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Abstract

Spectrins are large, flexible proteins comprised of α-β dimers that are connected head-to-head to 

form the canonical heterotetrameric spectrin structure. Spectrins were initially believed to be 

exclusively found in human erythrocytic membrane and are highly conserved among different 

species. βII spectrin, the most common isoform of non-erythrocytic spectrin, is found in all 

nucleated cells and forms larger macromolecular complexes with ankyrins and actins. Not only is 

βII spectrin a central cytoskeletal scaflolding protein involved in preserving cell structure but it has 

also emerged as a critical protein required for distinct physiologic functions such as 

posttranslational localization of crucial membrane proteins and signal transduction. In the heart, 

βII spectrin plays a vital role in maintaining normal cardiac membrane excitability and proper 

cardiac development during embryogenesis. Mutations in βII spectrin genes have been strongly 

linked with the development of serious cardiac disorders such as congenital arrhythmias, heart 

failure, and possibly sudden cardiac death. This review focuses on our current knowledge of the 

role βII spectrin plays in the cardiovascular system in health and disease and the potential future 

clinical implications.
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1. Introduction

The spectrin family of proteins was first discovered in 1968 by Marchesi and Steers [1] as 

components of the human erythrocytic membrane [2], and was initially thought to be 

exclusively present in red blood cells [3,4]. While many subsequent experimental attempts 

failed to demonstrate the presence of spectrin in various non-erythroid cells [3,4], notable 

discoveries in brain did identify new peptides with calmodulin and actin binding properties 
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comprised of 2 subunits (≈ 240 and 235 kDa) and were described as ‘Fodrin’ [5], ‘brain 
actin-binding protein’ [6] and ‘Calspectin’ [7]. No formal relationship was established 

between spectrin and these newly discovered brain peptides, yet these new proteins (yet to 

be termed spectrin) consistently had the same immunological, structural and functional 

degree of similarity to erythrocyte spectrin [8]. In 1981, Goodman and colleagues 

discovered that proteins with spectrin-like properties were potentially present in different 

cells and tissues such as brain, kidney, skeletal muscle, lens, small and large intestines and 

cardiac muscle [5,8–12]. Non-erythroid spectrins emerged as novel large actin-associated 

cytoskeletal proteins [2] that maintained cell shape and integrity and formed larger 

molecular complexes with ankyrins [13].

βII spectrin (the most common member of non-erythroid spectrins) [14] has emerged as a 

key cytoskeletal protein that is part of a larger macromolecular complex involved in diverse 

physiologic functions. βII spectrin is critical in posttranslational targeting and localization of 

essential membrane proteins [15–17], plays a prominent role in signal transduction [18,19], 

and notably serves as a major scaflolding protein [2]. Defects in βII spectrin have been 

associated with serious cardiac pathologies such as congenital arrhythmia, acquired and 

congenital forms of heart failure, and possibly sudden cardiac death [20–23]. This review 

focuses on the recent advances in defining the role of βII spectrin in the cardiovascular 

system in physiologic and pathologic states.

2. The spectrin genes and nomenclature

The nomenclature of spectrins has undergone several iterations. Winkelmann and Forget 

[24] classified spectrins by Roman numerals in the order of their characterization while 

subtypes were denoted by the Greek symbol sigma (Σ: capital letter, σ: small letter) followed 

by Arabic numbers.

Spectrin proteins are expressed from numerous genes in metazoans. There are seven genes 

that code for spectrins in mammalian organisms compared to only three genes in 

invertebrates. Unlike the three spectrins in invertebrates, the mammalian genome contains 

two α and five β spectrin genes named in the order of their discovery. SPTA1 gene [25] 

codes for αI that is expressed in erythroid cells, while SPTAN1 [26] codes for at least four 

and possibly up to eight different αII isotypes that are present in all non-erythroid cells [27]. 

The conventional βI-IV-spectrins are encoded by SPTB, SPTBN1, SPTBN2 and SPTBN4, 

respectively and SPTBN5 encodes a heavy βV-spectrin [2,28]. βI spectrin is the only form 

expressed in erythrocytes. The spectrin product of these genes can be modiffed via extensive 

alternative processing of pre-mRNA giving rise to a wide diversity of spectrin spliceoforms. 

This is particularly important with respect to regulating the interactive and modulatory 

characteristics of spectrins [2,26–29].

3. Structural domains of spectrin

Spectrins, believed to have evolved from α-actinin [30–33], are formed of two large, similar 

but non-identical subunits, termed α and β [2,30–36]. Spectrins are flexible rods that have a 

contour length of approximately 200–260 nm with an actin-binding domain (ABD) on each 
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end [2,37–39]. The α and β subunits are connected side-by-side in an antiparallel fashion via 

hydrophobic interactions supplemented by electrostatic forces of attraction [40,41] to form a 

heterodimer [2,28,31,39–41]. This involves an interaction between two repeats near the 

NH2-terminus of one α spectrin chain and the COOH-terminal region of the antiparallel β 
subunit. Each of the 2 corresponding dimers is then assembled head-to-head via partial 

repeats in both α and β subunits to form the final heterotetramer structure of spectrin 

[2,28,31,42,43]. Owing to the high affinity between α and β chains, spectrins primarily exist 

as heterotetramers rather than autonomous α or β subunits.

The canonical spectrin subunit is highly conserved among species [2,28], and is comprised 

of successive repeats of 106 amino acid residues termed spectrin repeats that are folded in a 

triple α-helical coiled structure. This structural form and interconnection of spectrin repeats 

are believed to play a role in the flexibility of spectrins [44]. The α and β subunits are 

comprised of 21 and 17 repeats, respectively [31]. The only exception is βV spectrin which 

has 30 repeats [45]. The last repeat in each spectrin is an incomplete repeat that mediates 

end-to-end association between one helix of α spectrin and two helices of β spectrin to form 

a triple helical bundle [46].

βII spectrin, like all conventional β spectrins, contains 2 tandem calponin homology (CH1 & 

CH2) domains which both comprise an actin-binding domain (ABD) at the amino-terminal 

[2,28,31,47,48]. Linked to the ABD domain of βII subunit are 17 successive triple helical 

motifs and terminates with a carboxyl region. The COOH-terminal region of the 14th repeat 

and the entire 15th repeat are a prerequisite for ankyrin binding [46,49]. The carboxyl-

terminal of βII spectrin is differentially spliced giving origin to long and short βII isoforms 

(βIIΣ1 and βIIΣ2 respectively) [31,50,51]. The long carboxyl terminus of the last partial 

repeat of βII spectrin is linked to a pleckstrin homology (PH) domain [50]. The spliced βII 

isoforms with short C-terminal regions lack this PH domain [52]. The PH domain, a seven 

stranded antiparallel β-sheet, is comprised of approximately 100–120 amino acids and is 

located approximately 50–60 amino acid residues before the end of the C-terminus of β 
chain. This domain serves as a ligand binding site for many phospholipids involved in signal 

transduction [28,50,53–56]. Immunofluorescence staining shows that βII spectrin is 

localized in a striated pattern in isolated mouse myocytes [20].

The alternatively spliced short variants of βII spectrin called ELF (embryonic liver fodrin) 

share some similarities with the long βII isoform. ELF-3, a 200 kDa β spectrin and the 

longest form among other ELFs, is a short βII isoform with an ABD, a 17 repeat domain and 

COOH terminal lacking the PH domain [52]. On the contrary, ELF-1, a 27 kDa β spectrin, 

shares no degree of homology in domain 2 of the long βII isoform [57], but has a sole CH1 

domain similar to that of the other β spectrins and a C-terminus similar to the short βII 

isoform [2,52,57].

4. Role of βII spectrin in the heart

The cardiac cytoskeleton has recently emerged as a crucial player for maintaining the 

cardiac membrane integrity with respect to structure and function in physiologic and 

pathologic states. Disorders in cardiac cytoskeletal components have been strongly 
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associated with cardiac myopathies, dystrophies, aortopathies and electrical conduction 

abnormalities [20,58–61]. While βII spectrin has a prominent role in many organ systems 

(Table 1), it has also emerged as a pivotal protein in maintaining normal cardiac membrane 

excitability, mechanical function [20] and proper embryogenesis [62].

5. Role in embryonic heart development

Emerging data suggests that βII spectrin plays an important role in embryonic heart 

development [62]. Data in mice demonstrate that complete deletion of βII spectrin results in 

intrauterine death with multiple defects including hepatic, neural, gastrointestinal and 

angiogenesis abnormalities [77]. Notably loss of βII spectrin is a possible cause for the 

development of congenital heart defects [62,78,79]. Furthermore, a study performed on 

homozygous mutant embryos for βII spectrin gene demonstrated that there was a significant 

difference in heart size between the wild-type embryos and the homozygous mutant embryos 

with the latter having smaller heart size at embryonic day 15.5 (E15.5). Further histologic 

studies revealed failure of ventricular wall thickening and blood vessel formation in the 

homozygous mutant group [62]. Moreover, the embryonic cardiomyocytes of βII spectrin 

conditional knockout mice displayed an aberrant distribution of tropomyosin and a 

significant down-regulation in the expression of α-smooth muscle actin (α-SMA), cardiac 

homeobox protein (NKx2.5) and dystrophin [80] which are muscle differentiation markers 

[62]. These defects subsequently have an s adverse effect on the contractile ability of 

cardiomyocytes in vivo. In addition, loss of βII spectrin in homozygous mutant embryos 

interferes with cardiac cell differentiation and induces extensive apoptosis at E16.5 [62]. It is 

noteworthy that genetic mutations in dystrophin leads to congenital muscular dystrophies 

such as Duchenne muscular dystrophy and Becker muscular dystrophy, and many of these 

patients develop dilated cardiomyopathy and ventricular arrhythmias [81,82]. Hence the 

aforementioned data strongly suggests that βII spectrin is critical for proper cardiac 

development.

6. Role in cardiac membrane excitability

Until recently, arrhythmogenic cardiomyopathies were mainly linked to disorders in ion 

channels [83], however, little was known about arrhythmia resulting from defects in 

cytoskeletal-associated proteins [20]. Recent data reveal that defects in the βII spectrin-

based cytoskeleton disrupt normal electrical conduction in the heart [20], potentially leading 

to congenital as well as acquired human arrhythmia [21].

Recent data has shown that at the T-tubule in cardiac myocytes, the αII/βII tetramer (linked 

to actin) recruits ankyrin-B [18] and associates via its ankyrin-binding domain with the NH2 

terminal ZU5 (Zu5N) domain of ankyrin-B [84]. This molecular complex interacts with 

other membrane-associated proteins such as Na+-K+-ATPase and Na+-Ca2 +exchanger 

(known ankyrin-binding partners) and is important for their localization [20]. A newly 

identified human variant of ankyrin-B showed a substantial decrease in binding with βII 

spectrin in heart [20]. Using primary neonatal cardiomyocytes of ankyrin-B conditional 

knockout (cKO) mice the authors were able to elucidate the relationship between βII 

spectrin and ankyrin-B, and demonstrated that after transfection the human variant failed to 
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localize Na+-Ca2 + exchanger when compared with the wild-type ankyrin-B which rescued 

Na+-Ca2+ ion channel localization [20]. Notably previously identified ankyrin-B variants 

(DAR976AAA and A1000P) [18] which also lacked spectrin-binding activity also showed 

similar results. Together these data demonstrate that βII spectrin and ankyrin-B are 

molecular partners in heart, and importantly they form an important macromolecular 

complex. Interestingly, while ankyrin-B is critical for βII spectrin targeting in the neonatal 

period [18], βII spectrin plays the predominant role in the mature cells and is crucial for 

proper ankyrin-B expression and localization [20]. Consistent with these findings, βII 

spectrin protein expression in right atrial samples of patients with atrial fibrillation (AF) was 

significantly decreased compared with patients in sinus rhythm [85–87]. Likewise, patients 

with loss-of-function genetic mutations in ankyrin-B also developed AF. The ankyrin-B 

protein levels in these patients were markedly decreased in their right atria as well [85]. This 

is consistent with the recently identified congenital human arrhythmia that arose due to a 

dysregulation in the ankyrin-B/βII spectrin pathway [20].

Furthermore, telemetry studies performed on cardiac-specific βII spectrin knockout mice 

showed aberrant cardiomyocyte electrical activity [20]. ECG readings of these mice showed 

bradycardia, atrioventricular nodal block, and increased rate variability. Notably, pro-

arrhythmic patterns were observed, such as widened QRS complexes and prolonged QT 

interval at baseline and ventricular arrhythmia and mortality was observed in several animals 

after catecholaminergic induced stress. However, there were no notable differences between 

βII spectrin knockout mice and the wild-type littermates in terms of cardiac output and left 

ventricular ejection fraction [20].

7. Role in heart failure and cardiac remodeling

Dysregulation of βII spectrin has been linked with the development of acquired forms of 

heart failure (HF) in both human and animal models [21]. Following transverse aortic 

constriction (TAC), βII spectrin cKO mice suffered severe and accelerated cardiac failure 

after 6 weeks characterized by left ventricular free wall degeneration and interventricular 

septal vacuolation. Furthermore, βII spectrin levels were found to be significantly decreased 

in the left ventricular tissues of ischemic and non-ischemic heart failure in murine and 

canine myocardial failure models [21].

It is critical to note that abnormal and selective cardiac remodeling occurs with the loss of 

βII spectrin in heart [20]. In accordance with earlier studies in avian erythrocytes (whose 

erythrocytic spectrin is more similar to mammalian non-erythroid spectrin [24,88,89]) where 

α spectrin levels were decreased in the absence of erythrocytic β spectrin [90–92], βII 

spectrin cKO mice also displayed a sharp decline in αII levels in the heart [20] (Table 2). 

The levels of select proteins in the heart, namely βI spectrin, α and β tubulin, were all 

upregulated in βII spectrin cKO mice, likely as a compensatory process [20]. These data are 

consistent with previous reports of elevated tubulin expression and remodeling in failing 

myocardium [93]. The levels of actin and desmin proteins in βII spectrin cKO mice were not 

altered which further support that the remodeling process is selective [20].

Derbala et al. Page 5

Life Sci. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In human heart failure the levels of βII spectrin protein were significantly decreased in 

patients with non-ischemic [21] and ischemic heart failure [94], as were the levels of 

ankyrin-B protein [21,94] and Na+-K+-ATPase [94]. Contrarily, the levels of βII spectrin 

mRNA transcripts as well as those of ankyrin-B and Na+-K+-ATPase were not dramatically 

different between diseased and normal groups [21,94]. This observation is likely due to post-

translational process induced by Ca2+- and calpain-dependent proteolysis [21]. In avian 

erythrocytes, remodeling at the cellular level is associated with spectrin-based cytoskeletal 

cleavage [90–92], and this proteolytic process is induced by calpains [95–97]. Similarly, the 

heart and brain of adult mice showed that cleavage of the βII spectrin based cytoskeleton 

occurs following exposure to pathological concentrations of Ca2+ [21]. It is important to 

note that the degradation of βII spectrin and ankyrin-B was prevented by the calpain 

inhibitor MDL-28170 [21,95]. In addition, previous data show that reactive oxygen species 

(ROS) has been linked with apoptosis of cardiomyocytes through various signaling 

pathways including activation of cardiac calpain proteases [21,98,99], and this is another 

mechanism that could lead to breakdown of the spectrin cytoskeleton. As the failing heart 

exhibits dysregulation in Ca2 + homeostasis and a rise in the concentration of ROS, this 

likely [100] explains decreased protein expression of βII spectrin and ankyrin-B proteins in 

non-ischemic heart failure patients [21].

8. Future directions and clinical implications

8.1. New therapeutic targets

Several molecules underlying biogenesis and regulation of the ryanodine receptor 2 (RyR2) 

have been identified, including calstabin, calmodulin, protein kinase A (PKA), and 

junctophilin to name a few [103–105]. Unfortunately there has been a failure of past ion 

channel specific therapies for heart disease—hence it is critical that we find new molecules 

that can be targeted to regulate contractility/excitability beyond ion channels and receptors, 

and the calcium-induced calcium release (CIRC) pathway is an ideal target. As the 

cytoskeletal protein βII spectrin is a critical node linked to local RyR2 regulation [20], it 

might be exploited as a potential diagnostic and therapeutic target for heart failure and 

arrhythmia.

It is well known that mislocalization or dysfunction of RyR2 is associated with the 

development of arrhythmia, heart failure and sudden cardiac death in animals and humans 

[105–110]. In βII spectrin cKO mice, the levels of RyR2, Na+-Ca2 + exchanger and Na+-K+-
ATPase were dramatically decreased (Table 2) [20]. There were no differences observed in 

T-tubule L-type calcium channel localization or T-tubule morphology between wild type and 

βII spectrin cKO mice, but there were heterogeneity, reduced size and intensity of the 

remaining RyR2 clusters [20]. In addition, the ventricular cardiac cells of βII spectrin cKO 

mice exhibited recurrent spontaneous Ca2 +-induced after-depolarizations (Fig. 1). These 

afterdepolarizations were eliminated with ryanodine which is known to inhibit Ca2 + release. 

Compared with cardiac cells of the wild-type mice, the βII spectrin cKO mice showed 

almost a threefold increase in spontaneous Ca2 + waves that are known to provoke 

arrhythmia [20]. It is also noteworthy that βII spectrin controls RyR2 localization 

independently of ankyrin-B as studies with ankyrin-B haploinsufficient mice showed no 
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abnormalities in RyR2 localization [111]. Thus, βII spectrin plays an integral role in 

properly targeting and localizing important cardiac membrane-associated proteins, and 

abnormalities with spectrin localization could lead to arrhythmias induced by calcium 

overload.

As previously mentioned, dysregulation in Ca2 + homeostasis and subsequent activation of 

calpain enzymes occur in heart failure and consequently βII spectrin-based cytoskeleton 

degradation and remodeling ensue. This degradation was prevented by the calpain inhibitor 

MDL-28170 [20]. Thus, calpain inhibition could serve as a future therapeutic intervention to 

prevent destabilization of the spectrin cytoskeleton. As βII spectrin-based cytoskeletal 

cleavage and cellular remodeling are tightly linked with Ca2+-dependent calpain proteases, it 

is reasonable to hypothesize that malignant proteolysis of βII spectrin plays a direct role in 

local RyR2 regulation, hence calpain inhibition could have a role in preserving RyR2 

integrity. Further research aimed at unveiling the complexity of calpain substrate specificity 

and the mechanisms involved in off- and on-target effects of calpain inhibitors is needed.

8.2. Breakdown products and biomarkers

Spectrin breakdown products (SBDPs) are produced by calpain- and caspase-3-mediated 

mechanisms and can be detected in the cerebrospinal fluid (CSF) [112–114] and serum 

[115]. In brain, αII spectrin is degraded by calpain into 2 main fragments (150 kDa and 145 

kDa) while caspase-3-induced proteolysis results in the formation of a 150 kDa fragment 

which is further degraded yielding a 120 kDa spectrin breakdown product [116–120]. 

Caspase-3-mediated proteolysis is believed to be an indication of apoptosis, while calpain-

induced proteolytic cleavage is proposed to be an indicator of excitotoxic and necrotic 

neuronal death [116–122]. In rat models, four main βII spectrin degradation products (110, 

108, 85, 80 kDa) accumulated in the cortical cells due to activation of calpain-2 and 

caspase-3 following brain injury. The 110 kDa and 85 kDa fragments are calpain specific 

BDPs while the 108 kDa and 80 kDa are caspase specific products [119,123]. These recent 

reports showed that both αII and βII SBDPs could serve as potential biomarkers that would 

aid in the clinical diagnosis and outcome as well as correlate with the severity of neurologic 

insults [113,114,124] including traumatic and ischemic brain injuries and neurodegenerative 

diseases [120] such as Alzheimer’s Dementia. Likewise, it has been demonstrated in the 

heart of adult mice that cleavage of the βII spectrin based cytoskeleton occurs following 

Ca2+-triggered calpain activation (Fig. 2) [21]. One could hypothesize that βII spectrin 

breakdown products could serve as an early diagnostic biomarker for acute cardiovascular 

diseases as cardiac and myocyte insult typically leads to calcium release and ROS activation, 

which inevitably will lead to cleavage of spectrins [21].

Cardiovascular disease remains the number one cause of death in the U.S. Further, dilated 

cardiomyopathies, HF and arrhythmias are a significant health burden. Despite advancement 

in medical therapies, cardiac resynchronization therapies, and left ventricular assist devices, 

HF remains a global epidemic with most deaths ultimately caused by arrhythmias [125]. 

Additional insight and research into the molecular underpinnings of the cardiac cytoskeleton 

could lead to new diagnostic and therapeutic targets for therapies and warrants further 

investigation.
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Fig. 1. 
A schematic view of a normal cardiomyocyte and a βII spectrin knockout cardiomyocyte. In 

the absence of βII spectrin protein, the expression levels of ryanodine receptor 2 (RyR2), 

Na+-K+-ATPase and Na+-Ca2 +-exchanger (NCX), Ankyrin-B (Ank-B), αII spectrin are 

significantly decreased and showed defective localization [20]. The expression of both sarco/

endoplasmic reticulum Ca2 +-ATPase (SERCA2) and voltage-gated Na+ channel (Nav1.5) 

are not impacted by the loss of βII spectrin [20]. Additionally, both SERCA2 and L-Type 

Ca2 + channel (LTCC) are properly localized. The levels of Ankyrin-G (Ank-G) are 

increased in the absence of βII spectrin, likely as a compensatory response to decrease 

ankyrin-B expression [20]. Defects in ryanodine receptors result in aberrant Ca2 +-dependent 

release and subsequent spontaneous afterdepolarizations which eventually lead to the 

development of arrhythmias. In a murine model of a cKO of βII spectrin, ryanodine was 

shown to inhibit Ca2+ release and abolishes these spontaneous afterdepolarizations. It is 

important to note that further research is warranted to demonstrate the localization of Nav1.5 

and the expression of LTCC in βII spectrin deficiency. In addition, no data are currently 

available that directly links the expression and localization of inositol triphosphate receptor 

(InsP3R), a known ankyrin-B binder, to βII spectrin protein. However, mislocalization and 

decreased expression of InsP3R is expected due to decreased ankyrin-B expression 

[101,102].
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Fig. 2. 
A schematic view of a cardiomyocyte during acute myocardial injury. In the event of acute 

myocardial damage, Ca2 + dysregulation occurs leading to Ca2 + leak from the sarcoplasmic 

reticulum and subsequent activation of calpain and caspase enzymes. Increased levels of 

reactive oxygen species (ROS) released within the cardiomyocyte also activate 

Ca2 +dependent proteases. These proteases then cleave βII spectrin (denoted by red star) and 

other potential protein substrates (denoted by green stars) producing βII spectrin breakdown 

products (SBDPs) which could have translational potential as a biomarker of cardiac damage 

via detection in blood or urine. SBDPs could serve as early biomarkers in acute cardiac 

injury that would aid in the diagnosis, surveillance, and monitoring of patients who have 

acute cardiac syndromes. Of note the calpain inhibitor MDL-28170 prevents the degradation 

of βII spectrin, and this could serve as a therapeutic intervention for the stabilization of βII 

spectrin following acute cardiac injury [20]. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)
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Table 1

The physiologic roles of βII spectrin in different organ systems.

Organ system Physiologic roles of βII spectrin Ref.

Pulmonary system De novo synthesis and stabilization of lateral membrane of bronchial epithelial cells. [17]

Maintaining polarity of E-cadherin and Na+-K+-ATPase. [16,63,64]

Nervous system Binding to small synaptic vesicles via synapsin-I involved in neurotransmission. [65,66]

Important component of paranodal junctions involved in saltatory conduction. [67,68]

Maintaining structural integrity of neurons. [68,69]

Molecular partner to α-synuclein that regulate neurite growth during synaptogenesis. [70]

Hepatic system Hepatocellular carcinoma suppression mainly via serving as an adaptor protein for Smad3 and Smad4 
involved in TGF-β signaling pathway.

[19,71]

Involved in the regenerative process following partial hepatectomy. [72–74]

A mediator and effector protein in acetaminophen-induced liver injury. [14]

ELF-3 has a role in intrahepatic bile duct formation and hepatic cells differentiation and polarization [52]

Renal system Maintaining polarity of Na+-K+-ATPase in renal tubular cells [75,76]
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Table 2

Cardiac expression and localization of different proteins linked to βII spectrin loss.

Protein Expression levels Proper localization Ref.

αII spectrin ↓ No [20]

βI spectrin ↑ Not available [20]

Actin – Yes [20]

Desmin – Yes [20]

α tubulin ↑ Not available [20]

β tubulin ↑ Not available [20]

Ankyrin-B ↓ No [20]

Ankyrin-G ↑ Not available [20]

Ankyrin-R – Not available [20]

Ryanodine receptor 2 ↓ No [20]

Na+-K+-ATPase ↓ No [20,101]

Na+-Ca2 +-exchanger ↓ No [20,101]

Inositol triphosphate receptor ↓ No [101,102]

L-type calcium channel (Cav1.2) Not available Yes [20]

Voltage-gated Na channel (Nav1.5) – Not available [20]

Sarco/endoplasmic reticulum Ca2 +-ATPase (SERCA2) – Yes [20]
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