TGF-β1, for example, via MMP-14 

mediated cleavage, upon cellular contraction and stretching.71,83–85 Latent TGFβ1 is 

tethered to αvβ6 or αvβ8 on activated cholangiocytes or HSCs/MFs, respectively via an 

arginine-glycine-aspartic acid motif.77,86,87 Integrin αvβ6 is virtually absent in the healthy 

liver and highly expressed after a range of insults.86,88,89 Therefore, the relative cellular 

specificity of the αv and especially TGF-β1 activating integrin αvβ6 permits selective 

inhibition of TGF-β activity in areas of mechanical stiffness and associated fibrogenesis. 

This is vital as total inhibition is known to result in unwanted proinflammatory changes.90 

More generally, the family of αv integrins is expressed on many liver cell populations; 

genetic deletion or pharmacological inhibition of all αv integrins results in attenuated 

fibrogenesis,91 or in the abundant integrin αvβ3 (and αvβ5) that is mainly expressed on 

HSCs/ MF and macrophages.92,93

Collagens, the major ECM proteins in fibrosis, and elastin are stabilized via enzymatic 

crosslinking, which confers resistance to degradation, and thus may limit reversibility of 

established fibrosis.94 There has been a focus on the family of lysyl oxidases (LOX) that 

crosslink fibrillary collagen mainly at the nontriple helical ends (telopeptides) of the 

collagen molecules.11,95 LOX enzymes constitute a family of five members: LOX and LOX-

like (LOXL) 1–4. They are secreted, copper-dependent amine oxidases with a variable N-

terminal region and a conserved C-terminal domain that is necessary for catalytic activity. 

Expression of the LOX proteins is tightly controlled in a time- and organ-dependent manner 

during development, but aberrant expression and activity of these enzymes has been reported 

in a range of diseases associated with the ECM and in cancers,96,97 including an 

upregulation of LOX and LOXL2 in Wilson's disease, primary biliary and other etiologies of 

cirrhosis, and in pulmonary fibrosis.98–100 Hepatic stellate cells and portal MFs are major 

producers of LOX and LOXL2 in the liver.101 A humanized antibody (Simtuzumab) that 

blocks LOXL2 activity is currently being assessed in a large clinical study for liver fibrosis 

in patients with PSC or NASH (NCT01672853, NCT01672866, NCT01672879).99
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Targeting Fibrosis Reversal—Recent animal studies have revealed that during 

experimental fibrosis regression up to half of the myofibroblasts undergo senescence and 

apoptosis, whereas the rest acquire a quiescent phenotype.102,103 The factors governing the 

inactivation of myofibroblasts are under investigation. For example, PPARγ plays a (limited) 

role in the re-establishment of the quiescent HSC phenotype,102 while matrix stiffness104 

and crosslinking is currently addressed by LOXL2 inhibition (ClinicalTrials.gov, 

NCT01452308).99

Recruitment and activation of monocytes/macrophages is central to both fibrogenesis and 

fibrosis regression in rodents.105 Although targeting macrophage recruitment or polarization 

would be an attractive approach, the functional heterogeneity of macrophage subpopulations 

in humans has not yet been adequately characterized. Thus no clear links can be made yet 

from animal studies to human disease and the macrophage subsets may be dependent on the 

etiology of the liver disease. One rational attempt is the use of chemokine antagonists whose 

role in fibrogenesis seems to be preserved among species. Therefore, preventing the early 

recruitment of profibrotic mononuclear cells by CCL2 inhibition intrahepatic macrophages 

may be shifted toward the “restorative” subset, accelerating fibrosis regression.106

So Many Targets: Which Ones Are Attractive for Further Clinical Development?

Fig. 2 illustrates the complexity of cellular interactions and fibrogenic or fibrolytic signals 

exchanged between these cells. For the past 20 years there has been a steady addition to the 

number of molecules and pathways that are targets for antifibrotic therapy. TGFβ1 is one of 

the earliest such molecules and still occupies center stage. However, systemic inhibition of 

TGFβ1 results in increased inflammation.107 This spurred the targeting of specific steps in 

TGFβ1 activation, in a localized manner. Inhibition of integrin αvβ6, with reduction of 

TGFβ1 activation promises to be a highly effective and localized antifibrotic 

approach,86,88,89 and clinical trials using antibodies against avβ6 are underway.86 

Connective tissue growth factor (CTGF) amplifies TGFβ1 signaling, and a monoclonal 

antibody targeting CTGF has shown promise in animal models of pulmonary fibrosis.108

Attenuating the activated phenotype of myofibroblasts is an attractive approach due to their 

key role in ECM deposition. Inhibition of the cannabinoid receptor 1 (CB1) reverses 

myofibroblast activation and attenuates experimental liver fibrosis.109 This has passed the 

proof of principle state, and peripheral-acting CB1 antagonists that may circumvent adverse 

side effects on the central nervous system like depression are being developed.110 In fibrotic 

NASH, progression is intimately linked to insulin resistance/type 2 diabetes, and the 

associated lipotoxic hepatocyte death and intestinal dysbiosis, providing rational targets for 

both anti-inflammatory and antifibrotic therapy in this condition.111,112 Therapeutic 

strategies include reducing oxidative stress, improving insulin signaling, activating the 

farnesoid × receptor receptor (e.g., with obeticholic acid), fibrosis-targeted inhibitors of 

hedgehog signaling, combined peroxisome proliferator activated receptor (PPAR)α/δ 
agonists,113–115 or manipulation of the altered gut microbiota using probiotics or microbiota 

transfer.112,116

Oxidative stress is an important cofactor in fibrosis, but the use of antioxidants has been 

disappointing.117 This may be due to differences between animal models and human 
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disease, and the fibrosis stage and cell-specific regulation of oxidant and antioxidant 

pathways. Activation of NADPH oxidases (NOX1, NOX 2, and NOX4) induces HSC 

activation118–120 NOX4 can trigger apoptosis in hepatocytes.120 Inhibition of NOX1/NOX4 

suppresses fibrogenesis in the CCl4 and bile duct ligation models, in pulmonary120–122 and 

in interstitial kidney fibrosis. A phase II trial is underway in diabetic kidney disease 

(ClinicalTrials.gov NCT02010242).

Tables 1 and 2 list relevant clinical drug trials using antifibrotic agents in liver fibrosis or 

other organ fibrosis with fibrosis as the primary or coprimary endpoint. What is remarkable 

is the diversity of agents that have been tested. They range from drugs with very broad or 

poorly characterized mechanism (e.g., omega-3 fats and vitamin D), to specific receptor 

inhibitors (losartan and liraglutide), broad but fairly low intensity anti-inflammatory and 

antiapoptotic effects (pentoxifylline and ursodeoxycholic acid), or multikinase inhibitors 

(nintedanib). This is a reflection of the wide range of biological processes that are involved 

in the development of liver fibrosis. Due to the obvious concerns of redundant pathways, and 

individual heterogeneity in active pathways that lead to fibrosis, there is a significant risk 

that many of the single agents listed may not have significant efficacy and/or display off-

target side effects. However, the past and current studies are already providing a rich 

resource for designing effective treatments that would also exploit drug combinations in the 

near future. Notably, two antifibrotics (pirfenidone and nintedanib) have recently been 

approved by the Food and Drug Administration and the European Medicines Agency for the 

treatment of pulmonary fibrosis.

The Patient Population to Be Studied

Recent reviews and guidelines highlight optimal patient selection and stratification for 

proof-of-concept clinical tri-als.1,5,123 Subjects should be stratified according to the major 

underlying etiology, gender, signs of the metabolic syndrome, alcohol use, concomitant 

medications, and routine surrogates of hepatic inflammation. They should be at an 

intermediate stage of fibrosis (e.g., Metavir stage 2–3) for highest probability to detect 

dynamic changes of progression or reversal. A noninvasive measure like transient 

elastography or acoustic radiation force imaging is helpful for preselection before biopsy is 

performed, which at present is still required as entry criterion and in follow-up. The 

inclusion of a genetic risk score for fibrosis progression, as validated for hepatitis C virus 

infection, is useful, but no such score has been validated for other etiologies. Although 

sampling variability of biopsy is high for viral hepatitis (25–30% for a one-stage difference), 

and even higher for fibrosis due to NASH and biliary diseases, high-quality antifibrotic drug 

trials that aim at biopsies of sufficient size (at least eight portal areas) and duration (2 years), 

and include ∼200 well-stratified patients have yielded reliable results.8,9 Current guidelines 

also suggest the inclusion of several biologically plausible surrogate markers of fibrosis or 

fibrosis progression, such as direct or indirect serum fibrosis markers, novel imaging 

technologies, or measurement of portal pressure in patients with advanced fibrosis. Many of 

these requirements have been fulfilled, such as in the currently largest trial testing the 

antifibrotic effect of a Loxl2-blocking antibody (Table 1). Finally, there is much activity to 

develop more sensitive and specific serological markers and imaging modalities for the 

assessment of fibrosis and especially fibrogenesis. Once validated in ongoing studies, such 
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markers and technologies could dramatically reduce the time to validate a test drug or the 

number of patients needed.

Combination Therapies

Considering the expected synergies of modulating two or more fibrogenic (and/or fibrolytic) 

pathways and the potential to decrease or eliminate the side effects that may result from 

targeting a single mechanism, combinations of antifibrotic (anti-inflammatory) therapies 

hold great promise. Agents in such combinations can address the major cause of fibrosis, 

such as antivirals; derive from drugs with known safety profiles that are used for other 

cardiovascular or inflammatory indications in a process of drug repurposing; or be 

specifically targeted at fibrogenic or fibrolytic cells and pathways. Such drug combinations 

would factor in the multifactorial etiology of fibrosis and the quantitatively divergent 

fibrogenic pathways in each individual, which would likely also reduce potential side 

effects. However, despite its promise at present there is only scant data on the efficacy of 

combinations of potential antifibrotic agents due to the effort needed even at the preclinical 

stage.1 In man, clinical development of combination therapies that could guarantee thorough 

efficiency and low toxicity will only be possible with noninvasive tools that measure the 

effect of a given drug on its pharmacological target. In addition, we will need improved 

noninvasive biomarkers for the quantification of liver fibrosis, fibrogenesis, and liver 

function: surrogate markers for a personalized antifibrotic treatment that would permit 

titering of the given drugs and their combinations according to the individual antifibrotic 

response. The development and validation of such biomarkers has become a key focus of 

pharmaceutical and biotechnology companies with an interest in antifibrotic therapies.5,7,123
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Fig. 1. 
Multiple interactions between immune and profibrogenic cells. The progression of hepatic 

stellate cells (HSCs) from the quiescent to activated, to myofibroblasts, and eventually 

apoptosis is greatly influenced by paracrine signals from infiltrating blood monocytes which 

become tissue macrophages. At the initiation of injury, these tissue macrophages provide 

activation and proliferation signals, and during the resolution phase they provide apoptotic 

and reversion signals, but also actively digest and remove excess extracellular matrix. 

Additionally, innate (natural killer) and adaptive (Th1, Th2, and Th17) immune cells provide 

signals that can increase or decrease macrophage mediated fibrogenesis. Indirect cytokine 

production is shown in brackets. IL, interleukin; PDGF, platelet-derived growth factor; TGF, 

transforming growth factor.
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Fig. 2. 
Multicellular context of fibrogenesis and fibrolysis: The postulated major cellular functional 

units and secreted factors that should be addressed in their complexity when designing 

effective antifibrotic strategies. (A) Vascular and (B) biliary unit. Profibrogenic targets are 

underlined, in contrast to putative fibrolysis-inducing targets in italics and red. Profibrogenic 

targets are underlined, in contrast to putative fibrolysis-inducing targets in italics. Modified 

from Schuppan and Kim.1 Baso, basophil; CCL, CC chemokine ligand; CTGF, connective 

tissue growth factor; CXCL, CXC chemokine ligand; ET-1, endothelin-1; HGF, hepatocyte 

growth factor; IFN, interferon; IGF, insulin-like growth factor; IL, interleukin; MMP, matrix 

metalloproteinase; NO, nitric oxide; PDGF-BB, platelet-derived growth factor with two 

subunits B (in parenthesis because a recent study indicates that most if not all PDGF-BB in 

liver fibrosis derives from activated platelets12; PMN, polymorphonuclear neutrophil; ROS, 

reactive oxygen species; TNFα, tumor necrosis factor α; Shh, sonic hedgehog; TGFβ1, 

transforming growth factor β1; Th, T helper cell; TIMP, tissue inhibitor of 

metalloproteinases; TRAIL, TNF-related apoptosis-inducing ligand; Treg, regulatory T cell.
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