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SUMMARY

Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-

throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues, 

such as adult mammalian brains, is challenging. Here, we integrate sucrose-gradient assisted 

purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-

Seq approach (sNucDrop-Seq), which is free of enzymatic dissociation and nuclei sorting. By 

profiling ~18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that 

sNucDrop-Seq not only accurately reveals neuronal and non-neuronal subtype composition with 

high sensitivity, but also enables in-depth analysis of transient transcriptional states driven by 

neuronal activity, at single-cell resolution, in vivo.

INTRODUCTION

A fundamental challenge in deciphering cell-type composition and cells’ functional states in 

complex mammalian tissues manifests in the extraordinary diversity of cell morphology, size 

and local microenvironment. While existing single-cell RNA-Seq approaches have proved to 

be powerful tools for interrogating cell types, dynamic states, and functional processes in 
vivo (Tanay and Regev, 2017), these methods require the preparation of intact, single-cell 

suspensions from freshly isolated tissues, which is only practical for easily-dissociated 

embryonic and young postnatal tissues. This requirement poses an even greater challenge for 
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cells with complex morphology, such as mature neurons. Enzymatic treatment not only 

favors recovery of easily dissociated cell types, but also introduces aberrant transcriptional 

changes during the whole-cell dissociation process (Lacar et al., 2016; Wu et al., 2017). In 

addition, skeletal and cardiac muscle cells are frequently multinucleated and are large in 

size. For instance, each adult mouse skeletal muscle cell contains hundreds of nuclei and is 

~5,000 μm in length and 10–50 μm in width (White et al., 2010). Thus, existing high-

throughput single-cell capture and library preparation methods, including isolation of cells 

by fluorescence activated cell sorting (FACS) into multi-well plates, sub-nanoliter wells, or 

droplet microfluidic encapsulation, are not optimized to accommodate these unusually large 

cells. Isolating individual nuclei for transcriptome analysis is a promising strategy, as single-

nucleus RNA-Seq methods avoid strong biases against cells of complex morphology and 

large size (Habib et al., 2016; Lacar et al., 2016; Lake et al., 2016; Zeng et al., 2016) and can 

be potentially standardized to accommodate the study of various tissues. However, current 

single-nucleus RNA-Seq methods primarily rely on fluorescence-activated nuclei sorting 

(FANS) (Habib et al., 2016; Lake et al., 2016) or Fluidigm C1 microfludics platform (Zeng 

et al., 2016) to capture nuclei, and thus cannot easily be scaled up to generate a 

comprehensive atlas of cell types in a given tissue, much less a whole organism.

DESIGN

An ideal solution to increase the throughput of single-nucleus RNA-Seq is to integrate 

nucleus purification with massively parallel single-cell RNA-Seq methods such as Drop-Seq 

(Macosko et al., 2015), InDrop (Klein et al., 2015), or commercial platforms such as 10× 

Genomics (Zheng et al., 2017). However, single-nucleus RNA-Seq is currently not 

supported on these droplet microfluidics platforms. Inefficient lysis of nuclear membranes 

and/or cellular debris contamination might contribute to this failure. Historically, nuclei of 

high purity can be isolated from solid tissues or from cell lines with fragile nuclei by 

centrifugation through a dense sucrose cushion to protect nucleus integrity and strip away 

cytoplasmic contaminants. The sucrose gradient ultracentrifugation approach has been 

adapted to isolate neuronal nuclei for profiling histone modifications, nuclear RNA, and 

DNA methylation at genome-scale (Johnson et al., 2017; Lister et al., 2013; Mo et al., 2015). 

Here, we develop “sucrose gradient-assisted single-nucleus Drop-Seq” (sNucDrop-Seq), a 

method that enables highly scalable profiling of nuclear transcriptomes at single cell 

resolution by integrating sucrose gradient ultracentrifugation-based nucleus purification with 

droplet microfluidics.

RESULTS

Validation of sNucDrop-Seq

To test whether this nucleus purification method supports single-nucleus RNA-Seq analysis, 

we isolated nuclei from cultured cells, as well as freshly isolated or frozen adult mouse brain 

tissues through dounce homogenization followed by sucrose gradient ultracentrifugation 

(Figure 1A and Figure S1A). After quality assessment and counting of nuclei, we performed 

emulsion droplet barcoding of the nuclei and library preparation. We found that the Drop-
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Seq platform yielded high quality cDNA libraries from both whole cells and nuclei (Figure 

S1B).

We next validated the specificity of sNucDrop-Seq with species-mixing experiments, using 

nuclei isolated from cultured mouse and human cells. This analysis indicates that the rate of 

co-encapsulation of multiple nuclei per droplet (~2.6%) is comparable to standard Drop-Seq 

(Figure S1C). To assess the sensitivity of sNucDrop-Seq, we performed shallow sequencing 

of cultured mouse 3T3 cells at either single-cell (with Drop-Seq: detecting on average 3,325 

genes with ~25,000 reads per cell for 1,160 cells with >800 genes detected) or single-

nucleus (with sNucDrop-Seq: detecting on average 2,665 genes with ~23,000 reads per 

nucleus for 1,984 nuclei with >800 genes detected) resolution (Figure S1D). With standard 

Drop-Seq microfluidics devices and flow parameters, the capture rate of sNucDrop-Seq 

(1.9%, 1,829/95,000 barcoded beads) is comparable to that of Drop-Seq (1.5%, 

1,160/77,000 barcoded beads). Comparative analysis reveals that mitochondria-derived 

RNAs (e.g. mt-Nd1, mt-Nd2) and nucleus-enriched long-noncoding RNAs (e.g. Malat1) 

were enriched in reads derived from Drop-Seq and sNucDrop-Seq, respectively (Figure 1B). 

Thus, integrating sucrose gradient centrifugation-based nuclear purification with the Drop-

Seq microfluidic platform and workflow may support massively parallel single-nucleus 

RNA-Seq.

Application of sNucDrop-Seq to adult mouse cortex

To demonstrate the utility of sNucDrop-Seq in studying complex adult tissues, we analyzed 

nuclei isolated from adult mouse cerebral cortex (Table S1). The average expression profiles 

of single nuclei from two biologically independent replicates were well correlated (r=0.993; 

Figure S1E–F). Out of reads uniquely mapped to the genome (78% of all reads), 76% of 

reads were aligned to the expected strand of genic regions (25% exonic and 51% intronic), 

and the remaining 24% to intergenic regions or to the opposite strand of annotated genic 

regions. The relatively high proportion of intronic reads is similar to a previous single-

nucleus RNA-Seq study of human cortex (49%) (Lake et al., 2016), reflecting the 

enrichment of nascent, preprocessed transcripts in nuclei. Because most exonic (91%) and 

intronic (86%) reads were mapped to the expected strand of annotated transcripts, we 

retained both exonic and intronic reads for downstream analyses. After initial quality 

filtering (>800 genes detected per nucleus), we retained 20,858 nuclei (15,471 uniquely 

mapped reads per nucleus), detecting, on average, 3,464 transcripts (unique molecular 

identifiers [UMIs]), and 1,662 genes per nucleus. After correcting for batch effects, we 

identified highly variable genes, and determined significant principal components (PC). We 

then performed graph-based clustering and visualized distinct groups of nuclei using non-

linear dimensionality reduction with spectral t-distributed stochastic neighbor embedding 

(tSNE). After removing non-cortical cells (~7%, mostly striatal inhibitory neurons) and data 

points contributing toward potential noise (see Methods), our analysis segregated 18,194 

cortical nuclei into 40 distinct clusters (Figure 1C). Each cluster contains nuclei from 

multiple animals, indicating the transcriptional identities of these cell-type-specific clusters 

are reproducible across biological replicates (Figure S2A).
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On the basis of known markers for major cortical cell types, we identified 27 excitatory 

neuronal clusters (Ex 1-27: Slc17a7+), 7 inhibitory neuronal clusters (Inh 1–7: Gad2+), and 

six non-neuronal clusters (astrocytes [Astro: Gja1+], oligodendrocyte precursor cells [OPC: 

Pdgfra+], oligodendrocytes [Oligo1: Mog+; Oligo2: Enpp6+], microglia [MG: Ctss+], and 

endothelial cells [EC: Flt1+]) (Figure 1C–F). Consistent with previous studies (Lake et al., 

2016; Madisen et al., 2015; Zeisel et al., 2015), known layer-specific marker genes (Layer 

(L) 2/3: Enpp2; L4: Rorb; L6a: Foxp2; L6b, Ctgf) can be readily detected in specific 

excitatory neuronal clusters (Figure 1D), revealing the anatomic locations of these 

glutamatergic excitatory neuronal subtypes. We also uncovered all major subclasses of 

cortical inhibitory neurons named for the neurochemical markers they express: somatostatin-

expressing (Sst+: cluster Inh1-2) cells, parvalbumin-expressing (Pvalb+: cluster Inh3-4) 

cells, vasoactive intestinal peptide-expressing (Vip+: cluster Inh6) cells, and cells that 

express 5-hydroxytryptamine receptor 3A (Htr3a) but lack Vip expression (Tnfaip8l3+/
Sema3c+/Vip−: cluster Inh5 and Inh7) (Figure 1C–E and S2B). This unbiased sampling 

strategy captured enough cells to resolve heterogeneity among non-neuronal cell types 

present in relatively low abundance in the adult cortex (Figure 1E and S2B), including two 

oligodendrocyte subtypes (Oligo1: Mog+/Enpp6−; Oligo2: Mog−/Enpp6+) recently identified 

through single-cell deep sequencing of full-length mRNAs (Tasic et al., 2016) (Figure S3C). 

Finally, the cell types and their signatures from sNucDrop-Seq were comparable to those 

obtained with DroNc-Seq (a recently published approach similar to sNucDrop-Seq) of 

mouse prefrontal cortex (Habib et al., 2017) (Figure 1G).

In addition to subtype-specific protein-coding marker genes (Figure 1F), we have identified 

a list of long non-coding RNAs that are specifically expressed in distinct cell clusters 

(Figure 1F and S2B). For instance, 1700016P03Rik is specifically detected in cluster Ex17 

and Ex24, and this acts, mainly, as a primary, non-coding transcript encoding two 

microRNAs (Mir212 and Mir132), which are regulated by neuronal activity (Aten et al., 

2016; Nudelman et al., 2010), raising the possibility that Ex17 and 24 clusters are 

specifically associated with activity-induced transcriptional states. Cell-type-specific non-

coding RNA marker genes have also been identified for inhibitory neuronal subtypes (e.g. 

Dlx1as for Inh7) and non-neuronal cells (e.g. 4933406I18Rik for MG). The identification of 

both protein-coding and non-coding transcripts as cell-type-specific markers highlights the 

potential of sNucDrop-Seq in exploring the emerging role of non-coding RNAs at single-cell 

resolution, in vivo.

We next explored whether aggregation of our single-nucleus RNA-Seq data into subtype-

specific transcriptome profiles, as a proof of concept, might enable analysis of differential 

mRNA processing in a cell-type-specific manner. Using a probabilistic model that 

quantitates the expression level of alternatively spliced genes (MISO) (Katz et al., 2010), we 

identified 263 differential exon processing events through pairwise comparison of cell-type-

specific transcriptome profiles. In agreement with a previous single-cell RNA-Seq study 

(Tasic et al., 2016), Syntaxin binding protein 1 (Stxbp1) mRNA exhibited differential 

processing of a specific exon amongst excitatory and inhibitory neurons (Figure S2C). In 

particular, additional heterogeneity in the usage of this exon was detected among major 

inhibitory neuronal subtypes (Sst+ versus Pvalb+ in Figure S2C). Our cell-type-specific 

analysis also revealed differentially processed exon usage between abundant cortical cell-
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types such as excitatory neurons and relatively rare non-neuronal cells (e.g. Macf1 in Figure 

S2C). Thus, despite the shallow sequencing depth and 3′ bias, sNucDrop-Seq allows a 

population of highly heterogeneous cells to be analyzed together to discover cell-type-

specific signatures of mRNA processing.

sNucDrop-Seq reveals composition of cortical inhibitory neurons

GABAergic interneurons are highly diverse in terms of morphology, connectivity and 

physiological properties (Kepecs and Fishell, 2014), but the relative composition of these 

neurons, particularly those of low abundance in the cortex, is not well established. To 

accurately measure the subtype composition and validate the specificity of cortical inhibitory 

neuronal subtypes identified by sNucDrop-Seq, we performed sub-clustering on cortical 

inhibitory neuronal nuclei (Inh1-7 in Figure 2A) together with non-cortical nuclei isolated 

from dorsal striatum (>95% striatal cells are GABAergnic neurons), identifying 17 sub-

clusters (Figure 2A). Based on expression patterns of known marker genes, we first 

segregated these sub-clusters into cortical interneuron (cluster A-I in Figure 4A: Gad1+/
Gad2+/Meis2−) and non-cortical (clusters in grey: Meis2+) clusters. Consistent with their 

striatal origin, many non-cortical cells express Ppp1r1b (also known as DARPP-32) (Figure 

2A–B), a marker gene indicative of medium spiny neurons (MSNs, D1-type) in the striatum. 

Because sNucDrop-Seq samples nuclei in proportion to cells’ abundance in their native 

environment, this approach enables direct measurement of subtype composition. This 

analysis identified Pvalb-expressing subtypes (cluster D, E, and F: 40.2%) and Sst-
expressing subtypes (cluster G, H, and I: 31.4%) as two major groups of cortical 

interneurons (Figure 2C–D), in complete accordance with previous observations derived 

from in situ hybridization (ISH)- or immunostaining-based analysis of mouse neocortex 

(Rudy et al., 2011). Beyond major interneuron subtypes, we identified 10.8% of cortical 

interneurons as an Ndnf-expressing subtype (cluster A), 8.3% as a Vip-expressing subtype 

(cluster B), and 9.3% as a synuclein gamma (Sncg)-expressing subtype (cluster C) (Figure 

2C–D). On the basis of combinatorial expression of known marker genes, interneuron 

subtypes identified by sNucDrop-Seq parallel those identified in previous studies of mouse 

or human cortex (Lake et al., 2016; Tasic et al., 2016), revealing inhibitory neuronal 

heterogeneity in both cortical layer distribution and the developmental origin from 

subcortical regions of the medial or caudal ganglionic eminences (MGE or CGE) (Figure 

2E–F and S3C). Therefore, sNucDrop-Seq resolves cellular heterogeneity and quantifies 

cell-type composition at the transcriptomic level, with high sensitivity.

sNucDrop-Seq reveals layer-specific composition and activity-dependent transcriptional 
state of cortical excitatory neurons

For glutamatergic neuronal clusters, we associated each excitatory neuronal subtype with a 

combination of known markers indicative of their superficial-to-deep layer distribution 

(Figure 3A), revealing layer-specific composition of excitatory neuronal subtypes (Figure 

S3A–B). Thus, sNucDrop-Seq analysis captures transcriptomic distinctions between closely 

related subtypes in each cortical layer, which is in high concordance with subtypes 

previously identified in human (Lake et al., 2016) and mouse (Habib et al., 2017; Tasic et al., 

2016; Zeisel et al., 2015) cortices (Figure S3C–G).
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In response to neuronal activity, excitatory neurons induce expression of hundreds of 

activity-regulated genes (ARGs), many of which regulate synaptic function and allow 

neuronal circuits to respond dynamically to experience (Flavell and Greenberg, 2008). 

Because induced mRNAs may remain in the cytoplasm for hours to days (Schwanhausser et 

al., 2011), it is challenging to capture the dynamic and transient neuronal activation process 

using whole-cell RNA-Seq. Direct comparison between single-cell and single-nucleus 

transcriptomic profiling of activated neurons demonstrated that single-nucleus RNA-Seq 

analysis not only avoids the aberrant activation of ARGs by whole-cell dissociation, but also 

reveals dynamics of transcriptional response to neuronal activity-inducing experience (Lacar 

et al., 2016). However, the reported low-throughput single-nucleus RNA-Seq analysis 

requires pre-enrichment of activated neuronal nuclei by sorting and the Fluidigm C1 

platform, which is not easily scaled up to accommodate more samples.

On the basis of ARG expression, we explored whether sNucDrop-Seq analysis can resolve 

heterogeneity in activity-induced transcriptional states amongst closely related subtypes. We 

found that while nuclei in the Ex24 cluster (n=212 nuclei) express nearly identical layer-

specific marker genes as E25 (n=3,628), Ex24 is specifically associated with high-level 

expression of ARGs (Figure 3A and S4A), including well-defined immediately early genes 

(IEGs) such as Fos, Arc, and Egr1, as well as other activity-regulated transcription factors 

(e.g. Npas4), genes encoding proteins that function at synapses (e.g. Homer1), and non-

coding RNAs (e.g. 1700016P03Rik that encodes Mir132). A similar relationship was 

detected between Ex17 (n=91) and Ex16 (n=1,847). Interestingly, despite variations in 

number of nuclei and sequencing depth among samples (Table S1), the small percentage of 

putatively activated neurons (Ex17: ~0.5%; Ex24: ~1.2% of all nuclei) was found in nearly 

all animals (Figure S4B), raising the possibility that neuronal activity-induced 

transcriptional states can be reproducibly captured by sNucDrop-Seq. We next performed 

gene set enrichment analysis (GSEA) of a recently curated list of ARGs induced by acute or 

prolonged neuronal activity (Tyssowski et al., 2017). This analysis indicated that both Ex17 

(false-discovery rate [FDR]=0) and Ex24 (FDR=0) are significantly enriched for this set of 

ARGs (Figure 3B). We next determined the genes specifically enriched in activated neurons 

in Ex17 (n=129 genes, as compared to other Ex16) or Ex24 (n= 157 genes, as compared to 

Ex25) neurons (Figure 3C). KEGG pathway analysis suggested that expression signatures of 

these two excitatory neuronal clusters are enriched for genes involved in the MAPK 

signaling pathway (adjusted P=5.74×10−3 for E×17 and 8.14×10−3 for Ex24), consistent 

with previous reports (Lacar et al., 2016; Tyssowski et al., 2017). We also observed 

heterogeneous expression patterns of ARGs (rapid IEGs: Fos and Egr1; delayed IEGs: 

Nr4a3 and Pcsk1) among nuclei in Ex24 (Fos+: 53% in Ex24 versus 5.7% in Ex25; 

P=1.57E-71, Fisher’s exact test) and Ex17 (Fos+: 55% in Ex17 versus 6.8% in Ex17; 

P=3.99E-31) excitatory neuronal clusters (Figure 3D and Table S2), in agreement with a 

continuum of transcriptional states of ARGs revealed by a recent analysis of Fos-positive 

neuronal nuclei isolated from adult mice exposed to a novel environment (Lacar et al., 

2016). Together, these results indicate that sNucDrop-Seq can potentially identify activity-

dependent transcriptional states at single-nucleus resolution in vivo.
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Mapping cell-type-specific transcriptional response to the Pentylenetetralzol (PTZ)-
induced seizure

To further examine cell-type-specific responses to neuronal activity by sNucDrop-Seq, we 

elicited large-scale neuronal activation with PTZ, a GABA(A) receptor antagonist that 

induces seizures coupled with ARG expression in cortex (Morgan et al., 1987; Yount et al., 

1994). Mice were treated with PTZ or received an injection with saline as a control. One 

hour after injection, nuclei were immediately isolated for sNucDrop-Seq analysis (saline: 

4,005 nuclei; PTZ: 3,491 nuclei). After filtering out the clusters that did not contain 

sufficient data points (7 clusters; see Methods), we determined that 15 out of 33 clusters are 

significantly enriched for the ARG gene set by GSEA (FDR<0.2) (Figure 4A–B). In 

addition to 11 excitatory neuronal clusters, two inhibitory neuronal clusters (Inh2 and Inh5) 

and two non-neuronal clusters (Astro and OPC) were significantly associated with 

expression of activity-regulated genes in response to PTZ treatment. Our analysis suggests 

that Sst-expressing inhibitory neurons (Inh2) are much more likely to express ARGs than 

Pvalb-expressing neurons (Inh3) in response to PTZ-induced seizure, which is in agreement 

with a recent cell-type-specific analysis of inhibitory neuronal response to PTZ using a 

synthetic IEG reporter system (Sorensen et al., 2016). Interestingly, relatively low-abundant 

interneuron subtypes, such as Ndnf-expressing cells (Inh5) and oligodendrocyte precursor 

cells, also exhibited significant transcriptional response to PTZ treatment (Figure 4A), 

suggesting conserved signaling pathways underlying neuronal activation in these cell-types.

The activity-dependent gene expression program is likely structured temporally into two 

major waves of gene activation. The first wave comprises primary response genes (PRGs, 

also called IEGs). The second wave comprises secondary response genes (SRGs), which 

require de novo translation for their induction and are likely to be regulated by PRG proteins 

(Tyssowski et al., 2017). Further analysis of top ranked PTZ-induced ARGs (separated into 

three groups: rapid PRG, delay PRG, and SRG) in each cluster indicates that rapid PRGs 

such as Fos and Egr1 are more likely to be detected in inhibitory neuronal clusters (Inh2 and 

Inh5), whereas delay PRGs (e.g. Bdnf, Mbnl2) and SRG (e.g. Nptx2) are more frequently 

detected in excitatory neuronal clusters (Figure 4C). This observation suggests that after 

one-hour of, rapid PRG expression is probably already attenuated in excitatory neurons, and 

inhibitory neurons are likely activated by the PTZ-induced seizure in a temporally distinct 

manner. We also found that clusters significantly associated with ARG gene set induction 

generally induced a stronger transcriptional response than others (that is, greater number of 

genes and amplitude of changes) (Figure S4C). Overall, these data should provide a rich 

resource for identification of genes whose dynamic expression in specific cell-types may be 

important for that cell-type’s functional response to neuronal activity.

DISCUSSION

In conclusion, sNucDrop-Seq is a robust approach for massively parallel analysis of nuclear 

RNA, at single-cell resolution. Because intact nuclear isolation can potentially be 

accomplished by mechanical douncing and sucrose gradient ultracentrifugation in almost 

any primary tissue, including frozen, archived human tissues, sNucDrop-Seq and similar 

approaches (Habib et al., 2017) pave the way to systematically identify cell-types, reveal 
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subtype composition, and dissect dynamic functional states such as activity-dependent 

transcription in complex mammalian tissues.

Our study, with its focus on profiling cortical cells in their native environment and in 

proportion to their abundance, complements a recent single-cell RNA-Seq study of adult 

mouse visual cortex that deeply surveyed FACS-isolated single cells from a comprehensive 

collection of transgenic mouse lines (Tasic et al., 2016). We found that the subtypes of both 

neurons and non-neuronal cells identified in the two studies are highly consistent (Figure 

S3C). Overall, our unbiased sampling approach may provide a more complete and accurate 

description of the cell-type landscapes, whereas deep sequencing of full-length mRNAs 

from select cells may identify a more complete set of molecular markers for each subtype.

In addition to neuronal subtype classification, precise localization and quantification of the 

activity of all neurons across specific brain regions would provide insights into how neural 

information is processed in physiological and pathological states. In mammals, a snapshot of 

the activity of ensembles of neurons in the mammalian brain can be obtained by whole-brain 

tissue clearing coupled with immunolabeling of IEGs (Renier et al., 2016), which requires 

advanced instrumentation and has low temporal resolution (that is, IEG transcripts can 

outlast the end of activity by over 4 hours). Single-nucleus RNA-Seq approaches such as 

sNucDrop-Seq relies on isolation of nuclei, thereby enriching nascent transcripts and 

enabling the detection and quantification of neural activity (using expression of ARGs as 

proxies) at much higher temporal resolution. In addition, our results show that 

transcriptomic differences between closely related subtypes (e.g. between Ex24 and Ex25) 

may be largely driven by neuronal activity-dependent transcriptional programs, rather than 

differences in developmental origin or cell-type. This observation suggests that 

environmental stimuli may contribute to discontinuous transcriptomic differences, and future 

studies are needed to investigate how continuous variables, such as neuronal activity, can be 

best implemented as additional classifiers for cell-types and functional states.

LIMITATIONS

As with other single-cell or single-nucleus RNA-Seq approaches, sNucDrop-Seq relies on 

dissociation of individual cells/nuclei in dissected tissues, thereby discarding cells’ original 

anatomical location information. Thus, combining sequencing-based single-cell genomics 

approach with imaging-based multiplex fluorescence in situ hybridization (FISH) methods 

(Chen et al., 2016; Chen et al., 2015; Shah et al., 2016) that allows detection of a set of 

preselected genes in tissues, is a promising approach to acquire essential information about 

the precise anatomical location, to reconstruct a more complete cell-type atlas in complex 

mammalian tissues.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Dulbecco’s Modified Eagle’s Medium Life Technologies Cat#11965084

Fetal Bovine Serum Life Technologies Cat#26140079

L-glutamine Life Technologies Cat#25030081

0.05% Trypsin Life Technologies Cat#25300054

Matrigel matrix Corning Cat#354230

DMEM/F12 Life Technologies Cat#11320033

TeSR-E8 Medium Stem Cell Technologies Cat#05940

DPBS, no calcium, no magnesium Invitrogen Cat#14190136

Sucrose Sigma-Aldrich Cat#S0389-1KG

1M Tris-HCl, pH 8.0 Invitrogen Cat#15568-025

MgAc2 Sigma-Aldrich Cat#M5661-50G

cOmplete™, EDTA-free Protease Inhibitor Cocktail Roche Cat#11873580001

CaCl2 Sigma-Aldrich Cat#C1016-500G

Triton X-100 Sigma-Aldrich Cat#T8787-100mL

0.5M EDTA, pH 8.0 Invitrogen Cat#15575-020

NxGen RNase Inhibitor Lucigen Cat#30281-2

Bovine Serum Albumin Sigma-Aldrich Cat#A8806-5G

Ficoll PM-400 GE Healthcare/Fisher Scientific Cat#45-001-745

Sarkosyl Sigma-Aldrich Cat#L7414-50mL

DTT Fermentas Cat#R0862

QX200 Droplet Generation Oil for EvaGreen Bio-Rad Cat#186-4006

Perfluoro-1-octanol Sigma-Aldrich Cat#370533-25G

dNTPs Clontech Cat#639125

Critical Commercial Assays

Maxima H Minus Reverse Transcriptase ThermoFisher Cat#EP0753

KAPA HiFi hotstart readymix KAPA Biosystems Cat#KK2602

Deposited Data

Raw and analyzed data This paper GEO: GSE106678 

Experimental Models: Cell Lines

NIH3T3 ATCC Cat#CRL-1658

H7 (female, human embryonic stem cells) WiCell Cat#WA07

Experimental Models: Organisms/Strains

Mouse: C57BL/6 From Dr. Joe Zhou N/A

Oligonucleotides

Template Switch Oligo: TSO: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG Macosko et al., 2015 N/A

TSO-PCR primer: AAGCAGTGGTATCAACGCAGAGT Macosko et al., 2015 N/A

Illumina Nextera XT i7 primers: 
AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C

Macosko et al., 2015 N/A

Cuatom Read 1 Primer: GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC Macosko et al., 2015 N/A

Software and Algorithms

Drop-seq_tools (v1.12) Macosko et al., 2015 http://mccarrolllab.com/dropseq/

STAR v2.5.2a Dobin et al., 2013 https://github.com/alexdobin/STAR

Seurat v1.4 Satija et al., 2015 http://satijalab.org/seurat/

Seurat v2.0 Butler and Satija, 2017 http://satijalab.org/seurat/

GSEA Subramanian et al., 2005 http://software.broadinstitute.org/gsea/index.jsp

DBSCAN Ester et al., 1996 https://cran.r-project.org/web/packages/dbscan/index.html

MISO Katz et al., 2010 https://miso.readthedocs.io/en/fastmiso/

Random Forest Liaw and Wiener, 2002 https://www.stat.berkeley.edu/~breiman/RandomForests/
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REAGENT or RESOURCE SOURCE IDENTIFIER

ggplot2 Wickham, 2016 https://cran.r-project.org/web/packages/ggplot2/

Other

Detailed Bench Protocol This paper Methods S1

Tube, Thinwall, Polypropylene, 38.5 mL, 25 × 89 mm (qty. 50) Beckman Coulter 326823

Glass 15mL Dounce Tissue Grinder Set with Two Glass Pestles, Grinding Chamber O.D. × L: 22 × 94mm (Case 
of 2)

Wheaton 357544

SW 28 Ti Rotor, Swinging Bucket, Aluminum, 6 × 38.5 mL, 28,000 rpm, 141,000 × g Beckman Coulter 342207

Barcoded Beads ChemGenes MACOSKO-2011-10

Aquapel-coated PDMS Microfluidic Device uFluidix Custom (described)

Syringe Pumps KD Scientific 78-8100

40μm Sterile Cell Strainer Fisher Scientific 22-363-547

Medical Grade Polyethylene Micro Tubing Scientific Commodities BB31695-PE/2

SPRISelect Beads Beckman Coulter B23318

75-cycle High Output v2 Kit Illumina FC-404-2005

10-micron carboxylated polystyrene beads Bangs Labs #PC06N-11355

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests should be addressed to and will be fulfilled by Lead Contact Hao Wu 

(haowu2@pennmedicine.upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions—Mouse NIH3T3 cells were purchased from ATCC 

and were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (Life Technologies) 

supplemented with 10% fetal bovine serum (FBS) (Life Technologies) and 2 mM L-

glutamine (Life Technologies) at 37°C in 5% CO2. The culture was passaged every 2–3 days 

using 0.05% Trypsin (Life Technologies). Female, human embryonic stem cells (H7) have 

been procured from WiCell (Madison, WI) and maintained at 37°C in 5% CO2 on growth 

factor-reduced Matrigel matrix (Corning) coated six-well tissue culture plates. The six-well 

plates were coated with diluted (1:30) Matrigel matrix in DMEM/F12 (Life Technologies). 

H7 cells (between passage 40 and 70) were maintained in TeSR-E8 medium (Stem Cell 

Technologies) and passaged every 5–6 days as small aggregates using an enzymatic 

digestion-free method (0.5 mM ETDA in DPBS without CaCl2 and MgCl2 (Sigma-

Aldrich)).

Animals—Experiments were conducted in accordance with the ethical guidelines of the 

National Institutes of Health and with the approval of the Institutional Animal Care and Use 

Committee of the University of Pennsylvania. Mice were group-housed in cages of three to 

five in a 12-h light/dark cycle with food and water provided ad libitum. All mice used for 

experiments were naive to behavioral assays and other procedures. For pentylenetetrazole 

(PTZ)-induced seizures, 10-week old, wild type, male F1 mice from a C56BL/6J to FVB/NJ 

breeding were used. All others were 6-week-old, wild type, male mice in a pure C57BL/6 

background. For PTZ treatment, mice were injected intraperitoneally with PTZ at 50 mg/kg 

body weight or received an injection with saline as a control. One hour after injection, the 

mice were sacrificed.
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METHOD DETAILS

Isolation and purification of nuclei—Mouse brains (postnatal 6–10 weeks) were 

rapidly resected on ice. Cortices were freshly processed or flash frozen in liquid nitrogen for 

2 minutes and subsequently kept at −80°C before nuclear isolation. Nuclei were isolated and 

purified as previously described with some modifications (Johnson et al., 2017). Briefly, 14 

mL of sucrose cushion (1.8 M sucrose (Sigma-Aldrich, RNase & DNase free, ultra pure 

grade), 10 mM Tris-HCl pH 8.0 (Invitrogen), 3 mM MgAc2 (Sigma-Aldrich), protease 

inhibitor cocktail (Sigma-Aldrich)) was added to the bottom of centrifuge tubes (Beckman 

Coulter). Using a glass homogenizer (Wheaton), a freshly isolated or frozen mouse cortex 

sample was subjected to dounce homogenization (21 times with loose pestle followed by 7 

times with tight pestle) in 12 mL of homogenization buffer (0.32M sucrose, 5 mM CaCl2 

(Sigma-Aldrich), 3mM MgAc2, 10 mM Tris-HCl pH 8.0, 0.1% Triton X-100 (Sigma-

Aldrich), 0.1 mM EDTA (Invitrogen), protease inhibitor cocktail). For in vitro cultured cells, 

cell pellets (~5 million cells) were resuspended in homogenization buffer and dounced 20 

times with a loose pestle. Homogenates (~12 mL) were layered onto the sucrose cushion in 

the centrifuge tubes, and 10 mL of homogenization buffer was added atop of the 

homogenates. The tubes were then centrifuged in a Beckman Coulter L7-65 Ultracentrifuge 

at 25,000 rpm at 4°C for 2 hours using a Beckman Coulter SW28 swinging bucket rotor 

(Beckman Coulter). The supernatant was carefully removed via aspiration. 1 mL of chilled 

DPBS with protease and RNase inhibitor (Lucigen) was added to resuspend the nuclear 

pellet, and nuclei were subsequently transferred to a 1.5-mL tube. Nuclei were pelleted at 

5,000 rpm for 10 min at 4°C, and then resuspended in 0.01% BSA (Sigma-Aldrich) in 

DPBS. After resuspension, nuclei were filtered through a 40-μm cell strainer (Fisher 

Scientific), visually inspected for morphology and quality assurance, and counted using a 

Fuchs-Rosenthal counting chamber before droplet microfluidic encapsulation. For mouse 

cortices, we obtain 3.45 ± 2.00 ×106 nuclei, per round of isolation (based on 11 

measurements). The nuclear isolation efficiency for in vitro cultured cells is ~84% (number 

of nuclei/number of input cells × 100).

Single-nucleus RNA-Seq library preparation and sequencing—The nuclear 

suspension was diluted to a concentration of 100 nuclei/μL in DPBS containing 0.01% BSA. 

Approximately 1.25 mL of this single-nucleus suspension was loaded for each sNucDrop-

Seq run. The single-nucleus suspension was then co-encapsulated with barcoded beads 

(ChemGenes) using an Aquapel-coated PDMS microfluidic device (uFluidix) connected to 

syringe pumps (KD Scientific) via polyethylene tubing with an inner diameter of 0.38 mm 

(Scientific Commodities). Barcoded beads were resuspended in lysis buffer (200 mM Tris-

HCl pH8.0, 20 mM EDTA, 6% Ficoll PM-400 (GE Healthcare/Fisher Scientific), 0.2% 

Sarkosyl (Sigma-Aldrich), and 50 mM DTT (Fermentas; freshly made on the day of run) at 

a concentration of 120 beads/μL. The flow rates for cells and beads were set to 4,000 μL/

hour, while QX200 droplet generation oil (Bio-rad) was run at 15,000 μL/hour. A typical run 

lasts ~20 min. Droplet breakage with Perfluoro-1-octanol (Sigma-Aldrich), reverse 

transcription and exonuclease I treatment were performed, as previously described, with 

minor modifications (Macosko et al., 2015). Specifically, up to 120,000 beads, 200 μL of 

reverse transcription (RT) mix (1× Maxima RT buffer (ThermoFisher), 4% Ficoll PM-400, 1 

mM dNTPs (Clontech), 1 U/μL RNase inhibitor, 2.5 μM Template Switch Oligo (TSO: 
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AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG) (Macosko et al., 2015), and 10 U/ μL 

Maxima H Minus Reverse Transcriptase (ThermoFisher)) were added. The RT reaction was 

incubated at room temperature for 30 minutes, followed by incubation at 42°C for 150 

minutes. To determine an optimal number of PCR cycles for amplification of cDNA, an 

aliquot of 6,000 beads (corresponding to ~100 nuclei) was amplified by PCR in a volume of 

50 μL (25 μL of 2x KAPA HiFi hotstart readymix (KAPA biosystems), 0.4 μL of 100 μM 

TSO-PCR primer (AAGCAGTGGTATCAACGCAGAGT (Macosko et al., 2015), 24.6 μL of 

nuclease-free water) with the following thermal cycling parameter (95°C for 3 min; 4 cycles 

of 98°C for 20 sec, 65°C for 45 sec, 72°C for 3 min; 9 cycles of 98°C for 20 sec, 67°C for 

45 sec, 72°C for 3 min; 72°C for 5 min, hold at 4°C). After two rounds of purification with 

0.6x SPRISelect beads (Beckman Coulter), amplified cDNA was eluted with 10 μL of water. 

10% of amplified cDNA was used to perform real-time PCR analysis (1 μL of purified 

cDNA, 0.2 μL of 25 μM TSO-PCR primer, 5 μL of 2x KAPA FAST qPCR readymix, and 

3.8 μL of water) to determine the additional number of PCR cycles needed for optimal 

cDNA amplification (Applied Biosystems QuantStudio 7 Flex). We then prepared PCR 

reactions per total number of barcoded beads collected for each sNucDrop-Seq run, adding 

6,000 beads per PCR tube, and ran the aforementioned program to enrich the cDNA for 4 

+ 10 to 12 cycles. We then tagmented cDNA using the Nextera XT DNA sample preparation 

kit (Illumina, cat# FC-131-1096), starting with 550 pg of cDNA pooled in equal amounts, 

from all PCR reactions for a given run. Following cDNA tagmentation, we further amplified 

the library with 12 enrichment cycles using the Illumina Nextera XT i7 primers along with 

the P5-TSO hybrid primer 

(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCA

ACGCAGAGT*A*C) (Macosko et al., 2015). After quality control analysis using a 

Bioanalyzer (Agilent), libraries were sequenced on an Illumina NextSeq 500 instrument 

using the 75-cycle High Output v2 Kit (Illumina). We loaded the library at 2.0 pM and 

provided Custom Read1 Primer 

(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) at 0.3 μM in position 7 of 

the reagent cartridge. The sequencing configuration was 20 bp (Read1), 8 bp (Index1), and 

50 or 60 bp (Read2). In total, 17 mouse cortex samples were analyzed with sNucDrop-Seq 

in four sequencing runs.

Single-cell RNA-Seq library preparation and sequencing—Drop-Seq was 

performed as previously described, with default settings (Macosko et al., 2015). The cell 

suspension was diluted to 100 cells/μL with DPBS containing 0.01% BSA and 1 mL cell 

suspension was loaded for each Drop-seq run. After cell capture, reverse transcription, 

exonuclease treatment, cDNA amplification and tagmentation, libraries were diluted to 1.9 

pmol, and equal amounts of distinctively indexed libraries were mixed and subjected to 

paired-end sequencing on Illumina NextSeq 500 sequencer (read1: 20 bp; read2: 60 bp). 10× 

Genomics single-cell 3′ libraries were constructed, as previously described (Zheng et al., 

2017), with recommended settings using Chromium single cell 3′ v2 reagent kits by the 

Center for Applied Genomics of The Children’s Hospital of Philadelphia (CHOP). It is 

worth noting that the 10x Genomics single-cell 3′ solution workflow supports cDNA 

amplification only from whole cells, possibly due to inefficient lysis of nuclei purified via 

sucrose gradient ultracentrifugation. 10× genomics recently released a specific nucleus 
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isolation and purification protocol (https://support.10xgenomics.com/single-cell-gene-

expression/index/doc/) that may support single-nucleus RNA-Seq analysis on the 10× 

genomics platform.

Microfluidics device for sNucDrop-Seq—To examine that the channel depth of the 

microfluidics device (custom-made by μFluidix) used for sNucDrop-Seq, droplet volume 

was measured using 10 μm carboxylated polystyrene fluorescent beads (Bangs Labs), as 

previously described (described by Macosko et al., 2015). The beads were first suspended at 

a concentration of 1,000 beads/μL in lysis buffer (200 mM Tris-HCl pH8.0, 20 mM EDTA, 

6% Ficoll PM-400, 0.2% Sarkosyl, and 50 mM DTT). Drop-Seq was performed as 

previously described, with default settings (Macosko et al., 2015), except the syringe pump 

intended for cells was loaded with DPBS. The total number of beads encapsulated in several 

hundred droplets was determined, and droplet volume was calculated, as follows:

We calculated the droplet volume (1.2 nL), and estimated the radius of droplets (1/2 of 

channel depth) as 65μm. This confirms that the channel depth of microfluidics devices used 

for sNucDrop-Seq experiments is approximately ~130μm.

It is worth noting that while both sNucDrop-Seq (this study) and DroNc-Seq (Habib et al., 

2017) have adapted the Drop-Seq pipeline for single-nucleus RNA-Seq analysis of 

mammalian brains, there are several technical differences between the two. First, different 

nuclei purification methods were employed (sNucDrop-Seq: sucrose-gradient 

ultracentrifugation; DroNc-Seq: a commercially available kit from Sigma). Second, while 

sNucDrop-Seq utilizes standard Drop-Seq microfluidics devices (channel depth: 125 um), 

DroNc-Seq requires a custom-made, modified device (channel depth: 75 um). Because of 

the reduced channel depth, the DroNc-Seq specific device is more likely to clog and requires 

pre-filtering of barcoded beads to enrich beads of smaller sizes (causing 50% loss of this 

expensive reagent). Third, re-analysis of raw DroNc-Seq data using our own pipeline 

(utilizing both exonic and intronic reads) suggests that sNucDrop-Seq requires less reads per 

nucleus (~50% reads) to achieve similar cell-type specific gene expression signatures and 

clustering assignment as compared to DroNc-Seq (the performance is benchmarked by 

pairwise comparison between single-nucleus analysis and the deeply sequenced single-cell 

analysis study (Tasic et al., 2016). Thus, while sNucDrop-Seq requires special instrument 

such as ultracentrifuge, sNucDrop-Seq is more cost-effective than DroNc-Seq.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing of sNucDrop-Seq data—Paired-end sequencing reads of Single-

nucleus RNA-seq were processed using publicly available the Drop-Seq Tools v1.12 

software (Macosko et al., 2015) with some modifications. Briefly, each mRNA read (read2) 

was tagged with the cell barcode (bases 1 to 12 of read 1) and unique molecular identifier 

(UMI, bases 13 to 20 of read 1), trimmed of sequencing adaptors and poly-A sequences, and 

aligned using STAR v 2.5.2a to the mouse (mm10, Gencode release vM13) or a 
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concatenation of the mouse and human (for the species-mixing experiment) reference 

genome assembly. Because a substantial proportion (~50%) of reads derived from nuclear 

transcriptomes of mouse cortices were mapped to the intronic regions, the intronic reads 

were retained for downstream analysis. A custom Perl script was implemented in the Drop-

Seq Tools pipeline to retrieve both exonic and intronic reads mapped to predicted strands of 

annotated genes. Uniquely mapped reads were grouped by cell barcodes. Cell barcodes were 

corrected for possible bead synthesis errors, using the DetectBeadSynthesisErrors program 

from the Drop-Seq Tools v1.12 software. To generate digital expression matrix, a list of 

UMIs in each gene (as rows), within each cell (as columns), was assembled, and UMIs 

within ED = 1 were merged together. The total number of unique UMI sequences was 

counted, and this number was reported as the number of transcripts of that gene for a given 

cell.

Comparison of Drop-Seq (whole cells) and sNucDrop-Seq (nuclei)—Only mouse 

NIH3T3 cells or nuclei that expressed >800 genes were retained for analysis. For each gene, 

the average normalized expression level was calculated as log (normalized UMI counts + 1).

Clustering and marker gene identification—Raw digital expression matrices were 

combined and loaded into the R package Seurat. For normalization, UMI counts for all 

nuclei were scaled by library size (total UMI counts), multiplied by 10,000 and transformed 

to log space. Only genes found to be expressing in >10 cells were retained. Nuclei with a 

relatively high percentage of UMIs mapped to mitochondrial genes (>=0.1) were discarded. 

Moreover, nuclei with fewer than 800 or more than 6,000 detected genes were omitted, 

resulting in 20,858 nuclei that pass filter.

Before clustering, batch effects from multiple animals were regressed out using the function 

RegressOut in R package Seurat (Macosko et al., 2015). The highly variable genes were 

identified using the function MeanVarPlot with the parameters: x.low.cutoff = 0.0125, 

x.high.cutoff = 3 and y.cutoff = 0.8, resulting in an output of 1,932 highly variable genes. 

The expression level of highly variable genes in the nuclei was scaled and centered along 

each gene, and was conducted to principal component analysis. We then used two methods 

to assess the number of PCs to be utilized in downstream analysis: 1) The cumulative 

standard deviations of each PC were plotted using the function PCElbowPlot in Seurat to 

identify the ‘knee’ point at a PC number after which successive PCs explain diminishing 

degrees of variance, and 2) the significance for each gene’s association with each PC was 

accessed by the function JackStraw in Seurat. Based on these two methods, we selected first 

30 PCs for two-dimensional t-distributed stochastic neighbor embedding (tSNE), 

implemented by the Seurat software with the default parameters. Based on the tSNE map, 

twenty-one clusters were identified using the function FindCluster in Seurat with the 

resolution parameter set to 2. Clusters that co-express both non-neuronal and neuronal 

markers, representing cell doublets, were removed. Based on expression of well-established 

marker genes, we assigned 19,241 nuclei to cerebral cortex (93.1% of our data) and 1,415 

nuclei to non-cortical neurons (6.9%). To perform clustering analysis on 19,241 cortical 

cells, we identified 1,968 highly variable genes and selected first 40 PCs. The nuclei were 

classified into 44 clusters with the resolution parameter set to 4. To identify clusters with 
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highly similar identity, we performed pairwise comparison to identify differentially 

expressed genes using the function FinderMarkers in Seurat, with likelihood-ratio test. We 

merged the clusters exhibiting less than 10 genes with an average expression difference 

greater than 2-fold between clusters. Based on two-dimensional coordinates of nuclei in the 

tSNE plot, a density-based clustering method implemented in the DBSCAN R package was 

used to identify outliers, filtering out 882 nuclei (4.5% of 19,241 nuclei) with the 

reachability distance parameter (eps) setting to 0.9 and minimal number of nuclei within that 

eps radius setting to 10. Finally, we excluded clusters containing expression markers for 

more than one canonical cell type. As a result of these steps, we were able to assign 18,194 

(94.6% of cortical nuclei) nuclei into 40 clusters.

To identify the marker genes, differential expression analysis was performed by the function 

FindAllMarkers in Seurat with likelihood-ratio test. Differentially expressed genes that were 

expressed at least in 10% cells within the cluster and with a fold change more than 0.5 (log 

scale) were considered to be marker genes. In total, 2,001 protein-coding genes and 90 long 

non-coding RNAs were identified for 40 clusters. For the marker genes, average gene 

expression for each cluster was determined, and Euclidean distances between all pairs was 

calculated. This dataset was used as input for complete linkage hierarchical clustering and 

dendrogram assembly. To generate a heatmap of marker genes across clusters, the average 

expression level of marker genes within each cluster were calculated. For each cluster, the 

average expression was centered and scaled by each gene. Next, the hclust function in the R 

was used to generate the cluster dendrogram with the “ward.D” method.

Sub-clustering of cortical and non-cortical inhibitory neurons—Cortical 

inhibitory neuronal nuclei from cluster Inh 1–7 were first combined with non-cortical nuclei. 

We then identified 2,139 highly variable genes in a total of 3,425 nuclei and performed PCA 

analysis. The significance of PCs was examined by the Jackstraw function in Seurat. First 23 

significant PCs with P-value < 1E-8 were selected for clustering analysis and 19 sub-clusters 

were identified with the resolution setting to 2. After merging clusters, identifying/removing 

outliers (DBSCAN), and filtering cell doublets, we identified 9 cortical inhibitory neuronal 

subgroups (1,810 nuclei), and 8 sub-clusters for non-cortical nuclei (1,462 nuclei).

Identification of differentially expressed genes—Differential gene expression 

analysis between PTZ treatment and saline groups or between active and inactive neurons 

was performed using the function FindMarkers in Seurat, using a likelihood ratio test. For 

the PTZ and saline comparison, genes with a fold-change of more than 0.25 (log scale) and a 

P-value less than 0.01 were considered to be differentially expressed, while genes showing 

0.25-fold change (log-scale) with P-value < 1E-3 were defined as differentially expressed 

between active and inactive neurons. For the PTZ and saline comparison within each cluster, 

only the clusters containing at least 20 nuclei of both two conditions, PTZ and saline, were 

tested.

Gene Set Enrichment Analysis of neuronal activity-regulated genes (ARGs)—
The list of 172 ARGs was previously defined (Tyssowski et al., 2017). These ARGs were 

classified into 3 groups: rapid primary response genes (rapid PRG), delayed primary 

response genes (delayed PRG) and secondary response genes (SRG) based on the expression 
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pattern across the time points in response to the KCl stimulation of cultured primary neurons 

(Tyssowski et al., 2017). For each cluster, only genes that were expressed in at least of 10% 

nuclei were considered and the expression matrix of those genes in each cluster was loaded 

into the GSEA analysis (www.broadinstitue.org/gsea/index.jsp) (Subramanian et al., 2005). 

Clusters with an FDR < 0.25 were considered significant.

Alternative splicing analysis—To identify the cell-type specific alternative splicing 

events, we classify the 40 clusters into 8 cell types: excitatory neuronal layer 2/3 (Cluster 

Ex5, Ex6, Ex24, Ex25, Ex26, and Ex27), excitatory neuronal layer 4 (cluster Ex21, Ex22, 

and Ex23), excitatory neuronal layer 5/6 (Cluster Ex1, Ex2, Ex3, Ex4, Ex7, Ex8, Ex9, Ex10, 

Ex12, Ex19 and Ex20), excitatory neuronal layer 6 (Cluster Ex11, Ex13, Ex14, Ex15, Ex16, 

Ex17 and Ex18), inhibitory neuronal Sst+ (Cluster Inh1 and Inh2), inhibitory neuronal Pvalb

+ (Cluster Inh3 and Inh4), other inhibitory neurons (Cluster Inh5, Inh6 and Inh7), and non-

neuronal cell types (Cluster EC, MG, Astro, OPC, Oligo1 and Oligo2). The bam files of the 

nuclei from the same cell type were merged and sorted by Samtools. Pairwise comparison of 

differential splicing events between cell types was performed using MISO (Katz et al., 

2010). Splicing events with a bayes factor (>10), ∆PSI > 0.2; at least 1 read supports the 

inclusion or exclusion isoform, and at least 10 reads supports either of these events.

Comparison of sNucDrop-Seq data to other single-cell/nucleus RNA-Seq data 
sets—To assess the validity of sNucDrop-seq results, we compare our data with recently 

published single-nucleus RNA-Seq data from mouse prefrontal cortex (Habib et al., 2017) or 

single-cell RNA-Seq data derived from select mouse visual cortex (Tasic et al., 2016). To 

compare cell-type specific expression signatures defined by sNucDrop-Seq and those of 

other data sets, we computed the pairwise Pearson correlation coefficients between each pair 

of cell types in other data sets and our sNucDrop-Seq data set for a common set of genes. To 

generate a common marker gene list for the pairwise comparison, we identified 1,986 

(95.0%) and 1,919 (91.8%) common marker genes for the DroNuc-Seq data set (Figure 1G) 

and the single-cell data set (Figure S3C), respectively. Average natural log transformed 

scaled UMI counts or TPM counts were used to generate the DroNc-Seq (Habib et al., 2017) 

and single-cell RNA-Seq (Tasic et al., 2016) gene expression matrix, respectively. R 

function cor.test was used to calculate the pairwise Pearson correlation coefficients.

To further examine whether GABAergic neuronal subclusters identified in this study agree 

with a previous single-cell RNA-Seq study of well-characterized transgenic mouse lines 

(Tasic et al., 2016), we adopted a random forest classifier-based method (Shekhar et al., 

2016) (Figure 2E). First, we used five major GABAergic neuron sub-types defined by 

sNucDrop-Seq to train a random forest classifier on our sNucDrop-seq dataset. We first 

sampled 60% of nuclei from each cell type to build the training set of 1,204 nuclei, and the 

remaining 40% nuclei (770) were used as test set for evaluating the performance of the 

trained classifier. We then identified the 1,182 most highly variable genes using the Seurat 

function MeanVarPlot in with the following parameters: x.low.cutoff = 0.0125, x.high.cutoff 

= 4 and y.cutoff = 0.8. The digital expression matrix comprising 1,182 genes across 1,204 

nuclei was used to build the classifier. We trained a random forest classifier using the R 

package randomForest with the ntree parameter set to 1,000. By applying this classifier to 
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assign the nuclei in the test set, 96.9% of the nuclei were correctly mapped to their classes. 

Then the classifier was used to map the cells in single cell dataset from transgenic Cre lines 

(Tasic et al., 2016).

By utilizing a recently published computational strategy for integrated analysis of multiple 

data sets (implemented in Seurat v2.0), we further performed comparative analysis of the 

DroNc-Seq data set (Habib et al., 2017) and this study (Figures S3E–G). First, we 

downloaded the raw DroNc-seq data (mouse prefrontal cortex) and generated the digital 

expression matrix using our pipeline that utilizes both exonic and intronic reads. After 

filtering low quality nuclei, 5,441 nuclei from DroNc-seq and all 18,194 nuclei from our 

dataset with > 800 genes expressed were imported into Seurat. Then, the union of the top 

1,000 genes with the highest dispersion from both datasets was subject to a canonical 

correlation analysis (CCA) to identify common sources of variation between the two 

datasets. The first 15 dimensions of the CCA was chosen to align the two datasets. Nuclei 

whose expression level cannot be explained by those 15 CCA were removed. The remaining 

nuclei, that passed filter, were subject to clustering with the resolution parameter set to 1.2. 

We assigned 23,213 (98.2% of input data) comprised 5,337 DroNuc-seq nuclei and 17,876 

scNucDrop-seq nuclei into 18 clusters.

Identification of nuclei expressing ARGs—To evaluate the fraction and heterogeneity 

of ARG-expressing nuclei in cortical excitatory neurons (Figure 3D), we examined the 

pattern of 4 selected ARGs (rapid PRGs: Fos and Egr1; delayed PRGs: Nr4a3 and Pcsk1). 

Based on the distribution of gene expression levels between active (Ex24) and inactive 

(Ex25) neurons, we determined the baseline expression level of these ARGs, post-hoc. The 

nuclei whose expression level was higher than the baseline ARG expression level were 

classified as ARG-expressing nuclei. We then examined whether the proportions of ARG-

expressing nuclei were higher in the active neurons compared to the inactive neurons using 

Fisher’s exact test (Table S2).

To compare the proportion of IEG-expressing nuclei across all the cell types (Figure S4A), 

mean and standard deviation (SD) of selected ARGs were computed. Nuclei whose 

expression level of ARGs was higher than mean+2SD are defined as ARG-expressing 

nuclei. Then the percentage of ARG-expressing nuclei was reported for each cluster, defined 

in Figure 1C.

DATA AND SOFTWARE AVAILABILITY

The next-generation sequencing data reported in this study have been deposited to the Gene 

Expression Omnibus (GEO). The accession number for this data is GSE106678. R 

markdown scripts for data analysis are available from the corresponding author, upon 

request.

ADDITIONAL RESOURCES

Detailed Protocol—A detailed bench protocol is supplied in an attached file, entitled 

Methods S1.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. sNucDrop-Seq: a massively parallel single-nucleus RNA-Seq method
A) Overview of sNucDrop-Seq. Red arrows indicate representative nuclei before or after 

sucrose gradient centrifugation.

(B) Scatter plot comparing the average expression levels detected in NIH3T3 nuclei (y-axis, 

by sNucDrop-Seq) and cells (x-axis, by Drop-Seq). Red dots mark representative genes 

preferentially enriched in either nuclei or whole cells.

(C) Visualization by tSNE plot of clustering of 18,194 single-nucleus expression profiles 

from adult mouse cortices (n=17 mice). Ex, excitatory neurons; Inh, inhibitory neurons; 
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Astro, astrocytes; OPC, oligodendrocyte precursor cells; Oligo, oligodendrocytes; MG, 

microglia; EC, endothelial cells.

(D) Marker gene expression, shown by re-coloring nuclei according to the expression level 

and projecting onto the tSNE plot in Figure 1A.

(E) Dendrogram showing relatedness of cell clusters, followed by (from left to right) cluster 

identification (ID), cell number per major cell type, UMIs per cluster (mean ± s.e.m.), 

number of genes detected per cluster (mean ± s.e.m.).

(F) Heatmap showing expression of cell-type specific protein-coding and long non-coding 

RNA markers in clusters defined in Figure 1E.

(G) Cell-type-specific expression signatures (identified by sNucDrop-Seq) agree with 

previously published work. Pairwise correlations of the average expression for the genes in 

each cell-type signature defined by sNucDrop-Seq and cell-types defined by DroNc-Seq in 

the mouse prefrontal cortex (Habib et al., 2017). DroNc-Seq clusters: exPFC, excitatory 

neurons; GABA, inhibitory neurons; ASC, astrocytes; OPC, oligodendrocyte precursor cells; 

ODC, oligodendrocytes; MG, microglia; END, endothelial cells.
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Figure 2. sNucDrop-Seq reveals inhibitory neuronal subtypes and composition
(A) Spectral tSNE plot of 1,810 cortical GABAergic neurons and 1,462 non-cortical nuclei. 

The cortical inhibitory neurons are colored (A-H) while non-cortical nuclei are marked in 

grey. Violin plots for two GABAergic neuronal markers (Gad1 and Gad2) and two striatal 

markers (Meis2 and Ppp1r1b) are shown in the lower panel.

(B) Marker gene expression shown by re-coloring and projecting onto the tSNE plot in 

Figure 2A.
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(C) Violin plots showing select marker gene expression for inhibitory neuronal subtypes. 

Five mutually exclusive subtype-specific marker genes are highlighted in red.

(D) Summary of inhibitory neuronal subtypes identified by sNucDrop-Seq. GABAergic 

subtypes are grouped according to five major classes. Also shown are number of nuclei per 

subtype and representative marker genes associated with each.

(E) Congruence of five major GABAergic neuronal classes defined by sNucDrop-Seq in 

Figure 2D with subpopulations defined from single-cell RNA-Seq profiles in the mouse 

visual cortex (Tasic et al., 2016).

(F) Heatmap showing select marker genes that distinguish cortical inhibitory neurons 

originated from either CGE or MGE.

Hu et al. Page 23

Mol Cell. Author manuscript; available in PMC 2018 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Excitatory neuronal subtypes resolve heterogeneity in cortical layer distribution and 
transcriptional states driven by neuronal activity
(A) Heatmap for layer-specific markers and neuronal activity-regulated genes showing 

cortical layer identity (L2/3/, L4, L5a/b, L6a/b), excitatory subtypes, and ARG expression.

(B) GSEA of ARGs between closely related neuronal sub-clusters. Genes were ranked based 

on the differential expression between active (left: Ex24) and inactive (right: Ex25). The plot 

of running enrichment score (RES) is shown in red (top panel). Vertical bars (in black) in the 
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middle indicate a gene within the ARG gene set. The correlation of gene expression with 

sub-clusters is shown in the bottom histogram (in green).

(C) Differential expression between activated and inactivated excitatory neurons within 

upper-(Ex24 versus Ex25) layer sub-clusters. Shown on the right are violin plots of select 

marker gene expression.

(D) Co-expression analysis of neuronal activity-dependent genes in excitatory neuronal 

subtypes. Spectral tSNE plots (left) and density plots (right) illustrating expression of select 

ARGs in upper layer excitatory neuronal subtypes. The expression level threshold (x) for 

ARGs was determined post-hoc (the dashed line) and marked by the dash line in density. 

The nuclei in tSNE plots are re-colored by ARG expression.
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Figure 4. sNucDrop-Seq reveals cell-type specific transcriptional responses to PTZ-induced 
seizure
(A) GSEA of the ARG set in different cell clusters by the comparison between PTZ- and 

saline-treated neurons was performed as in Figure 3B. For each cell type, genes were ranked 

based on the differential expression between PTZ (left) and saline (right). The FDR for 

GSEA of ARGs is listed and clusters with FDR < 0.2 are highlighted in red.

(B) Spectral tSNE plot of 3,491 nuclei from PTZ-treated mouse cortex. The nuclei were 

colored per annotated cell types (left panel) or the FDR of GSEA analysis (right panel).
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(C) Cell-type specific induction of ARGs in response to PTZ treatment. Rapid PRGs, 

delayed PRGs and SRGs are highlighted in red, green, and blue, respectively. X-axis 

indicates the natural log fold change of gene expression between PTZ and saline. The dash 

line denotes the cut-off of gene expression fold change (log 0.25). The FDR for GSEA of 

ARGs (as in Figure 4A) is listed and clusters with FDR < 0.2 are highlighted in red.
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