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Abstract
The choice of the best sampling strategy to capture mean values of functional traits 
for a species/population, while maintaining information about traits’ variability and 
minimizing the sampling size and effort, is an open issue in functional trait ecology. 
Intraspecific variability (ITV) of functional traits strongly influences sampling size and 
effort. However, while adequate information is available about intraspecific variability 
between individuals (ITVBI) and among populations (ITVPOP), relatively few studies 
have analyzed intraspecific variability within individuals (ITVWI). Here, we provide an 
analysis of ITVWI of two foliar traits, namely specific leaf area (SLA) and osmotic poten-
tial (π), in a population of Quercus ilex L. We assessed the baseline ITVWI level of varia-
tion between the two traits and provided the minimum and optimal sampling size in 
order to take into account ITVWI, comparing sampling optimization outputs with those 
previously proposed in the literature. Different factors accounted for different amount 
of variance of the two traits. SLA variance was mostly spread within individuals (43.4% 
of the total variance), while π variance was mainly spread between individuals (43.2%). 
Strategies that did not account for all the canopy strata produced mean values not 
representative of the sampled population. The minimum size to adequately capture 
the studied functional traits corresponded to 5 leaves taken randomly from 5 individu-
als, while the most accurate and feasible sampling size was 4 leaves taken randomly 
from 10 individuals. We demonstrate that the spatial structure of the canopy could 
significantly affect traits variability. Moreover, different strategies for different traits 
could be implemented during sampling surveys. We partially confirm sampling sizes 
previously proposed in the recent literature and encourage future analysis involving 
different traits.
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1  | INTRODUCTION

Plant traits are defined as any morphological, physiological, or pheno-
logical features measurable at the individual level, from the cell to the 

whole-organism (Violle et al. 2007). In the last decades, plant func-
tional traits have been widely included in trait-based studies, because 
they impact fitness indirectly via effects on growth, reproduction, and 
survival (Violle et al. 2007), and reflect the trade-offs among different 
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physiological and ecological functions (Dıáz & Cabido, 2001; Lavorel 
et al., 2007; McIntyre, Díaz, Lavorel, & Cramer, 1999). A wide range 
of ecological issues can be conveniently addressed using a functional 
trait approach. For example, functional diversity helps addressing 
questions about determination of ecosystems level processes (Dıáz 
& Cabido, 2001; Escudero & Valladares, 2016) or to disentangle pro-
cesses underlying invasions by alien species as well as invasion re-
sistance (Drenovsky et al., 2012; Funk, Cleland, Suding, & Zavaleta, 
2008). Furthermore, assessment of species traits can be used in 
modeling vegetation changes under different environmental pressure 
(Hobbs, 1997; Noble & Gitay, 1996) and in managing ecosystem ser-
vices (Lavorel & Garnier, 2002).

The number of studies based on the analysis of functional traits 
has steadily increased in recent years. Yet, there are still some critical 
issues to be solved, related to the cost-benefits of different sampling 
strategies to capture the variability of functional traits between and 
within communities. A very actual debate in “trait-based ecology” is fo-
cused on the importance and relative magnitude of interspecific (BTV, 
B stands for between species) and intraspecific variability (ITV) (Albert 
et al., 2010). While sources and effects of BTV on functional trait-
based studies have been widely investigated (Diaz et al., 2004; Wright 
et al., 2005), the contribution of ITV to the total variability of a trait 
has been underestimated (Violle et al., 2012). ITV is defined as the 
overall variability of trait values and trait syndromes (set of trait val-
ues including trait trade-offs) expressed by individuals within a species 
(Albert, Grassein, Schurr, Vieilledent, & Violle, 2011). The commonly 
accepted paradigm is that the BTV is much larger than ITV (Albert 
et al., 2011), leading to the so-called ITV<BTV assumption (Garnier 
et al., 2001; Wilson, Thompson, & Hodgson, 1999). Therefore, ITV 
has been often considered negligible. Recently, a growing number of 
studies has shown that this assumption is not always correct (Albert, 
2015; Albert et al., 2010; Siefert et al., 2015) and provided frame-
works and suggestions on procedures to account for ITV. For example, 
Siefert et al. (2015) demonstrated that different traits have different 
ITV magnitude and that ITV must be taken into account when specific 
leaf area (SLA), leaf dry matter content (LDMC), or leaf chemical traits 
are included in functional traits-based studies. Albert et al. (2011) also 
proposed a framework to assess when and how ITV should be taken 
into account.

According to Albert et al. (2011), ITV comprises three levels: (1) 
between population level variability (ITVPOP); (2) between individual 
variability (ITVBI); (3) within individual variability (ITVWI). Large atten-
tion had been dedicated to the first two levels, while the latter had 
been scarcely investigated in a rigorous way. ITVWI is defined as the 
feature of traits that vary within individuals (Albert et al., 2011) and 
could arise due to genotypic, phenotypic, or ontogenetic processes 
(Messier, McGill, & Lechowicz, 2010; Valladares et al., 2014). In partic-
ular, significant micro-environmental gradients can occur even within 
the canopy of single trees (Niinemets, 2016), thus affecting leaf traits 
values magnitude and distribution within a single individual.

Leaves display a series of attributes that are linked to specific 
functions (functional leaf traits) and/or show responses to biotic and 
abiotic stress factors (stress response traits), which can be subdivided 

into: (1) morphological traits; (2) chemical traits; (3) physiological traits; 
(4) syndromes. The analysis of functional leaf traits is a useful tool for 
tree species and provenance phenotyping, due to the adaptation of 
trees to environmental stress (Gratani, Meneghini, Pesoli, & Crescente, 
2003). Additionally, functional leaf traits can be used as response fac-
tor in long term and large spatial scales surveys of forest and crops 
conditions (Apgaua et al., 2017; Martin et al., 2017). Indeed, leaf sam-
pling and analysis is a tool applied in research projects and monitoring 
programs (Rautio, Fürst, Stefan, Raitio, & Bartels, 2010), but sampling 
an adequate numbers of leaves can be a difficult, time-consuming, and 
costly task, because of horizontal structure of forest making samples 
difficult to access.

Under this perspective, the choice of traits and the number of 
replicates to capture the mean value (and the associated variability) 
of leaf traits for target populations remains an issue only partially 
solved in trait-based ecology. In this perspective, standardized pro-
tocols are mandatory to compare the variability of different studies 
and to perform general inferences on ecological mechanisms. In the 
last 10 years, multiple handbooks of protocols (e.g., Cornelissen 
et al., 2003; Pérez-Harguindeguy et al., 2013) have listed the most 
used plant traits and proposed sampling standards for each of them 
(i.e., how to measure traits, the minimum and preferred number of 
replicates, etc.). Moreover, these protocols support decisions for 
the selection of an appropriate sample size depending on the pur-
pose of the study and on the desired precision level. Before pro-
tocols application, however, optimal sampling parameters should 
be assessed on the basis of the extent of ITV in the study area 
(Cornelissen et al., 2003). Here, we provide an analysis of ITVWI of 
two foliar traits, one “functional” (SLA) and one “mechanistic” (os-
motic potential or π), in a population of Quercus ilex L. (Holm oak). 
According to Brodribb (2017), mechanistic traits are characterized 
by a clear association with a specific physiological function, while 
general functional traits (such as SLA) rather represent a “syndrome” 
that can be associated to different physiological functions and as-
sociated trade-offs. Despite the deeper physiological insights pro-
vided by mechanistic traits than by functional ones, they are more 
difficult to measure (in terms of costs and time) and, therefore, are 
scarcely included in trait-based studies. Consequently, very little 
is known about mechanistic traits variability, while several studies 
investigated variation of soft traits at different ecological scales 
(Messier et al., 2010). Anyway, recent studies have proposed new 
techniques for time- and cost-effective estimation of different 
mechanistic traits (e.g., Bartlett, Scoffoni, Ardy et al. (2012) for os-
motic potential, or Skelton, Brodribb, and Choat (2017) for vulnera-
bility to xylem embolism).

Based on an intensive spatially explicit sampling of the two de-
scribed foliar traits, this study is aimed at: (1) assessing the baseline 
ITVWI level of variation between the two traits; (2) assessing the mini-
mum and optimal sampling size in order to take into account ITVWI; (3) 
comparing sampling optimization outputs with those previously pro-
posed in the literature; (4) proposing practical advises and sampling 
scenarios useful for ecologists and biologists to plan traits sampling 
campaigns.
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2  | MATERIALS AND METHODS

2.1 | Study area and sampling design

This study was performed in the Cernizza woodland (45°46′37.4″ N, 
13°45′21.2″ E), an area located in the Karst region (NE Italy) at 40 m a.s.l. 
The climate is humid temperate with higher precipitation in October-
November and a relatively dry spell in August-September (Furlanetto, 
2003). The woodland hosts typical Mediterranean evergreen species, 
including Quercus ilex, Phyllirea latifolia, Osyrys alba, Smilax aspera, Ruscus 
aculeatus, and Rubia peregrina (Del Favero & Poldini, 1998).

Quercus ilex (Figure 1) is the dominant woody species and occurs 
in different environmental conditions due to the heterogeneous sub-
strate of the study area (Nardini et al., 2016). For these reasons, we 
choose Q. ilex as the study species. We first identified three areas 
(0.6 ha each), approximately 100 m apart from each other and charac-
terized by the highest density of Q. ilex according to a recent map by 
Furlanetto (2003) (Fig. S1). We extrapolated the centroid of each area 
using the software Quantum Gis (v. 2.12.0 – Lyon. QGIS Development 
Team, 2015) and the Q. ilex individual closest to the centroid repre-
sented the center of a 10 × 10 m quadrat. We sampled every individ-
ual of Q. ilex with trunk diameter at breast height (DBH) ≥5 cm within 
each quadrat. In total, we sampled 34 individuals from three quadrats.

The sampling procedure was designed in order to collect the high-
est possible (given time and cost constraints) number of leaves within 
all the individuals in each quadrat. Clearly, a complete census even of 
a single crown is unrealistic. Hence, we realized an intensive sampling 
effort consisting in 12 pairs of leaves for each individual. Specifically, we 
sampled 12 twigs from each individual and one leaf pair was selected 
from each twig. We sampled leaf pairs because the measurement of 

the selected traits implies samples destruction. With the aim to capture 
as much variability as possible within each considered individual, each 
tree was divided in two height classes (“a” from base to 2.5 m, “b” from 
2.5 m to the top) and in two vertical strata (external = E, internal = I). A 
total of 6 leaf pairs were selected for each height class; three pairs of 
them were external leaves (E) while the other three were internal leaves 
(I). The exposure (north, south, east, west) of the leaf pairs along the 
canopy was randomly assessed according to the following scheme. We 
generated a random series of number from 0 to 360. When this number 
was between 45 and 135 (45 < x < 135), sampled leaf pairs should be 
exposed to east; when 135 < x < 225 to south; 225 < x < 315 to west 
and 315 < x < 45 to north. Such stratification was designed to assess 
the contribution of different leaf position in the canopy to the total vari-
ance of the traits, as micro-environmental gradients within the canopy 
could affect leaf traits values (Niinemets, 2016). Twigs bearing leaf pairs 
were detached, wrapped in cling film, put in humid sealed plastic bags 
and stored in coolbags until measurements in the laboratory. A total 
of 408 leaves from 34 different individuals were sampled from all the 
three quadrats in three different days, two in December 2015 and one 
in January 2016. The number of individuals per sampling unit differed, 
as expected, depending on the number of different trees occurring in 
each quadrat (five individuals in the first quadrat; 17 individuals in the 
second quadrat; 12 individuals in the third quadrat).

2.2 | Measurements of leaf traits

As mentioned above, SLA and π were measured for each leaf pair.
Specific leaf area was calculated as the ratio between fresh leaf 

area and its dry weight, and it is expressed in mm2/mg. 

Specific leaf area is generally considered a “soft” structural trait, 
well-related with relative growth rate and photosynthetic rate (Poorter 
& Remkes 1990). Plants adapted to arid and poor-nutrients habitats 
usually show thicker and smaller leaves with higher lifespan and lower 
values of SLA (Pérez-Harguindeguy et al., 2013). Fresh leaves were 
scanned using a scanner, and leaf area was measured using the soft-
ware ImageJ (Schneider, Rasband, & Eliceiri, 2012). Leaves were then 
put in the oven for 48 h at 72°C, and then, leaf dry weight was mea-
sured using an analytical balance.

The osmotic potential (π) is considered a mechanistic trait, requir-
ing time-consuming procedures and specific instruments for mea-
surements (Cornelissen et al., 2003). The standard method for the 
measurement of π is based on the elaboration of leaf water poten-
tial isotherms (or pressure-volume curves) as described by Tyree and 
Hammel (1972). Recently, Bartlett, Scoffoni, Ardy et al. (2012) pro-
posed an alternative procedure to measure π using vapor-pressure os-
mometry of freeze-thawed leaf disks. We used this method, with some 
modifications from the protocol proposed by Bartlett, Scoffoni, Ardy 
et al. (2012). Fresh leaves (without the petiole) were roughly crumbled 
and sealed in cling film. Then, they were immersed in liquid nitrogen 
(LN2) for 2 min. Leaves (still sealed in cling film) were then ground to 
the smallest possible size and stored in sealed plastic bottles at −20°C 

SLA= (Leaf Area)∕(Leaf DryWeight) [mm2∕mg]

F IGURE  1  Individual of Quercus ilex growing in the study area
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until measurements. Finally, π was measured using a dew point po-
tentiameter (Model WP4, Decagon Devices Inc., Pullman, WA, USA) 
within two weeks after samples preparation.

2.3 | Partitioning of spatial variability

The first goal of our analysis was to assess the spatial variation of 
ITV of the two measured traits. Hence, we performed a partitioning 
of spatial variability of SLA and π. Specifically, we assessed the vari-
ation in the two traits across four hierarchical organizational levels, 
namely quadrat (3 levels, fixed factor), individual (34 levels, fixed 
nested within quadrat), height class (2 levels, h_class, fixed), and 
position within the canopy (2 levels, E/I, fixed) through a multivari-
ate analysis of variance by permutation (PERMANOVA, Anderson, 
2001; McArdle & Anderson, 2001). The following interaction terms 
were tested: quadrat*h_class, quadrat*E/I, h_class*E/I, individual 
(quadrat)*h_class, individual (quadrat)*E/I, quadrat*h_class*E/I and 
individual(quadrat) *h_class*E/I. Euclidean distance was used as dis-
tance in this analysis. The percentage of variance explained by each 
factor was obtained by dividing the sum of squares (SS) calculated on 
the differences of distances from centroid of each factor by the total 
sum of squares.

The components of multivariate variance were tested for statisti-
cal significance with respect to 999 permutations of residuals under a 
reduced model (Anderson, 2001), using an a priori chosen significance 
level of α = .05.

The analysis was computed using software PRIMER (Clarke 
& Gorley, 2006) including the add-on package PERMANOVA+6 
(Anderson, Gorley, & Clarke, 2008).

2.4 | Selection of most adequate sampling 
strategy and minimum and optimal sampling size

The second goal of our study was to provide the most adequate 
sampling strategy to measure SLA and π. We aimed at selecting the 

sampling strategy that minimizes the number of leaves and individuals 
(from here sampling size) needed to estimate traits values with desired 
precision and accuracy.

First, we calculated the minimum precision required to estimate 
the two traits adequately. Hence, we randomly resampled an increas-
ing number of leaves (from 1 to 408) from the dataset, each time 
calculating the standard error (SE) as a precision measurement. The 
higher the SE, the lower the precision. We run the simulation 4,999 
times for each number of leaves and, at the end, we were able to 
construct the relationship between SE and number of leaves consid-
ered. We assumed that the minimum desired precision corresponded 
to the SE value at the flex point (SEmin) of this relationship. In fact, 
after this point, the relationship became linear and the slope slightly 
changed. The flex point was calculated using segmented function 
from package “SEGMENTED” (Muggeo, 2003) for R software (R Core 
Team, 2015).

Secondly, we formulated 15 different sampling strategies adopt-
ing different selection criteria for the choice of leaves and individuals, 
constrained on the different levels of spatial organization (Figure 2, 
Table S1). RANDOM strategy was the less complex strategy, as leaves 
and individuals were sampled randomly, discarding all the spatial 
levels. In Q_fixed, an intermediate complex strategy, leaves were 
sampled randomly from an equal number of individuals within each 
quadrat. Finally, in stQ_FIXED, the most complex strategy, a fixed 
number of leaves were sampled from each canopy stratum (h_class 
and E/I) and from a fixed number of individuals per quadrat. All the 
strategies are resumed in Table S1. For each sampling strategy, we re-
sampled an increasing number of leaves and individuals, starting from 
1 leaves from 1 individual (“STRATEGY”_1_1) to 12 leaves from 34 
individuals (“STRATEGY”_34_12). This analysis was conducted using 
mstage function from SAMPLING package (Tillé & Matei, 2016) for 
R software. In this way, we were able to test not only different sam-
pling strategies, but also to select the minimum and optimal sampling 
size (e.g., number of individuals and leaves from each individual) to 
estimate SLA and π values. We simulated each possible combination 

F IGURE  2  Illustration of sampling 
hierarchy (left boxes) and three examples 
of sampling strategies with different spatial 
complexity tested in this study
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of sampling size in each sampling strategy 4999 times, each time cal-
culating SLA and π mean values, standard error (SE), and coefficient of 
variation (CV).

We then organized the selection of the most adequate sampling 
strategy and minimum and optimal sampling size in two steps. In the 
first step, we discarded all the strategies not meeting the following 
criteria:

1.	 Sampling strategy should produce a mean value of the two 
traits (SLAstrategy, πstrategy) that lies within the CI of the mean 
value calculated on the whole dataset (SLAwhole_data, πwhole_data);

2.	 Sampling strategy should have a mean SE equal or lower SEmin, oth-
erwise it was considered an unprecise strategy.

In the second step, we assessed the minimum and optimal sampling 
size of the sampling strategy selected as described above. More in detail, 
we measured the accuracy of each sampling size calculating the stan-
dardized deviations of the traits values estimated with each sampling size 
from SLAwhole_data and πwhole_data: 

where S = standardized deviation from mean value; Xm = π or SLA mean 
value of the corresponding sampling size; Ẋwhole_data = π or SLA mean 
value of the original dataset; SD(Ẋwhole_data) = π or SLA standard deviation 
of the mean value. Sampling size that minimized the standardized devia-
tion of the two traits was considered the most accurate.

At the end of this selection process, we were able to select the 
most adequate sampling strategy and minimum and optimal sampling 
size measuring their precision and accuracy.

3  | RESULTS

Factors expressing the spatial arrangement of leaves in the sam-
pled areas, namely quadrat, individual, height class (h_class), and 
external/internal leaves (E/I), significantly affected variability of SLA 
and π (Table 1), and explained ~64% of the total variance in SLA 

S=
|Xm− ̇Xwhole_data|

SD( ̇Xwhole_data)
,

Source df SS MS Pseudo-F p (perm)

SLA Quadrat 2 4.67 2.33 3.72 .033

h_class 1 69.77 69.77 111.14 .001

E/I 1 9.94 9.94 15.84 .001

individual (quadrat) 31 56.68 1.83 2.91 .001

quadrat*h_class 2 0.21 0.11 0.17 .842

quadrat*E/I 2 1.01 0.50 0.80 .454

h_class*E/I 1 0.38 0.38 0.61 .440

individual 
(quadrat)*h_class_

31 21.84 0.70 1.12 .263

individual (quadrat)*E/I 31 22.84 0.74 1.17 .260

quadrat*h_class*E/I 2 .49 1.74 2.78 .065

individual(quadrat)*h_
class*E/I

31 18.19 0.59 0.93 .590

Residual 269 168.88 0.63

π Quadrat 2 16.21 8.10 10.42 .001

h_class 1 5.93 5.93 7.61 .006

E/I 1 10.66 10.66 13.71 .002

individual(quadrat) 31 91.99 2.98 3.81 .001

quadrat*h_class 2 3.93 1.97 2.53 .084

quadrat*E/I 2 9.94 4.97 6.39 .005

h_class*E/I 1 4.27 4.27 5.49 .018

individual(quadrat)*h_
class

31 15.32 0.49 0.63 .938

individual(quadrat)*E/I 31 26.90 0.87 1.11 .327

quadrat*h_class*E/I 2 2.72 1.36 1.75 .163

individual(quadrat)*h_
class*E/I

31 17.44 0.56 0.72 .855

Residual 269 209.26 0.78

df, degrees of freedom; SS, sum of squares, MS, mean squares; Pseudo-F: pseudo-F statistics.
Bold text indicates p-values <.05

TABLE  1 Results of PERMANOVA 
analysis of canopy structure variability at 
each spatial scale (quadrat, individuals 
within quadrats, height classes, external/
internal leaves)
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measurements and ~60% of the total variance in π (Figure 3). Factors 
related to the spatial structure of the canopy (h_class, E/I and their 
interactions with other variables) accounted for 43.4% of the total 
variance of SLA, while they explained ~23% of the total variance of 
π. On the other hand, factors related to the distribution of individu-
als (quadrat, individual and their interactions with other variables) ac-
counted for ~20% of the variance of SLA, while they explained 43.2% 
of the total variance of π.

Figure 4 shows the relationship between the standard error, as a 
precision measurement, calculated on the two traits and the number 
of leaves considered. Figure 5 summarizes the mean standard error 
and mean values of the two traits obtained resampling data adopting 
the tested sampling strategy. Strategies were not considered repre-
sentative of the sampled population if the mean values of SLA and π 
were out of CI range (Table 2) and/or SE were higher than SEmin. Only 
four of the 15 tested resampling strategies satisfied these criteria: 
RANDOM, Q_fixed, stRANDOM, and stQ_fixed.

RANDOM had the lowest deviation from the mean values of 
the two traits and were consequently considered the most accurate 
strategies to take into account trait’s variability with respect to the 
whole set of sampled leaves. Figure 6 summarizes the statistics re-
lated to different sampling sizes within RANDOM family sampling 
strategies. The minimum size corresponded to 5 leaves taken ran-
domly from 5 individuals (25 leaves in total, equal to the 6% of the 
whole set of sampled leaves), while the most accurate and feasible 
sampling size was 4 leaves taken randomly from 10 individuals (40 
leaves in total, equal to the 10% of the whole set of sampled leaves; 
Figure 6).

4  | DISCUSSION

The major goal of our analysis was to assess the sampling strategy that 
can adequately capture mean values of functional traits for a species/
population, while maintaining information about traits’ variability and 
minimizing the sampling size and effort. In this perspective, we pro-
vided an analysis of the contribution of different factors, both spatial 
and biological, to the observed variability of two foliar functional traits, 
SLA and π. The factors tested in this study accounted for different 
proportion of the variance of the two traits, suggesting a different re-
sponse of the traits to the different micro-environmental conditions oc-
curring through the canopy and within the study area. Several studies 
have reported that sources of traits’ variation depend on the vertical 
(height), horizontal (outer or inner branches), and azimuthal (aspect) po-
sition of the leaves and branches within the crown (Niinemets, Cescatti, 
& Christian, 2004). Considering the canopy’s structure, light availability 
decreases moving from the top to the base and from external to internal 
portion of the crown (Niinemets, Keenan, & Hallik, 2015). SLA responds 
to this gradient, as it generally increases as light availability decreases 
(Poorter, Niinemets, Poorter, Wright, & Villar, 2009). A higher SLA 
could arise because of an increase in leaf area and/or a reduction in leaf 
biomass. Larger leaves improve the ability of the plant to intercept sun 
light and, consequently, the rate of photosynthesis. Alternatively, the 
reduction in biomass could allow plants to reduce the investment costs 
of shaded leaves (Nardini, Pedá, & Salleo, 2012). These mechanisms 
could explain why h_class and E/I resulted the main factors contribut-
ing to the variance of SLA (43.4% of the total variance of SLA).

Factors related to the canopy structure accounted for ~23% of 
the total variance of π. As mentioned above, light availability changes 
accordingly to canopy structure. Consequently, higher and external 
leaves intercept a higher amount of light, inducing stomatal aperture. 
Moreover, the wind speed is higher in the outer canopy, reducing the 
boundary layer resistance to water vapor diffusion from leaves to the 
atmosphere. All these factors lead to decreased water potential of 
leaves in the outer canopy, and the decrease in leaves π might help 
leaves to maintain turgor despite larger water losses. This could ex-
plain why factors h_class and E/I and their interaction significantly 
affected π variance. Interestingly, factors related to the spatial struc-
ture of the study area (quadrat, individual, and their interaction with 
other factors) accounted for the highest amount of variance of π 
(43.2%). This suggests that ITV of π is mostly spread among individuals 
rather than within individuals, contrary to SLA variance. The reason 
for this pattern may be related to the fact that the water status of a 
plant strongly depends on soil water availability (Binks et al., 2016). 
Different quadrats could have different soil water availability, because 
of heterogeneous soil structure or different competition for water with 
co-occurring species. In the last years, different studies investigated 
traits variability and, in particular, Messier et al. (2010) assessed vari-
ability at different ecological scales of leaf dry matter content (LDMC) 
and leaf mass per area (LMA), the inverse of SLA. Patterns in ITV of 
LDMC and LMA were similar to those found by us in SLA but not for 
π. In fact, plot (which corresponds to quadrat in our study) accounted 
for the lowest amount of variance of SLA and trees (individuals in our 

F IGURE  3 Estimated components of variance (expressed as 
percentages) in specific leaf area (SLA, mm2/mg) and osmotic 
potential (π, -MPa) values calculated for each factor

F IGURE  4 Relationship between number of samples considered 
and associated standard error (SE) of SLA (black points) and π (gray 
points)
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study) accounted for ~20% of the total variability. Otherwise, as de-
scribed above, the pattern of ITV of π was the opposite, as the main 
drivers of its variability were factors related to the study area spatial 
structure (e.g., quadrat and individuals). This difference between the 
soft traits (SLA, LMA, and LDMC) and the mechanistic trait (π) opens 
interesting questions about the patterns of ITV, encouraging future 
analyses including more mechanistic traits and more species.

The unequal contribution of the tested factors to the total variabil-
ity of the two functional traits may imply that different traits should 
be sampled following different strategies. Over the last years, one of 
the most debated issues in trait-based ecology has in fact regarded 
the choice of appropriate sampling strategy (Baraloto et al., 2010; 
Carmona, Rota, Azcárate, & Peco, 2015; Paine, Baraloto, & Díaz, 2015). 
Trees that belong to the same species and inhabit the same population 

of natural origin can show strong genetic and phenotypic differences 
(Messier et al., 2010). The phenotype is in turn heavily influenced by 
the macro- and micro-environmental conditions and by the relation-
ships with the neighboring trees (competition and/or co-operation) 
(Abakumova, Zobel, Lepik, & Semchenko, 2016). To the best of our 
knowledge, no study has investigated the ITVWI and only few reports 
have provided information on sampling strategies based on measure-
ments of precision (Cornelissen et al., 2003; Pérez-Harguindeguy 
et al., 2013). RANDOM, stRANDOM, Q_fixed, and stQ_fixed resulted 
the strategies that better estimated the mean values of the traits with 
an adequate precision (SE lower than SE profiles flex points, Figure 2) 
and dispersion of probability distribution (CV higher than CV profiles 
flex points, Fig. S2). Of these four strategies, the most accurate was 
RANDOM strategy, as it minimized deviations from traits mean value. 

F IGURE  5 Median values, 25th and 75th percentiles of standard error (SE, left boxes) and median values, 25th and 75th percentiles of 
specific leaf area (SLA, mm2/mg, upper right box) and osmotic potential (π, -MPa, lower right box) calculated for each resampling strategy tested 
in this study. Dotted line in SE boxes indicates breakpoint values of SE of the two traits (0.29 for SLA and 0.22 for π), while dotted lines in upper 
and lower right boxes indicates 95% CI calculated for SLA and π
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The minimum size required to accurately and precisely estimate the 
two traits was represented by RANDOM_5_5 (sampling 5 random in-
dividuals from the 3 quadrats and 5 leaves per individual). Increasing 
sampling size resulted in a decrease of SE (increase in precision), but this 
trend was not consistent for S (Figure 6). This means that an increase 
in the sampling effort not always translates in better accuracy. The 
most significant drop of trait S and sum of S was at RANDOM_10_4 
(4 leaves from 10 random individuals), which could be considered as a 
good compromise between sampling effort and precision of the mea-
surements of the two traits rather than RANDOM_32_2, RANDOM 
_26_1, RANDOM _27_1, and RANDOM _28_1. Our findings partially 
confirm results from Baraloto et al. (2010) and Carmona et al. (2015), 
as they reported that strategy equivalent to the RANDOM strategy 
was the most precise and accurate to estimate species mean trait val-
ues and community weighted mean (CWM). They also concluded that 
sampling at least one individual per species could be a good compro-
mise to describe species mean traits value. On the contrary, in our 
study, sampling all possible leaves of one individual (RANDOM_1_12) 
produced traits estimates far under the desired level of precision and 
accuracy (Figure 6). This difference could be due to the different spa-
tial and ecological scales of our analysis versus Baraloto et al. (2010) 
and Carmona et al. (2015) analyses. Our analysis was conducted at 
local scale, where an accurate estimate of the variance of trait val-
ues is more important than at broader scale (Baraloto et al., 2010). 

Hence, we suggest including the minimum and preferred sampling size 
provided here in studies aimed at highlighting differences in species/
communities at local scale, while the approach proposed by Baraloto 
et al. (2010) and Carmona et al. (2015) could be adopted in analyses 
at broader scales. We also compared our results with those included in 
standard protocol proposed by Pérez-Harguindeguy et al. (2013). They 
provide a minimum and a preferred number of individuals and leaves 
per individual based on the calculation of CV of each trait considered 
in different studies and on common practice. For SLA, they recom-
mend sampling 5 leaves from 5 individuals (minimum) or 4 leaves from 
10 individuals (preferred). However, they also suggested sampling 
“sun leaves” (leaves positioned in the outer canopy stratum) for the 
measurements of SLA. We interpreted this suggestion in two possible 
ways. Outer canopy could be represented by leaves in the external 
stratum of the canopy at any height (see cor, cor_min, per, per_min 
strategies, Table S2) or by leaves in the upper and external stratum of 
the canopy (see cor_b, cor_min_b, per_b, per_min_b strategies, Table 
S2). The mean values of the two traits calculated for each resampling 
strategy listed above (Table S2) lie outside the 95% CI range (Table 2) 
calculated on the whole dataset. Hence, SLA values measured fol-
lowing standardized protocols results significantly different from SLA 
mean values measured on the entire dataset. Sampling “sun leaves” 
was proposed in the past to control variation of leaf traits to avoid 
shading bias (Messier et al., 2010). However, our data suggest that the 
exclusion of other canopy strata could produce underestimation not 
only of mean traits values, but also of traits variability, as CV measured 
only on external leaves was lower than minimum CV (Table S3, Fig. S3). 
Such underestimation can lead to underestimations of physiological 
leaf processes that change as a function of leaf surface such as tran-
spiration rate, gas exchanges, and photosynthesis rate (Poorter et al., 
2009). Moreover, Keenan & Niinemets (2016) demonstrated that most 
of the measurements of SLA in current available databases are strongly 
biased by shading effect. In fact, leaves experience strong changes in 
terms of light availability during their development (i.e., light gradients 
within a canopy or across gap-understory continua). Consequently, 
the dichotomy between “sun” and “shade” leaves could be considered 
ambiguous. As previously proposed by Messier et al. (2010), it would 
be preferable to distinguish between measurements of SLA only con-
sidering sun leaves (SLAmax or SLAsun) from measurements considering 
the whole canopy (SLAtree). In the light of the above, we recommend 
sampling leaves considering all the strata composing the canopy to 
estimate correctly the studied traits values, especially when interested 
in assessing traits variability at species level.

5  | CONCLUSION

Our analysis confirms the role of ITV in determining leaf functional 
traits variability. Moreover, we demonstrate that the spatial structure 
of the canopy could significantly affect traits variability. Interestingly, 
different factors accounted for different proportion of the variabil-
ity of the two traits, suggesting that different strategies for different 
traits could be implemented during sampling surveys.

TABLE  2 Mean values and upper and lower CI at 95% of specific 
leaf area (SLA, mm2/mg) and osmotic potential (π, -MPa) calculated 
on the entire population

SLA, mm2/mg π, -MPa

Mean value 8.02 3.29

Upper CI (95%) 8.17 3.40

Lower CI (95%) 7.88 3.19

F IGURE  6 Standard error (SE) and deviations from mean values of 
specific leaf area (SLA, mm2/mg) and for osmotic potential (π, -MPa) 
in different sampling size of RANDOM sampling strategy. Sampling 
sizes in red represent the minimum (RANDOM_5_5) and optimal 
(RANDOM_10_4) sampling sizes to estimate SLA and π with desired 
precision and accuracy
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We also provided practical advices to optimize sampling proce-
dures of functional traits: a minimum (five leaves from five individu-
als) and optimal (four leaves from 10 individuals) sample size based on 
measurements of precision, partially confirming sampling sizes previ-
ously proposed by literature. The results presented here should en-
courage future analysis involving different traits, in order to get global 
insights into ITV as based on multiple trait analysis.
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