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Abstract

Recent papers have promoted the view that model-based methods in general, and those based on 

Approximate Bayesian Computation (ABC) in particular, are flawed in a number of ways, and are 

therefore inappropriate for the analysis of phylogeographic data. These papers further argue that 

Nested Clade Phylogeographic Analysis (NCPA) offers the best approach in statistical 

phylogeography. In order to remove the confusion and misconceptions introduced by these papers, 
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we justify and explain the reasoning behind model-based inference. We argue that ABC is a 

statistically valid approach, alongside other computational statistical techniques that have been 

successfully used to infer parameters and compare models in population genetics. We also 

examine the NCPA method and highlight numerous deficiencies, either when used with single or 

multiple loci. We further show that the ages of clades are carelessly used to infer ages of 

demographic events, that these ages are estimated under a simple model of panmixia and 

population stationarity but are then used under different and unspecified models to test hypotheses, 

a usage the invalidates these testing procedures. We conclude by encouraging researchers to study 

and use model-based inference in population genetics.
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molecular evolution; phylogeography; population genetics-empirical; population genetics-
theoretical

Introduction

How is it possible to use genetic data from related populations or species to figure out their 

recent evolutionary history? Each data set is open to various interpretations, yet in any 

particular case some interpretations might be better justified than others. The challenge is to 

develop a genetical and evolutionary theory that is general enough to include real histories, 

and yet simple but detailed enough that it can be used in a statistical framework to infer 

details of a specific history, including (importantly) measures of uncertainty.

The idea of a genealogy, or gene-tree, to represent the history of a sample of homologous 

gene copies is one of biology's most successful models thanks to its generality and 

flexibility. However, statistical inference under the gene-tree model is difficult. For many 

years investigators, often using mitochondrial sequences, struggled to interpret trees 

generated from their data in terms of demographic processes, such as population separation 

or gene exchange. In the early days, this field of phylogeography relied on heuristic and 

descriptive analyses, and it was essentially not statistical.

The situation changed with the introduction of Nested Clade Phylogeographical Analysis 

(NCPA) (Templeton 1998; Templeton et al. 1995). In combining an analysis of estimated 

gene-tree structure with an inference key to make conclusions about the demographic causes 

of the shape of the gene-tree, the method served a generation of evolutionary biologists 

eager to make sense of their data. To address the concern that gene-tree estimates can be 

wrong, the method accommodates a network of connections based on which haplotypes are 

likely to be connected in the true genealogy (Crandall 1996; Templeton et al. 1992). To 

address the concern that different unlinked genes can have widely different histories, even 

when sampled from the same organisms, ‘cross-validation’ of multiple loci was proposed 

(Templeton 2002, 2004a). Notwithstanding the apparent flexibility and generality of NCPA, 

or its popularity, the method has been subject to a number of criticisms (Knowles & 

Maddison 2002; Petit & Grivet 2002; Hey & Machado 2003; Panchal & Beaumont 2007; 

Knowles 2008; Manolopoulou 2008), and has been vigorously defended (Templeton 2004b, 

2008, 2009b).
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Today, in contrast to the years when NCPA first came on the scene, there are other 

approaches available for developing complex demographic inferences. The origins of these 

methods actually predate NCPA, going back to the first likelihood-based models for 

demographic and phylogenetic inference (Cavalli-Sforza & Edwards 1967; Thompson 1973; 

Felsenstein 1981) and the development of coalescent theory (Kingman 1982; Hudson 1983; 

Tajima 1983). Although they vary considerably in details, these methods differ sharply from 

NCPA in two fundamental ways. First, they are explicitly based on demographic models that 

include parameters such as population size and migration rates. Second they use the 

genealogy as an unobserved variable that connects data to model parameters but need not be 

explicitly inferred (Hey & Nielsen 2007). These model-based approaches share the goal of 

computing a likelihood function (i.e. the probability of the data as a function of the 

parameters within a given model). Being likelihood-based, these methods open doors for 

population geneticists and phylogeographers to the repertoire of likelihood-based analyses, 

including maximum likelihood estimation of model parameters and likelihood-ratio 

hypothesis tests (e.g. Griffiths & Tavaré 1994; Kuhner et al. 1995; Beerli & Felsenstein 

1999), as well as Bayesian analyses (Wilson & Balding 1998), including Approximate 

Bayesian Computation (ABC) (Tavare et al. 1997; Pritchard et al. 1999; Beaumont et al. 
2002).

Templeton (2010), in response to Nielsen & Beaumont (2009), heavily promotes NCPA for 

analysing phylogeographic data, incorrectly asserting that it uses ‘a likelihood function that 

explicitly incorporates the randomness associated with the coalescent and mutational 

processes’. He also repeats many claims from Templeton (2009a) where he strongly 

criticizes the use of ABC methods for analysing phylogeographic data in general, and their 

application to discriminate between various human evolutionary scenarios in particular 

(Fagundes et al. 2007). He concluded that ‘because of its multiple flaws, ABC should not be 

used for hypothesis testing’. Yet ABC is simply a Monte Carlo method that can be used to 

approximate posterior distributions or likelihood surfaces from a model (see e.g. Tavare et 
al. 1997; Pritchard et al. 1999; Beaumont et al. 2002, for more details on ABC approaches). 

It is a numerical tool for solving problems within a statistical framework. Thus the majority 

of criticisms that Templeton (2009a, 2010) aims at ABC are also aimed more generally 

against model-based inference in population genetics. We feel compelled to react against 

this broadly unsupported attack on model-based inference, and to point out important 

misconceptions underlying Templeton's critique.

First, we highlight Templeton misconceptions of model-based inference, of Bayesian 

methods in general and of ABC in particular. Next, we underline major deficiencies of 

NCPA when inferring past demographic scenarios, and errors or misleading statements in 

Templeton's promotion of the method.

Misconceptions about model-based methods

Model specification

In population biology, as in many other scientific areas, there has been a longstanding 

tension between proponents and opponents of model-based inferences. The most familiar 

example is the debate between cladists and likelihoodists in phylogenetics. Although 

Beaumont et al. Page 3

Mol Ecol. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Templeton (2009a) claims to accept both hypothesis testing and models, including likelihood 

and Bayesian methods, many of his criticisms echo old arguments against the use of model-

based inferences in phylogenetics. He argues that it is a flaw of ABC, and of model-based 

methods that they do not cover the entire ‘hypothesis space’ (Templeton 2009a, p. 320), but 

instead compare only a small number of potentially mis-specified and subjectively chosen 

models (Templeton 2010). However, for realistic problems, exhaustive coverage of all 

hypotheses is impossible. Moreover, the situation that ‘all hypotheses being compared are 

false’ (Templeton 2009a, p. 320) is in fact the norm in science, since models at best only 

approximate reality, as recognized in the widely cited words attributed to George Box: ‘all 

models are wrong, but some are useful’ (Box & Draper 1987, p. 424). As an aside, the 

distinction between ‘(i) testing a null hypothesis and (ii) assessing the relative fit of 

alternative hypotheses’ (Templeton 2009a, p. 320) is reminiscent of the 1930s debate 

between Fisherian and Neyman-Pearson hypothesis testing; the Neyman–Pearson approach 

of choosing among a limited set of competing models came to dominate statistical practice 

(Gigerenzer et al. 1990).

Strong vs. weak inference

Invoking Popper (1959), Templeton (2007) contends that by relying on successive 

dichotomous tests NCPA can make ‘strong’ phylogeographic inferences, which is not 

possible with model-based methods. However, ‘strong scientific inference’ (cf. Platt 1964) 

arises when the influence of unknown factors on the final result is minimized by 

randomization (Macneil 2008), which also underlies Fisher's (1925) null hypothesis testing. 

That is, without a properly randomized experiment, causal explanations are necessarily weak 

because they are potentially confounded with unobserved effects. Since they are based on 

observational data, phylogeographic studies are not amenable to randomized interventions 

and therefore all phylogeographic inference methods, including NCPA, lead to ‘weak 

scientific inference’ in the sense that it does not arise from planned scientific experiments. 

Popper was fiercely opposed to inductivism, whereby facts are gathered and then general 

laws identified. In this regard, rather than being a Popperian falsification method, NCPA can 

in fact be viewed as an anti-Popperian inductivist approach (Beaumont & Panchal 2008), 

since a story is built out of the patterns in the data.

Unspecified models cannot be tested

Templeton (2009a) argues that since NCPA tests null hypotheses without reference to an 

explicit alternative, it does not rely on a restricted set of alternative models. However, except 

for testing the null hypothesis of no correlation between geographic and genetic distances, 

we show below that NCPA's inferences about specific phylogeographic hypotheses are 

invalid. Moreover, since no alternative model is specified, there can be no measure of the 

relative support for the different hypotheses entertained by NCPA. The specification of 

alternative models is necessary to correctly assess the support of data for a complex 

demographic model. This inevitably incurs additional possibilities of model 

misspecification, but there are many statistical techniques for assessing the fit of a model. 

The use of explicit models expose their authors to critiques, but it is the price to pay for 

science to make progress, as other researchers may propose better models that can be tested 
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against the data, leading to an increasing refinement of the models, and in our understanding 

of the demographic patterns that they reflect.

Simulations under specific models

Templeton continuously rejects the use of simulations to validate models and to infer 

parameters. As evidence for ‘the extreme ambiguity of inference via computer simulations’, 

Templeton (2010) mentions two studies on human evolution (Eswaran et al. 2005; Fagundes 

et al. 2007) which simulate different evolutionary scenarios using different data sets and 

arrive at different conclusions. Two studies leading to different conclusions of course do not 

invalidate the common tools that are used. As previously stated, the use of simulations in the 

ABC inference procedure criticized by Templeton is just a means to evaluate or approximate 

the likelihood function. Templeton also argues against the use of simulations for evaluating 

the relative merits of different inference methods, because this requires the full specification 

of the parameter space to be explored, and implies that choices need to be made concerning 

which models are used and contrasted. A related criticism by Templeton (2009b) is that the 

models that have been used to test NCPA are unlikely and therefore the high false-positive 

rate attributed to NCPA is also unlikely. However, an explicit model specification procedure, 

which is the rule in physics and most other sciences, involves no hidden assumption, and the 

impact of alternative parameterizations can be conveniently studied. Because it is 

transparent, it is open to criticism and the use of alternative specifications. By varying the 

conditions of the simulations it is possible to determine when methods fail and when they 

perform well. Indeed, without such objective testing, it is impossible to have any assessment 

of the performance of a statistical procedure. If a method consistently leads to wrong 

inferences under all or most conditions explored, as we later argue is the case with NCPA, it 

should be discarded.

Misconceptions about Bayesian methods

We recognize that there are alternative ways to perform statistical inference. This is well 

reflected in this paper authorship, and arises from different epistemological traditions lying 

deep in the history of statistics. Our aim in this section is not to argue for the relative merits 

of one approach over another, but simply to correct factual errors concerning Bayesian 

inference that are to be found in Templeton (2009a, 2010), and to present the main 

arguments that underpin it.

Statistical validity of ABC

Templeton (2009a) presents an extensive critique of the ABC method, which is simply a way 

to perform model-based inference in a Bayesian setting when model likelihoods are 

intractable and thus need to be approximated by simulations. For example Templeton 

questions ‘the statistical validity of all inferences made by the ABC method’ (p. 325) and 

argues that ‘the ‘posterior probabilities’ that emerge from ABC [are] mathematically 

impossible … to be probabilities’ (p 329). However, when the summary statistics used in 

ABC are statistically sufficient and parameter estimation uses only the simulations that 

exactly match the observed data, ABC is exact Bayesian inference (Marjoram & Tavare 
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2006). Thus Templeton is in effect claiming that standard Bayesian inferences are invalid, 

and that Bayesian posterior probabilities are mathematically incapable of being probabilities.

Comparison of alternative models

Bayesian analysis is fundamentally a decision-making approach, in which the goal is to 

evaluate the relative support for different models under comparison. In contrast, Fisherian 

testing of a point null hypothesis using P-values only rejects models that inadequately 

explain the data. There is a large literature on the problems that arise when taking null 

hypothesis testing out of its original context in the analysis of designed experiments (see e.g. 

Berger & Sellke 1987). Templeton's claim that in ‘ABC there is no null hypothesis, which 

complicates the computation of sampling error’ (2009a, p.325) is incorrect: sampling error is 

evaluated in each model under consideration, and is not dependent on the specification of a 

null hypothesis.

Priors

Templeton's criticisms that in ABC a model can be rejected because ‘the simulated 

parameter values are wrong’ (Templeton 2009a, p. 323), and that ‘parameter ranges and 

distributions are only guessed based upon the subjective opinion of the investigators’ 

(Templeton 2010), are classical objections made against Bayesian approaches, which need 

the specification of a prior distribution for all the parameters of a model. Priors might be 

mis-specified and their choice may indeed carry some subjectivity, but their impact on 

posterior distributions, parameter inference, and model choice can be quantified (Berger 

1990; Gelman et al. 1996).

Global parameter inference

Templeton's comment that NCPA ‘separate[s] out different phylogeographical components is 

a great advantage over ABC’ (Templeton 2009a, p. 324) ignores the fact that testing subsets 

of the data separately precludes any assessment of uncertainty in the overall conclusions. 

The fact that a method, like ABC, permits this assessment is a clear advantage over NCPA. 

A sound statistical approach should work with all data and parameters at once, and thus 

incorporate dependencies among the parameters and avoid multiple uses of the data. In 

particular, unlike NCPA, Bayesian methods avoid the problem of using an estimate as if it 

were the true value. Uncertainty in parameter values is explicitly modelled, at odds with 

NCPA, where for instance very little or no uncertainty in the topology of the gene-tree is 

assumed for the analysis.

Sampling error

Templeton's argument that simulated statistics and observed statistics cannot be compared 

because the observed statistic (s) is ‘current generation’ while a simulated statistic (s) is 

‘long-term’ (see fig. 2 in Templeton 2009a) is wrong. The error in the argument can be made 

explicit by replacing ‘statistics’ with ‘data’. The aim of model-based methods is to examine 

the relative probability of obtaining the data for different combinations of parameter values. 

It is acknowledged that the observations are influenced by both sampling error and 

evolutionary stochasticity in the model, and this is explicitly accounted for by ABC which 
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simulates data sets with sample sizes and number of loci matching exactly those observed. 

As mentioned before, ABC is then simply a way of using simulations to make inferences.

Simulation weighting

Templeton's claim of an artefactual increase in statistical power by computing a distance 

between observed and simulated summary statistics, ‖s - s′‖, is incorrect. In ABC, ‖s - s′‖ is 

not ‘a generalized goodness of fit statistic’ (Templeton 2009a, p. 328), but is used to 

determine if a simulation is retained for parameter estimation. For retained simulations, ‖s - s
′‖ is also used as a weight allocated to the simulated parameter values in approximating the 

posterior distribution. Note that the ABC method is exact when simulations are retained if ‖s 
- s′‖ = 0 and s is sufficient, since the fraction of retained simulations provide a direct 

estimate of the likelihood. If the retention interval increases then, typically, the posterior 

distributions become wider, and the posterior tends to the prior with increasing retention 

intervals. Thus the ABC approach is inherently conservative. How the approximated density 

converges to the true distribution (conditional on the summary statistics) as ‖s - s′‖ tends to 

zero is an area of active research (e.g. Ratmann et al. 2009; Blum & François 2010).

Posterior densities and Bayesian model choice

The section in Templeton (2009a, p. 326–327) that discusses full distributions and local 

probabilities contains a number of erroneous statements, as explained below. Templeton's 

Figure 3 is used to suggest that conditioning inferences on observed statistics may lead to 

wrong decisions in Bayesian model choice. The interpretation of the figure is actually 

problematic in itself. The graph plots the posterior density against the value of a summary 

statistic. Bayesian inference typically aims to compute the posterior distribution of 

parameter values, not statistics. Conceivably what is meant is the posterior predictive 

distribution of the values of a summary statistic, conditional on the observed summary 

statistic. The posterior predictive distribution is typically used in Bayesian model checking 

(Gelman et al. 1996). Central to Templeton's argument are (i) the assumption that observed 

statistics may often lie in the tails of this distribution, and (ii) that ABC (and by extension, 

Bayesian) model choice procedures are based on an examination of this distribution around 

the observed statistics, while the center of mass of the distribution can be further away from 

the observed statistics, and thus lead to wrong inferences. These premises are incorrect, 

because, if the model fits well, the observed summary statistic does not necessarily lie within 

the tails of the posterior predictive distribution. Furthermore, as discussed in more detail 

below, Bayesian model choice is not based on the posterior predictive distribution at all, as 

implied in the discussion in Templeton (2009a, p. 326–327). An alternative interpretation of 

Templeton's Figure 3 is that it is, in fact, the prior predictive distribution—that is the 

distribution of summary statistics under the model when the parameters are drawn from the 

prior. With this interpretation, the prior predictive distribution at the observed summary 

statistic is also the marginal likelihood. In the context of ABC, ratios of marginal likelihoods 

(Bayes factors) can be approximated as the ratio of the number of simulations made under 

alternative models that are arbitrarily close to the observed data. Within the Bayesian 

framework this procedure is correct and is not based on a notion of ‘local probability’, and 

Templeton's criticisms of a specific deficiency in ABC are therefore also unfounded. 

Templeton further argues against the use of ABC (and hence Bayesian) methods for model 
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comparison because they cannot take dimensionality into account, and he implies that they 

will always choose over-determined models. Indeed he appears to criticize ABC approaches 

for not using the correction of Schwarz (1978) in his Bayesian information criterion (BIC). 

However, from a Bayesian perspective there is no need to correct for dimension, nor to call 

for Schwarz (1978), since the marginal likelihood naturally allows for differences in model 

dimensionality (see e.g. MacKay 2002, chapter 28.1 about Occam's razor). In fact, the 

penalty in Schwarz's (1978) BIC stems from a Taylor expansion of a standard Bayes Factor 

(see also Schervish 1995), which illustrates the automatic penalty for dimension and over-

parameterization when using Bayes factors.

Sample size

In the section on ‘Sample size’, Templeton (2009a, p. 327) claims that ‘ABC has severe 

constraints on sample size’. This is a misleading statement. Indeed one of the main 

motivations behind the approach is that it can potentially deal with larger data sets than can 

currently be handled with other model-based procedures. There are constraints set by 

computation time for very large data sets, but with efficient simulation methods 

implemented on computer clusters sample size is not a major limitation of the approach for 

most practical applications. Further, Temple-ton argues that the samples sizes (8–12 

individuals per continent) used in Fagundes et al. (2007) are too small to lead to reliable 

estimates, arguing that such size do not meet NCPA requirements. However, as noted above, 

the ABC framework, by simulating exactly the observed sample sizes, handles any sample 

sizes correctly. Small sample sizes simply lead to wider credible intervals than large sample 

sizes. ABC methods are not markedly constrained by the use of multiple loci, and, as is to be 

expected, the precision of estimates tends to increase when summary statistics are based on 

many loci (e.g. Excoffier et al. 2005).

Recent developments in ABC methods

In order to put the comments of Templeton (2009a) in context it is perhaps helpful to 

provide a brief overview of the current status of ABC, which is now quite widely used in 

statistical inference. For example, it has been applied to infectious disease epidemiology 

(Tanaka et al. 2006; Luciani et al. 2009; McKinley et al. 2009) and systems biology 

(Ratmann et al. 2009; Toni et al. 2009). Whereas several studies have now shown that 

parameter posterior distributions inferred by ABC are very similar to those provided by full-

likelihood approaches (see e.g. Marjoram et al. 2003; Bortot et al. 2007; Beaumont et al. 
2009; Leuenberger & Wegmann 2010), the approach is still in its infancy and continues to 

evolve, and to be improved. For instance, Marjoram et al. (2003) developed a Markov chain 

Monte Carlo (MCMC) ABC approach, improving the sampling efficiency of conventional 

ABC, which must otherwise explore sometimes very wide priors while posterior 

distributions may only occupy a narrow region of parameter space. This MCMC-ABC has 

some problems (Sisson et al. 2007), which are addressed in variants of the original approach 

(see e.g. Becquet et al. 2007; Bortot et al. 2007; Wegmann et al. 2009). Recently, sequential 

Monte Carlo (SMC) techniques have been adapted to ABC in order to further improve its 

efficiency (see e.g. Sisson et al. 2007; Beaumont et al. 2009; Del Moral et al. 2009). As 

noted by Beaumont et al. (2002) efficient conditional density estimation is a key aspect of 

ABC, and this has been developed further in Blum & Francois (2009). Further related 
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developments involve the choice of statistics to summarize datasets (Joyce & Marjoram 

2008; Sousa et al. 2009) and how they can be combined (Hamilton et al. 2005; Wegmann et 
al. 2009). A number of software packages now allow an easy implementation of ABC 

models, such as DIY-ABC (Cornuet et al. 2008) or popABC (Lopes et al. 2009), which can 

accommodate a wide range of evolutionary models, and be used for both model choice and 

parameter estimation.

Theoretical and statistical problems in NCPA

NCPA inferences are typically not tested by users

Templeton (2009a,b) claims that NCPA is embedded into a strong statistical framework, as it 

is based on the rejection of null models and hypothesis testing based on likelihood ratios 

contrasting NCPA inferences. It is interesting to examine what aspects of the NCPA 

procedure actually involve hypothesis testing and the rejection of null models. In the 

hundreds of published empirical studies based on this method, the only statistical procedure 

of NCPA is a simple permutation test of the null hypothesis of no association between clades 

and geographic location (see e.g. Knowles 2008; Petit 2008). However, the processes 

inferred by NCPA have never been tested as null models to see if they can actually give rise 

to data sets similar to those observed. Therefore NCPA inferences are typically presented 

without further attempt at model checking or validation. There is thus no measure of 

confidence that can be assigned to the inferences being made, nor any indication of support 

in the data for alternative processes. Moreover, almost all published NCPA inferences are 

based on the analysis of a single locus and NCPA internal cross-validation is not used.

Lack of NCPA expectations under different scenarios

When (i) there is a lack of strong prior knowledge of the universe of biological possibilities, 

or (ii) because of the possibility of multiple processes leading to the same output, it has been 

claimed that the ‘broader coverage’ of processes makes NCPA the method of choice 

(Templeton 2004b). However, as emphasized above, because the interpretation of the 

patterns of genetic variation is not associated with a defined model, there is no basis for 

evaluation of the inferences made with the dichotomous inference key of NCPA. In other 

words there is no explicit description of the patterns of variation in NCPA outcome expected 

under one historical scenario relative to another. There is no study verifying that the 

interpretations of the distance statistics used in NCPA (i.e. DC and DN values) actually 

correspond to what is expected under the processes NCPA claims to be able to distinguish. 

This does not mean that model-based inference is not without its challenges, especially with 

regards to issues surrounding model choice (as reviewed in Hey & Machado 2003; Knowles 

2004, 2009; Nielsen & Beaumont 2009), but these difficulties should not be used as a 

justification for resorting to a method with undefined statistical properties (Knowles 2008). 

Any sound statistical method needs to provide an assessment of its error or uncertainty. Even 

if NCPA was not flawed in the many other ways described in this paper, the inference of 

phylogeographic processes based on pure verbal logic with no alternate models and no 

statistical support should be enough to relegate it to be regarded as an exploratory tool at 

best.

Beaumont et al. Page 9

Mol Ecol. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cross-validation using multi-locus data lacks rigor

The suggestion that the new multilocus NCPA somehow overcomes these problems is 

likewise indefensible, and the statistical test on which it relies is flawed (see details below). 

Additionally, the claim that when NCPA analyses of two or more loci lead to the same 

inference, this constitutes a rigorous ‘cross-validation’, is not based on any statistical 

concept of validation. Any concordance in observed patterns across two loci depends on the 

evolutionary variance of the process itself, which is not evaluated in NCPA, and which may 

vary extensively among different evolutionary processes. For instance, patterns of molecular 

diversity after a range expansion can be highly correlated among unlinked loci, and the 

observation of similar patterns at two loci is expected (e.g. Di Rienzo et al. 1998), whereas a 

population bottleneck often induces a much larger evolutionary variance across loci (e.g. 

Bonneuil 1998; Teshima et al. 2006). Thus, the probability for a given number of loci to 

show congruent patterns can only be evaluated under a given evolutionary model. The fact 

that the number of false inferences drops with additional loci is expected, but there is no 

control over the resulting type II error.

NCPA inference key has still not been properly tested

The NCPA procedure consists of four main tasks: (i) the construction of cladograms; (ii) the 

computation of summary statistics based on geographic patterns associated with these 

cladograms; (iii) permutation tests to assess their statistical significance; (iv) biological 

interpretation of the ‘significant’ summary statistics. Task (iv) is carried out via an 

‘inference key’, which is consulted each time a statistically significant summary statistic is 

identified. The concomitant problem of multiple testing has been previously highlighted 

(Knowles & Maddison 2002; Panchal & Beaumont 2007) and acknowledged by Templeton 

(2008, 2009b). The inference key was originally provided in Templeton et al. (1995), and 

leads to a conclusion either that there are insufficient data to make an inference, or that some 

specified demographic event has occurred in the history of the population. Examples and 

discussion of the high rate of false positives generated by use of the inference key are given 

in Nielsen and Beaumont (2009) and in Panchal and Beaumont (2007), as well as in a later 

section of this article (see Table 1). An important point to note, however, is that the 

procedure is superficially similar in scope to the decision tree, or classification tree, used in 

machine learning and statistics (Breiman et al. 1984). The aim of the classification tree is to 

model a categorical dependent variable (the classification) as a function of independent 

variables. A sine qua non of such a procedure is that it must be validated on a training set to 

measure classification error and compare its performance against different algorithms, 

before it is applied to real classification problems. There is no evidence that the rules 

encapsulated in the key of Templeton et al. (1995), including its later revisions (Templeton 

2004b) have been generated through a training set, as required for a valid statistical 

procedure. It would appear that the rules are based solely on reasoned opinions (Templeton 

et al., 1995). A post hoc justification of this inference tree, which appears to uphold the 

purely verbal reasoning by which it was originally constructed, has been made through 

analysis of empirical data sets, but the demographic history in these empirical data sets is not 

known for certain. In the following section, further grounds for doubt about the validity of 

these conclusions are raised.
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Positive controls do not rigorously test the validity of NCPA

The repeated claim that the inferences from NCPA have been ‘extensively validated’ refers 

to two studies in which, respectively, 13 and 150 empirical data sets with ‘strong a priori 

expectations’ were analysed (Templeton 1998, 2004b). Vigorous defence of this approach as 

a rigorous test of NCPA performance (and hence, its validation) has been made (e.g. 

Templeton 2009b), including claims that any former criticisms are ‘outdated’ or based on 

‘factual errors’. However we emphasize that NCPA has never been successfully verified by 

researchers independent of its author.

Evaluations of NCPA based on simulated data (Knowles & Maddison 2002; Panchal & 

Beaumont 2007) and empirical data (Templeton 1998, 2004b) consistently inferred multiple 

processes other than those expected (in case of the empirical datasets) or other than the 

actual processes (in case of the simulated data with known history). However, as mentioned 

above, Templeton has never conducted any validating simulation study. When applied to 

empirical data he has even suggested that these additional inferences may not be false 

positives, but rather unexpected discoveries. When these ‘unexpected discoveries’ were 

found by other authors in simulated datasets, they were of course classified as false positives 

(Knowles & Maddison 2002; Panchal & Beaumont 2007), but again, not by Templeton 

(2009a,b), who strongly argues that the simulated data and⁄or their interpretation must be 

flawed in one way or the other. It is also worth noting that while Templeton's ‘extensive 

validation’ relies almost exclusively on ‘positive controls’ based on single-locus studies, he 

charges that any critique of NCPA that is applied to single-locus data is outdated and unfair, 

given the more recent multilocus NCPA (Templeton 2009a,b). It should not be ignored that 

in doing so he is implicitly suggesting that all preceding papers that have used NCPA may 

have led to wrong inferences.

The ages of inferred events are crudely approximated by gene tree coalescent times

An important outcome of NCPA analysis is the dating of inferred events. Estimated dates are 

subsequently used (i) to build complex evolutionary scenarios from NCPA (see e.g. 

Templeton 2002) (ii) to treat estimated dates as if they were the observed ages of inferred 

events in likelihood-ratio tests (Templeton 2004a), and (iii) to invalidate conflicting results 

obtained by other authors on other data sets (Templeton 2009a, 2010). It is therefore 

important to understand the estimation method and its foundations. Templeton (2004a) 

proposes to estimate the age of a given event inferred by NCPA as the ‘age of the youngest 

monophyletic clade that contributed in a statistically significant fashion to the inference’. 

The rationale is that ‘the age of the youngest clade marking an event or process is expected 

to be largely coincident with the age of the event itself in most cases’ (Templeton 2002), but 

several authors have underlined the dangers of dating population events from coalescent 

times on gene trees (see e.g. Pamilo & Nei 1988; Nichols 2001; Degnan & Rosenberg 2009). 

Therefore, the events whose ages are estimated in NCPA are at best, genealogical events, 

and not demographic events as claimed. That is not to say that temporal and spatial 

inferences of genealogical events may not be informative, but by themselves they cannot 

directly lead to statements about demography.
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Coalescent theory is not applied correctly

Templeton (2004a) estimates the time since the most recent common ancestor (TMRCA) of 

a given clade by applying results of Tajima (1983) on the expected coalescent time of a pair 

of genes (noted hereafter T2) conditional on the number of sites at which they differ (say π). 

There are serious problems attached to this estimation in the NCPA context. First, T2 is not 

equal to the TMRCA of a sample of n genes (noted here Tn). In a stationary panmictic 

population, Tn is roughly twice as large as T2, but the relation between T2 and Tn is different 

for more complex evolutionary scenarios. Second, since Templeton ignores sample sizes and 

only concentrates on the number of different DNA sequences in a given clade (say k), he is 

using Tajima's theory as if it could be applied to estimate the average TMRCA, Tk, among k 
haplotypes given their average number of pairwise differences π̅

k, while Tajima's theory can 

only be used to estimate T̅
2 as the average T2 over all n(n – 1)/2 pairs of genes in the clade. 

Third, Tajima's derivations are only strictly valid under a specific evolutionary model, which 

is that of a panmictic population of constant size, while Templeton applies this theory to 

haplotypes found in a clade that shows some support for demographic events that depart 

from stationarity (e.g. short or long range migrations in a subdivided population, population 

spatial expansion, or vicariance events). Fourth, as noted by Rannala & Bertorelle (2001) 

subclades within a genealogy do not follow the standard coalescent, but are conditional on 

the other parts of the genealogy and not independent, contrary to the assumption of 

Templeton's method. Thus, NCPA age inferences are not model-free, but are in fact based on 

a simple evolutionary model (isolated, random-mating and constant-size population) that is 

used precisely to establish that a different model applies! This weakness seems to have 

previously been overlooked, and suggests that evolutionary scenarios inferred by NCPA are 

not only based on unreliably-inferred demographic events, but also on a wrong timing of 

these events.

Likelihood ratio tests are not based on valid likelihoods

Multi-locus hypothesis testing in NCPA is based on the age distribution of inferred events, 

and basically evaluates the probability of a given number of loci showing NCPA-inferred 

events within a given time period. We now reexamine the theoretical foundations of this 

approach.

Templeton (2004a) proposed to take into account the stochasticity of the coalescent process 

by (incorrectly) assuming that Tk has a Gamma distribution with the same mean and 

variance as T2 as derived by Tajima (1983). He obtained its distribution conditional on its 

mean (Tk) and on πk (defined above) as

(1)

Note that T̂
k is an estimate but is used here as if it were known without error, but that is a 

minor point compared to the use of this theory in an evolutionary context where it does not 
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apply. Templeton (2004a) then uses eqn (1) to infer the probability that a given NCPA-

inferred event E occurs before a given time T as

(2)

However, Pr(TE ≤ T) is at best the probability that the TMRCA occurred before time T in a 

panmictic and stationary population. The use of eqn (2) as the probability of a given 

demographic event within a given time interval thus goes beyond the already doubtful 

assumption that the TMRCA of a clade can be used to date an inferred event. Indeed, it 

further assumes that the timings of these events are distributed as if they were coalescent 

times, which is a very strong assumption. This assumption is invalid because phenomena 

like vicariance events or episodes of intercontinental gene flow (or any other NCPA-inferred 

event) will alter the distribution of coalescent time between two DNA sequences, which will 

therefore not follow eqn (1). Despite these problems, Templeton (2009a) used eqn (1) 

further to estimate the probability of no gene flow between two continents between times Tl 

and Tu where an episode of gene flow has been dated by NCPA at the i-th locus at T̂
ki as

(3)

However, this equation merely describes the probability that two genes drawn from a 

stationary panmictic population and differing at π̅
ki sites do not coalesce between Tl and Tu, 

given their expected coalescence time of T̂
ki, and it has nothing to do with the probability of 

an absence of gene flow between continents. It follows that such an equation cannot be used 

in likelihood ratio tests as proposed for NCPA, and that these likelihood ratio tests are not 

testing phylogeographic hypotheses. Moreover, these likelihoods cannot be simply fixed as 

their inapplicability does not stem from mathematical errors, but from a misinterpretation of 

what they are supposed to describe. Therefore, Templeton's assertions that NCPA 

‘multilocus tests are based on explicit probability distributions and likelihood ratios’ 

(Templeton 2009a, p. 322), or that NCPA uses ‘a likelihood function that explicitly 

incorporates the randomness associated with the coalescent and mutational processes’ 

(Templeton 2010) are wrong.

Problems with multi-locus NCPA

In a recent article, Panchal & Beaumont (2010) have evaluated the merit of the multi-locus 

method promoted by Templeton, using an automated program (ANeCA-ML). They have 

simulated multi-locus test data sets under a variety of conditions and analysed them under 

NCPA following closely the descriptions in Templeton (2002, 2004a,b). Four demographic 

scenarios are considered: panmixia, as described in Panchal & Beaumont (2007); an island 

model; a strict 4-neighbor stepping stone model; a lattice model with a Cauchy dispersal 

kernel allowing for long-distance dispersal. All the demes are laid out in a 2-D lattice (of 
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sides 3, 7 and 10 demes) to provide geographical coordinates for NCPA. The data consist of 

sets of 5 loci, each of 500 bp, evolving under a Kimura 2-parameter model.

The multi-locus analysis reveals a number of problems in addition to those described above 

for single-locus NCPA:

1. Inferences are identified as cross-validated in NCPA when two different clades 

provide the same inference for the same geographical region, but the necessary 

degree of overlap of geographical area covered by clades is unspecified and thus 

arbitrary. For example in Templeton (2002), because of large variation in sample 

size among loci, inferences were deemed cross-validated if the two loci agreed 

on the same continent.

2. Hypotheses of concordance of temporal events can be rejected for a group of 

clades, but then subsets of these may be found in which the hypothesis is not 

rejected. Each of these subsets can then be deemed to support the hypothesis of a 

particular event. For example, in Templeton (2002, fig. 3) the hypothesis that all 

5 loci support the same temporal event is rejected. But then the loci are grouped 

(apparently by eye from their inferred event times) into a set of two loci (mtDNA 

and Y-chromosome), and a set of three (autosomal) loci, leading to a claim that 

forms the basis of the entire paper that there were two colonization events out of 

Africa. As an aside, no account seems to be taken that these differences are to be 

expected from the different mode of inheritance of these loci, and therefore the 

claim may be baseless.

3. There is no relative weight attached to the various inferences that result from 

NCPA. The outcome is all-or-nothing with no measure of uncertainty, whereas a 

model-comparison procedure (either Bayesian or frequentist) would allow for the 

possibility that the data supported an island model but also a lattice model, or it 

supported a stepping-stone model and a lattice model.

4. The reduction in false-positive rate arising from the use of multiple loci is very 

patchy, and depends on the (generally unknown) true scenario. This contrasts 

with the case of model-based inference in which the false positive rate is 

generally well controlled and the whole motivation for using more loci is to 

increase power (Rannala & Yang 2003).

Table 1 summarizes results found in Panchal and Beaumont (2010). It can be seen that with 

more loci the false-positive rate is indeed reduced, but due to the very specific nature of the 

inferences yielded by NCPA, it is highly variable across simulated scenarios. For example 

under the stepping stone model only Restricted Gene Flow (RGF) with isolation by distance 

is regarded as a true positive, and any inference including Long Distance Dispersal (LDD) is 

regarded as a false-positive. Under the lattice model with LDD, a much larger range of 

inferences are allowed that include RGF with isolation by distance, and RGF with LDD. In 

the island model all inferences of RGF are regarded as true positives as long as they do not 

include isolation by distance. A direct consequence of this is that the false positive rate for 

the island model remains very high (54%) whereas that for the lattice model with LDD is 

less than 5%. In the latter case a much wider range of inferences were deemed consistent 
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with the scenario, whereas with the island model any inference with isolation-by-distance 

was deemed a false positive. The rates decrease with increasing lattice size, and increase 

with increasing level of population structure. The rates for single loci are typically always 

quite high. In conclusion, the use of multiple loci tends to reduce the false-positive rate in 

NCPA. However when there is population structure, it does not lead to improved 

discrimination among its possible causes because in this case the most frequent inference is 

restricted gene flow with isolation by distance, irrespective of whether the data comes from 

an island model or a stepping stone model.

Conclusions

Gleaning useful information about evolutionary processes from population genetic data is 

hard, and requires appreciation of the mathematical and conceptual underpinnings of 

population genetics theory. Such requirements are taken for granted by experimentalists in 

the physical sciences, while in evolutionary biology there remains a tendency to treat 

statistical procedures uncritically as ‘black boxes’, and to accept apparently easy solutions, 

especially those that fit with common-sense nostrums. We argue here that the need for 

rational, quantitative assessment of population genetics models and estimates is unavoidable.

In this article we have demonstrated that the majority of criticisms by Templeton (2009a, 

2010) of ABC are in fact directed at model-based inference more generally, and are 

unfounded. Other criticisms arise from profound misconceptions of the ABC procedure 

itself, and are easily rebutted. Templeton promotes the use of NCPA, and we demonstrate 

that, despite its past popularity among empiricists, there are many problems associated with 

the method: there is no justification for the adoption of specific alternative hypotheses 

following the rejection of a simple null hypotheses by a permutation test; there is no 

measure of confidence in its support for hypotheses or estimates; the inference key of NCPA 

has not been properly validated, including error rate estimates; the ages of inferred events 

are estimated from a simple evolutionary model (the standard coalescent) in precisely those 

situations when it does not apply; the likelihood ratio tests are not based on valid 

likelihoods. As a result, it maintains a highly inflated false positive rate, even when applied 

to multi-locus data.

Current model-based statistical methodology does not match in scope the breadth of 

inference claimed by NCPA, but the latter's claims are not based on real, external validation. 

ABC has limitations, but like full-likelihood methods, it is based on explicit models, uses all 

the data simultaneously in inference, and allows an assessment of uncertainty in all 

inferences. Geographic and genetic information are intimately linked (Novembre et al. 
2008), and the use of geographic information can certainly bring additional insights on past 

evolutionary processes such as environmental adaptations, range expansions and migrations. 

While most inferential approaches integrating geography only use information on allele 

frequencies (e.g. Guillot et al. 2005; Novembre et al. 2005; Francois et al. 2006; Corander et 
al. 2008), coalescent-based approaches seem in an ideal position to enable us to integrate 

molecular information into phylogeographic inferences (see e.g. Manolopoulou 2008; Itan et 
al. 2009;). Ongoing advances in computation and methodology will undoubtedly yield 

increasing flexibility in the range of evolutionary and historical scenarios that can be 
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considered, ensuring a major role for model-based approaches in reconstructing realistic 

demographic and evolutionary scenarios from the spatial distribution of genetic data. It 

should enable us to have a better appreciation of the complex and subtle relationships 

between demographic history, natural selection, and genomic diversity.
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