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Abstract

“Precision Medicine” embodies the analyses of extensive data collected from patients and their 

environments to identify and apply patient-specific prophylactic strategies and medical treatments 

to improve clinical outcomes and healthcare cost-effectiveness. Many new methods have been 

developed for evaluating the activity of the human immune system. Such “immune monitoring” 

approaches are now being used in studies of allergy and asthma in the hope of identifying better 

correlates of disease status, predictors of therapeutic outcomes, and potential side-effects of 

treatment. Together with analyses of family histories, genetic and other biometric data, and 

measurements of exposures to environmental and other risk factors for developing or exacerbating 

disease, immune monitoring approaches promise to enable “Precision Medicine” for allergic 

diseases and asthma.
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Precision Medicine and Immune Monitoring

Concepts of “Precision Medicine” (i.e., the patient-specific tailoring of medical treatment 

based on detailed phenotyping and characterization of the patient, their disease, and their 

environment) have long been applied in Clinical Allergy/Allergology. In their seminal 
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description of therapeutic immunization with grass pollen extract of subjects suffering from 

grass pollen allergic rhinitis, Noon and Freeman recognized that the allergen therapy needed 

to match the cause of the patient’s disease[1–3]. Accordingly, as recently reviewed[4], a 

foundation of “Precision Medicine” in modern allergology is the initial identification of the 

patient’s allergic sensitivities prior to forming a plan of treatment, and the assessment of 

how those sensitivities may be altered by immunotherapy (IT).

The development of genome sequencing, as well as microbiome and virome 

characterization, stemming from improvements in DNA sequencing methods, has opened 

the possibility of collecting unprecedentedly detailed genetic data from allergic or asthmatic 

patients and their commensal or pathogenic microbes. Other ‘omic’ analyses that can be 

applied to the analysis of allergic disorders and asthma include measurement of ‘epigenetic’ 

chemical modifications of a person’s genome, characterization of proteins and other 

macromolecules in bodily fluids or tissues, and measurement of glycan modifications of 

proteins. Similarly, characterization of the patient’s ‘exposome’ (i.e., the carefully 

documented record of exposure to components of the patient’s environment, including 

allergenic plants, animals, fungi, and foods, as well as to therapeutics, tobacco, pollutants, 

and irradiation) should be considered critical for understanding allergic or asthmatic patients 

in the context of Precision Medicine (Table 1).

A report from the U.S.A. National Research Council[5] proposed a framework for making 

sense of large datasets from patients to guide Precision Medicine therapeutic interventions, 

and to revise disease classifications based on new data gained through such efforts (Fig. 1). 

The traditional randomized clinical trial[4,5] will still remain the gold standard for assessing 

the safety and efficacy of any medical intervention. However, recent studies suggest that 

improved immune monitoring assays may be able to improve our ability to diagnose and 

evaluate immunological diseases, and predict therapeutic outcomes and side effects. In this 

review, we will provide some recent examples of work in this broad area.

Allergic Disease and Asthma Diagnosis and Patient Stratification

Efforts to identify patients with “subtypes” of allergic disorders involve both defining the 

observable characteristics of their disease (i.e., the disease “phenotype”) and attempting to 

determine the underlying biological mechanisms involved in the origins and manifestations 

of the disease (i.e., the disease “endotype”). For example, increasing understanding of the 

mechanisms underlying food allergy[6–10] is helping to improve diagnosis and stratification 

of patients[11]. Notably, while allergen-specific serum immunoglobulin E (IgE) and skin 

prick tests (SPTs) can assist in food allergy diagnoses, these assays are not perfectly 

sensitive or specific[12]. The more expensive, laborious and higher-risk double-blind, 

placebo-controlled food challenge (DBPCFC), in which food allergens are administered to 

patients under carefully monitored conditions to detect clinical reactivity, is the diagnostic 

gold standard[13]. Alternative tests that do not involve triggering an allergic reaction would 

represent a significant advance. The use of recombinant allergens[14], and approaches for 

identifying the allergen epitopes recognized by a patient’s IgE[15–17], may accelerate 

improvements in diagnostic specificity.
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Other promising non-invasive immune monitoring tests include basophil activation tests 

(BATs), which measure blood basophil activation upon allergen challenge[18,19]. Blood 

basophil phenotype and function in vitro may be useful in distinguishing between peanut-

sensitized children who have clinical allergy versus those who are sensitized but tolerant to 

peanut[19]. Moreover, it recently was shown that both conventional BATs (i.e., assessment 

of surface levels of CD63 or CD203c) and cytometry by time-of-flight mass spectrometry 

(CyTOF) analysis of basophils are robust assays that can be applied to samples shipped 

overnight, promising improved standardization of such testing at specialized reference 

laboratories[20]. The application of CyTOF technology[21] to the analysis of 

basophils[20,22] may reveal previously unsuspected heterogeneity in these cells, and 

provide additional diagnostic, prognostic and therapeutically-relevant data. Further, two 

recent reports of new fluorescent-avidin-based assays for basophil activation in whole blood 

describe a fast and inexpensive BAT that could reveal basophil heterogeneity between 

different individuals at diagnosis or during therapy[23,24].

In the asthma field, diagnostic classification is evolving rapidly[25], and several new 

subcategories or “endotypes” of asthma (i.e., variants of asthma that appear to differ in 

underlying biological mechanisms) were recently reported[26–31], encompassing different 

genetic variants, patterns of gene expression, and clinical phenotypic features. Efforts to 

further refine the classification of clinically important subtypes of asthma now include large 

clinical trial groups in several countries. This work should clarify the requirement for 

allergen-specific IgE in the pathogenesis of asthma endotypes from early life onward[32–

34]. The proposed asthma endotype categories often rely on identifying common 

downstream pathways (e.g., the detection of a “TH2 cell signature”[31,35]). These 

downstream pathways are, in some cases, susceptible to targeting with particular biologic 

therapies[36].

Therapy Selection and Monitoring

Diagnostic methods and classification schemes are of greatest value if they guide selection 

of effective therapies, and decrease rates of serious side effects. Even if there are 

reproducible biological differences between subcategories of a disease, unless there are 

meaningful therapeutic options for each subcategory, or other advantages such as improved 

prognostication of the disease course, the clinical relevance of the classification will be 

questionable[4,37,38]. Validation of new classification schemes via testing of different 

therapies, such as monoclonal antibody drugs, will have major clinical and financial 

consequences for patients, and for companies developing novel therapies and “companion 

diagnostics” intended to evaluate whether a therapy would be effective in an individual 

patient.

In asthma, there are several examples of therapeutic selection based in part on 

characterization of patient immune responses. Improved identification of patients whose 

disease has a “TH2 endotype”[31,35], using biomarkers including periostin[39,40] and high 

levels of blood eosinophils[41], has been used to recommend therapies targeting TH2 

response components (e.g., IL-4, IL-5, IL-13 and/or their receptors)[42–47]. However, it 

appears that there are many pitfalls in attempts to develop these new diagnostic categories 
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for patient populations differing by age, race, or other factors that may alter the correlation 

of disease phenotype with individual biomarkers. For example, blood periostin levels may 

not be a useful biomarker of asthma in pediatric populations[48,49], while biomarkers such 

as exhaled NO and blood eosinophil counts may better predict asthma morbidity in this 

population[49]. As another example, therapies targeting eosinophils might be most helpful 

in patients with elevated levels of blood or tissue eosinophils[41,50–54].

Of course, immune monitoring approaches need to be evaluated in clinical trials to 

determine their merit. A recent study[55] of over 1,000 patients found that optimal “asthma 

control signatures” identified in whole peripheral blood specimens were enriched for 

immature lymphocytic gene expression patterns, and that suboptimal control was associated 

with signatures of eosinophilic and granulocytic inflammation, suggesting that such 

transcriptional data could guide treatment choices. However, we agree with Gomez and 

Kaminski[56] in thinking that large prospective clinical studies will be needed to test the 

usefulness of these immune signatures in predicting suboptimal asthma control over time. It 

may be possible to refine such approaches by identifying specific cells and regulatory events 

underlying such immune signatures, both in asthma and other settings[57–60]. The need for 

large prospective studies to evaluate the clinical utility of immune monitoring assays is 

similar to proposals for validating pharmacogenomic assays and predictions, including in the 

area of asthma therapy[61,62].

Similar points can be made regarding identifying any proposed biomarkers for allergic 

disorders and asthma, as described in recent papers on the potential use of immune 

monitoring and other data to improve the classification and management of allergic disease, 

including allergic rhinoconjunctivitis[63] and asthma[36]. As noted by Muraro et al., the 

heterogeneity of asthma, rhinitis, and AD biomarkers, and variation in the onset, clinical 

presentation and rates of remission or progression in these diseases combine to generate 

difficulties in determining the appropriate clinical management strategies, and in selecting 

biomarkers of therapeutic efficacy[36]. For example, a recent paper suggests that the 

tyrosine kinase inhibitor, imatinib, may have utility in the treatment of certain patients with 

severe asthma, but it is unclear whether the critical target is mast cells or other KIT positive 

cells, or may be due in part to effects of the drug on other tyrosine kinases[64,65]. Perhaps 

the development of immune profiling tools for assessing the importance of mast cells in 

asthma could be used to refine the selection of patients for this targeted treatment. That 

study, which included measurements of the mast cell product, tryptase, in the blood, as well 

as bronchial biopsies to quantify mast cell numbers in the airways, raises a general point 

about the extent to which measurements of cell populations and other analytes in the blood 

can be useful in efforts to “monitor” immune responses whose clinical manifestations reflect 

the pathology which they induce at specific sites of disease (e.g., the lungs, GI system, or 

skin). This is an important general problem for the field, and one that is not trivial to study.

Improved immune monitoring approaches could also be relevant in efforts to prevent the 

development of allergic disease. For example, it is known that genetic predisposition, and 

the phenotypic manifestation of clinical atopy, are correlated with the development of 

allergies, including food allergies[66–68]. The recently published LEAP (Learning Early 

About Peanut) randomized clinical trial provided convincing evidence that children in an 
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intention-to-treat population who had atopy (and therefore had a high probability of 

developing clinical allergy to peanuts), but who had negative results in SPTs for peanut, had 

an approximately 85% reduction in development of peanut allergy by 5 years of age if 

peanut products were introduced into their diet within their first year of life, in contrast to 

infants avoiding peanuts[69]. This surprising result has led to a reversal of decades of 

pediatrician advice that parents should avoid exposing their infants to allergenic foods until 

later in childhood. It may be the case that additional phenotyping of infants, based on the 

collection of immunological and other clinical data, family histories, and genetic data, could 

provide the basis for further improvements in decreasing the risk of developing severe 

allergies by guiding the timing and extent of exposures to environmental factors such as 

foods associated with allergies. In principle, immune monitoring tests could be less 

expensive and invasive alternatives to DBPCFC studies for assessing the efficacy of these 

interventions. Similarly, such assays could be used to evaluate factors that can influence a 

patient’s threshold for developing a clinical reaction to allergen exposure, such as exercise, 

alcohol consumption, and concurrent infection[70–72].

A critically important area for implementing Precision Medicine concepts in allergy 

treatment is in the improvement of Allergen-Specific Immunotherapy (AIT) protocols. 

Ideally, detailed patient phenotyping could help tailor the allergen dose escalation schedule 

for AIT for allergic rhinitis[73–75] or oral immunotherapy (OIT) for food allergies, and 

predict which patients will become permanently desensitized or tolerized[76–78] rather than 

achieving desensitization dependent on continuing exposure to the allergen[74]. Recent 

studies provide proof-of-concept data indicating that certain biological measurements can 

better classify patients and guide their AIT regimens. A recent small phase I single-center 

clinical trial of OIT for peanut identified FOXP3 gene methylation levels in regulatory T 

cells as a correlate in patients who achieved more sustained unresponsiveness to peanut after 

a period without peanut ingestion[77]. Another recent paper based on a small number of 

subjects identified expanded allergen-specific CD4+ T cells with an “anergic” TH2 T cell 

phenotype as a feature of patients undergoing OIT[79]. Others have reported that patients 

undergoing allergen-specific IT show an increased proportion of regulatory T follicular 

helper T cells to T follicular helper cells[80]. Similarly, analysis of the frequencies of peanut 

allergen-specific B cells in patients undergoing peanut OIT showed increased levels of 

specific cells as a correlate of treatment[81,82]. As noted above, recent work indicates that 

blood basophil phenotype and function analyzed in vitro may be able to distinguish between 

peanut-sensitized children who have clinical allergy, in contrast to those who are sensitized 

but tolerant to peanut[19]. Basophil assays also are under investigation for monitoring the 

efficacy of IT for SAR[83] or omalizumab treatment for severe peanut allergy[84].

Further work with much larger patient cohorts and integrated analyses of different leukocyte 

populations and other immunological parameters will offer the prospect of identifying the 

immunological changes that are most closely correlated with the safety and efficacy of 

treatment, as well as the durability of patient responses. It also will be important to define 

which of such immune monitoring tests have the greatest clinical utility (and are most cost-

effective) for use in routine “check-ups” of patients with allergic diseases, or those at 

substantial risk to develop such disorders, to enable early detection of allergic diseases, 

document sustained favorable responses to treatment, and/or give an early indication of the 
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need to consider altering that individual’s management. The results of such efforts, that 

should include studies of people representing the full diversity of the human population in 

terms of sex, life stage, genetic background, environmental exposures, and socioeconomic 

circumstances, will be critical for generating sufficient scientific and clinical data to 

determine whether a new diagnostic classification of allergic disorders (i.e., a “new 

taxonomy[5]” of these diseases) should be considered.

Summary

The concepts of Precision Medicine are clearly applicable to the study and classification of 

allergic disorders and asthma, as well as the selection and monitoring of therapeutic 

strategies for patients (Table 1, Fig. 2). We feel that the field is only at the beginning of the 

process of critically evaluating the clinical utility of such “immune monitoring” approaches, 

some of which involve very newly developed assays. Fundamental questions remain about 

such approaches, including the extent to which the evaluation of features of immune 

responses that can be measured in the peripheral blood accurately reflect immunopathology 

at the tissue sites of disease (Table 2). Ongoing and future work will determine whether 

immune monitoring approaches will improve disease classification, therapeutic choice, and 

monitoring of disease status and responses to treatment, as well as the cost-effectiveness of 

care, in patients with allergic diseases and asthma.
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Abbreviations

AIT allergen-specific immunotherapy

BAT basophil activation test

CD-sens basophil allergen threshold sensitivity

CyTOF cytometry by time-of-flight mass spectrometry

DAO diamine oxidase

DBPCFC double-blind, placebo-controlled food challenge (DBPCFC)

IgE Immunoglobulin E (antibody)

IT immunotherapy

LEAP Learning Early About Peanut (a clinical trial)

Boyd et al. Page 6

Curr Opin Immunol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OIT oral immunotherapy

SAR seasonal allergic rhinitis

sIgE specific Immunoglobulin E (antibody)

SLIT sublingual immunotherapy

SPT skin prick test

Tfh T follicular helper cell

TH2 T helper cell type 2
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peanut allergic patients, measurements of basophil allergen threshold sensitivity (CD-sens) 
(which correlate with the outcome of DBPCFC with peanut) were used to measure omalizumab 
treatment efficacy. The authors found that participants who needed an elevated omalizumab dose 
(ED) to suppress CD-sens had significantly higher CD-sens values at baseline compared to those 
who managed with a normal dose, and that the median ratios for anti-Ara h 2 IgE-ab/IgE were 
significantly higher in the ED group (17%) compared to the ND group (11%). This hypothesis 
generating study, which had a one-armed study design, provided evidence that the ratio of anti-
Ara h 2 IgE-ab/total IgE, as well as basophil CD-sens to peanut, may predict the need for a 
higher dose of omalizumab in this setting. [PubMed: 27883239] 
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Figure 1. 
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Figure 2. 
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Table 1

General principles of precision medicine for allergic disorders and asthma*

Characterize the disease: Identify the disease and, if applicable, the subtype of allergic disorder or asthma; for allergic disorders, precisely 
define the offending allergen proteins.

Profile the patient: Characterize patient genotype and phenotype (and in some cases microbiomes) and their environment (i.e., their 
“exposome”); assess patient’s likelihood to respond to pharmacological or biological agents, AIT or other forms of management.

Select optimal management: Based on the individual’s subtype of disease, offending allergens, genetic and phenotypic characteristics, and an 
evidence-based assessment of her/his likelihood to respond to various treatment/management options.

Monitor disease and response to management: Perform appropriate biometric monitoring during treatment (e.g., with pharmacological or 
biological agents or with AIT) to assess favorable or adverse effects of the intervention and duration of favorable effects.

Develop algorithms to select the most cost-effective management approach for that patient: Based on the characteristics of the patient and 
his or her test results and the evidence-based assessment of the clinical utility of the treatment options and the type of health care system in 
which that patient receives his or her care.

*
By taking advantage of ongoing basic, translational and clinical research, and having access to patient-specific data obtained during the course of 

clinical care, these approaches can be continuously and iteratively refined and improved (see Fig 1). This is a modified version of Table 1 in [4], 
reproduced with permission of the American Academy of Allergy, Asthma, and Immunology.
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Table 2

Needs for advancing precision medicine for allergic disorders and asthma.

Identify biological 
factors contributing to 
development of allergy/
asthma

• More detailed understanding of genotype-phenotype relationships, and interactions with 
environmental exposures

• Barrier state differences (affecting skin, respiratory and GI systems, etc.), and how these contribute 
to allergy development

• Mechanistic effects of early vs. later allergen exposure (via skin, airways or ingestion, etc.)

• Mechanisms of other protective vs. pro-allergy environmental factors (pets? farm animals?)

Identify pathogenic 
immune system features

• Which IgE antibodies actually contribute to allergy/asthma?

• What T cell phenotypes and cytokine profiles contribute to allergy/asthma?

• What basophil/mast cell populations and/or states contribute to allergy/asthma?

• Interactions between mast cells/basophils and IgE/IgG4/other immunoglobulin isotypes

• Epithelial and other cell type contributions to allergy/asthma

• Determine which key features of the disease process in the affected tissues can effectively be 
“monitored” (e.g., to assess treatment outcomes) via the analysis of cell populations and other 
analytes in the blood.

Identify correlates and 
mechanisms of 
immunotherapy efficacy

• Differences between temporary desensitization and sustained unresponsiveness/tolerance

• Antibody-mediated protection/desensitization (IgG4, and others?)

• Are there potential T cell mechanisms of tolerance, beyond influences on antibodies?

• Changes in basophil/mast cell sensitivity

• Basis for “natural” desensitization or tolerance

• Key biomarkers for predicting side effects of treatments

Identify new therapeutic 
strategies

• Modifications of current approaches (e.g., speed of updosing, multi-allergen therapies in food allergy 
IT)

• New potential targets for biologics/other mechanistic-based therapies

• Combination therapies (e.g., multiple biologics, biologics plus IT, small molecule drugs plus other 
treatments)

• Companion diagnostics

Evaluate cost-
effectiveness of new 
therapeutic strategies

• Evidence-based evaluation of the clinical utility of new treatment strategies

• Measurement of disease and treatment costs

– Cost to the patient

– Cost to the health care system

– Cost to society
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