
Multiple Phenotype Association Tests Using Summary Statistics 
in Genome-Wide Association Studies

Zhonghua Liu* and Xihong Lin**

Department of Biostatistics, Harvard T.H. Chan School of Public Health, 02115, Boston, USA

Summary

We study in this paper jointly testing the associations of a genetic variant with correlated multiple 

phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide 

Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the 

summary statistics of individual phenotype GWAS analyses, and developed genetic association 

tests for multiple phenotypes by accounting for between-phenotype correlation without the need to 

access individual-level data. Since genetic variants often affect multiple phenotypes differently 

across the genome and the between-phenotype correlation can be arbitrary, we proposed robust 

and powerful multiple phenotype testing procedures by jointly testing a common mean and a 

variance component in linear mixed models for summary statistics. We computed the p-values of 

the proposed tests analytically. This computational advantage makes our methods practically 

appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests 

maintained correct type I error rates, and to compare their powers in various settings with the 

existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium 

summary statistics data set and identified additional genetic variants that were missed by the 

original single-trait analysis.
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1. Introduction

Genome-Wide Association Studies (GWASs) have identified thousands of genetic variants 

that are associated with hundreds of traits and diseases. The GWAS results showed that 4.6% 

of these disease-associated Single Nucleotide Polymorphisms (SNPs) and 16.9% of these 

genes are associated with multiple correlated phenotypes, indicating plausible biological 

pleiotropy (Solovieff et al., 2013). For example, a variant in the gene that codes 
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phenylalanine hydroxylase affects multiple phenotypes of phenylketonuria, including mental 

retardation, eczema, and pigment defects (Paul, 2000). Purcell et al. (2009) found that 

schizophrenia and bipolar disorder shared a substantial proportion of heritability. There is an 

increasing interest in discovering novel biology of pleiotropy by jointly analyzing multiple 

phenotypes.

When individual level phenotype and genotype data are available, numerous multivariate 

methods that account for between-phenotype correlation have been proposed to study 

pleiotropy (Solovieff et al., 2013). Examples include Scaled Multiple-Phenotype Association 

Test (SMAT) (Schifano et al., 2013), and principal component analysis (PCA) (Aschard et 

al., 2014). However, individual-level phenotype and genotype data of many GWAS studies 

are often not accessible to researchers due to logistical and data confidentiality reasons. The 

summary test statistics of individual phenotypes of many GWAS studies are readily 

available. It is of substantial recent interest to study pleiotropy by jointly analyzing multiple 

phenotypes using the univariate GWAS phenotype analysis summary statistics while 

accounting for between-phenotype correlation. For example, in the large Global Lipids 

Genetics Consortium (Teslovich et al., 2010), the summary statistics of the GWAS analysis 

of each of the four individual lipid traits (HDL, LDL, TC and TG, see their definitions in 

Section 5) are publicly available. One is interested in using these results to study the 

pleiotropy of lipids without resorting to individual level data.

A challenge in the analysis of multiple phenotypes is that there is no uniformly most 

powerful (UMP) test. The power depends on signal directions and between-phenotype 

correlation. To boost analysis power, several methods have been proposed for GWAS 

multiple phenotype analysis besides the classical multivariate Wald test. The Fisher’s 

method of combining independent p-values has been extended to dependent unviariate tests 

(Li et al., 2014). However, the p-value approximations of these tests are not accurate for the 

small significance level often required by GWASs. The minimum of the p-values (MinP) of 

multiple phenotypes has been proposed as a testing statistic (Conneely and Boehnke, 2007). 

The MinP method is powerful when a SNP affects only a very small number of multiple 

phenotypes, but is less powerful in the presence of denser signals. Recently, Zhu et al. 

(2015) proposed two separate tests to detect homogeneous and heterogeneous effects 

respectively by aggregating the thresholded individual Wald-type Z statistics across multiple 

traits. These two tests lose power if the homogeneous or heterogeneous assumption is 

violated, and their p-values need to be calculated by Monte-Carlo simulations, which are 

computationally intensive when scanning the genome. As the association patterns between 

genetic variants and multiple phenotypes vary by SNPs across the genome, robust and 

computationally efficient tests need to be developed.

There are two objectives in this paper. First, we investigate the information contained in the 

summary statistics obtained from standard univariate phenotype GWAS analysis, and 

provide closed-form expressions of the means of the univariate Wald type statistics obtained 

from the underlying linear regression models that contain both genetic variants and 

covariates. We next show that the correlation matrix among the univariate Wald statistics is 

equal to the residual correlation matrix of the original quantitative phenotypes in single 

studies and meta-analysis of multiple studies under the null. We propose to estimate the 
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between-phenotype correlation without individual-level data by using the univariate 

summary test statistics across the genome. Second, we propose robust and powerful tests for 

pleiotropy effets, which use data-adaptive procedures to combine the two independent score 

statistics for homogeneous and heterogeneous pleiotropy effects that are derived from testing 

a common mean of a variance component of a semiparametric linear mixed model for 

univariate GWAS summary statistics. We also propose Fisher’s and Tippett’s methods to 

combine the p-values of the two score statistics to robustly detect pleiotropy. All of our 

methods compute p-values analytically and hence are computationally efficient when 

scanning the genome in GWAS multiple phenotype analysis.

The rest of the paper is organized as follows. In Section 2, we investigate the information 

contained in univariate GWAS summary statistics. In Section 3, we introduce several 

Multiple Phenotype Association Tests (MPAT) using semiparametric linear mixed models 

for summary statistics. In Section 4, we perform simulation studies to evaluate the size and 

power of MPAT. In Section 5, we apply MPAT to analyze the global lipids GWAS summary 

statistics data set to study the pleiotropy of lipids, followed by discussions in Section 6.

2. The Means and Correlation Matrix of the Univariate Summary Test 

Statistics of Multiple Phenotypes

Consider K correlated phenotypes and assume for now that they are measured on the same 

study subjects in one study cohort, and this assumption will be relaxed later. In traditional 

GWAS analysis, one performs univariate phenotype analysis by analyzing each of the K 
phenotypes and each SNP separately. For simplicity, consider continuous phenotypes and 

assume univariate linear regression of the kth phenotype as

(1)

where for subject i (1 ≤ i ≤ n), Yik is the kth phenotype (1 ≤ k ≤ K) and Gi is the genotype of 

a SNP taking values 0, 1, 2 that counts the copy of the minor allele, and Ci is a vector of 

covariates, e.g., used for adjusting for population stratification.

For univariate analysis of phenotype k, to test for H0 : βk = 0 versus H1: βk ≠ 0, the 

univariate Wald-type statistic is often used , where  is the MLE of βk and  is 

its estimated standard error. Direct calculations show that the mean of Zk is

where  is the coefficient of determination by regressing G on the covariates C, and 

 under the Hardy-Weinberg equilibrium where MAF is the Minor 

Allele Frequency of G taking value in (0, 0.5), and βk/σk measures the genetic effect size on 
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phenotype k. Therefore, inferring whether a particular SNP is associated with the kth 

phenotype can be done by inferring whether E(Zk) is zero or not.

Suppress the subscript i. Denote by Y = (Y1, ⋯, Yk)T and Z = (Z1, ⋯, Zk)T. We will first 

study the relationship of the correlation matrix of Z and the correlation matrix of Y 

conditional on the covariates C under H0. Let  and 

be the design matrix of model (1), and . Standard linear regression gives

It follows that  and its standard error is , where a2 denotes the 

second row of the matrix A. For two continuous phenotypes Yj and Yk of length n, under the 

null, direct calculations show that the correlation of Zj and Zk is

(2)

where σjk = cov(Yj, Yk|C) under the null.

This implies that for any SNP, under the null, the correlation matrix of the univariate 

summary test statistics Z = (Z1, ⋯, ZK)T is the same as the correlation matrix of the original 

multiple phenotyes Y = (Y1, ⋯, YK)T conditional on the covariates C, and the correlation 

matrix of Z does not depend on the genotype G. This implies that we can estimate the 

correlation matrix of the random vector Z = (Z1, ⋯, ZK)T by simply calculating the sample 

correlation matrix of the SNP-specific summary test statistics Z’s over a large number of 

independent null SNPs across the whole genome in a GWAS study, and the law of large 

numbers ensures that the estimated correlation matrix is consistent and accurate. The 

simulation results of Zhu et al. (2015) show that the correlation matrix can be accurately 

estimated using GWAS summary statistics in practice. Zhu et al. (2015) provided theoretical 

justifications for this result in the absence of covariates in model (1). Our theoretical 

justifications here allow for covariates, e.g., population stratification in GWAS.

If the two phenotpyes Yk and Yj are from different cohorts, then the correlation between Zj 

and Zk is induced if these two cohorts have overlapping study subjects. If these two cohorts 

are independent, then Zj and Zk are independent because Yk and Yj are independent to each 

other. Suppose phenotype Yk is from cohort A of sample size nA and phenotype Yj is from 

cohort B of sample size nB, where cohort A and B share ns study subjects. We have
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If two cohorts have no overlapping samples (ns = 0), Zj and Zk are uncorrelated and thus 

independent. If two cohorts share all the subjects (the same cohort), the results are the same 

as given in (2). It follows that the correlation between two phenotype Z-scores does not 

depend on genotype but only depends on the correlation of the original two phenotypes, 

either measured in the same or different cohorts with possible overlapping subjects.

Now consider meta-analysis of the same set of multiple phenotypes across multiple studies. 

Suppose we perform univariate GWAS analysis of K phenotypes in cohort A of sample size 

nA and cohort B of sample size nB. Assume that the between-phenotype correlation is the 

same in the two studies, i.e., Cov(ZAj, ZAk) = Cov(ZBj, ZBk) = ρjk, 1 ≤ j ≠ k ≤ K, where ρjk 

denotes the covariance between these two summary statistics in both cohorts. Consider 

fixed-effect meta-analysis, which was used in the GWAS analysis of the global lipids 

consortium (Teslovich et al., 2010). Note that in meta-analysis, the cohort specific summary 

statistics are often not publicly available. One can easily show that the meta-analysis Z-score 

of the two cohorts for phenotype k (k = 1, ⋯, K) is , where . 

Hence cor(Zj, Zk) = ρjk. This result suggests that the correlation matrix of the summary 

statistics calculated from univariate fixed-effect meta-analysis of multiple phenotypes 

captures the correlation of the original multiple phenotypes conditional on covariates.

In practice, the GWAS summary statistics for multiple phenotypes are obtained in different 

settings. In the first setting, the K summary statistics of K phenotypes are from the same 

cohort. In the second setting, there are multiple cohorts, say J cohort. For each cohort, there 

are K phenotypes. We hence have K × J summary statistics for a particular SNP. This setting 

was considered by Zhu et al. (2015) and includes the first setting as a special case. The third 

setting is the same as the second setting, except that cohort-specific summary statistics are 

not available. One can only access the summary statistics based on meta-analysis performed 

for each phenotype across J cohorts. For instance, the global lipids GWAS summary 

statistics data set contains the meta-analysis results for each of the four lipids levels across 

46 independent cohorts (Teslovich et al., 2010), but cohort-specific summary statistics are 

not available. The third case is more challenging than the second case, because cohort-

specific summary statistics are not available. This case in common in practice, when GWAS 

results are published by large consortia. We discuss in this paper all the three settings.

If the summary statistics are obtained from logistic regressions for binary phenotypes, then 

under the null, the correlation matrix among the summary statistics still does not depend on 

genotype. We will show this in Web Appendix Section A. Hence our testing procedures to 

be introduced in Section 3 can be used broadly in many GWAS summary statistics settings.

3. Multiple Phenotype Association Tests (MPATs)

It is well known that there does not exist an uniformly most powerful (UMP) test for a 

multiple dimensional composite alternative hypothesis. As the genetic association patterns 

of multiple phenotypes vary from SNPs to SNPs across the genome, in this section, we 

propose robust and powerful tests for both homogeneous and heterogeneous genetic effects 

on multiple phenotypes in GWAS, using univariate summary test statistics by accounting for 

the correlation between them. Since the correlation matrix between the summary statistics Σ 
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can be consistently and accurately estimated by  as discussed in Section 2, for simplicity, 

we assume Σ is given. Based on summary statistics Z ∼ N(μ, Σ), the goal is to test H0 : μ = 0 

versus H1 : μ ≠ 0.

3.1 Detection of Homogeneous Effects

If the means μk of the Zk’s (k = 1, ⋯, K) are the same as μk = μ0, then the distribution of Z is 

reduced to N(μ0J, Σ), where J = (1, 1, …, 1)T and μ0 is a scalar denoting the shared common 

effect size. To test for a common genetic effect on multiple phenotypes, we test H0: μ0 = 0 

versus H1 : μ0 ≠ 0 and can use the following score statistic

which follows N(0, 1) under the null. It is essentially a weighted sum of the components of 

Z with the weights equal to JT Σ−1, which give higher weights to the phenotypes that are 

less correlated with the other phenotypes. It can be easily shown that the SUM test is the 

most powerful test when the effects are indeed homogeneous. The SUM test can be easily 

extended by using other weights, e.g., by replacing the ones in J with the square root of 

known phenotype-specific heritability, as suggested by a referee.

The between-phenotype correlation matrix Σ is held fixed when we scan the genome in 

multiple phenotype GWAS analysis. However, the true means μ’s of Z’s vary with SNPs and 

the assumption of homogeneous genetic effects on multiple phenotypes is likely to be 

violated. If the homogeneous effect assumption is violated, the SUM test can be subject to 

substantial power loss and even can be powerless if the genetic effects vector μ is orthogonal 

to Σ−1J because the ncp of SUM is JT Σ−1μ{JT Σ−1J}−1/2 = 0. For example, suppose Z is a 

standard bivariate normal vector with mean μ = (−100, 100)T, then JT Σ−1μ = 0 for any Σ in 

bivariate case and hence ncp = 0, i.e., the SUM test is powerless to detect this non-null mean 

μ = (−100, 100)T.

3.2 Detection of Heterogeneous Effects

As the SUM test has low power when the homogeneous effect assumption is violated, we 

propose in this section tests for heterogeneous genetic effects on multiple phenotypes. We 

formulate this problem using the following model for the univariate summary statistics

(3)

where μ = (μ1, …, μK)T. We further assume that μk (k = 1, …, K) follows an arbitrary 
common distribution F with mean 0 and variance τ. Then testing H0 : μ1 = … = μK = 0 is 

equivalent to testing H0 : τ = 0. Under this assumption, equation (3) becomes a linear mixed 

model. Following Lin (1997), one can derive the variance component score test statistic for τ 
given by
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(4)

which is a quadratic function of Z. It can be easily shown that VC follows a mixture of chi-

square distribution , where the weights λk are the eigenvalues of the matrix Σ
−1. The p-value of VC can be calculated using the Davies method (Davies, 1980).

Compared to the classical Wald test ZT Σ−1Z, there is one more inverse covariance matrix in 

the middle of the expression of VC. A simple application of spectral decomposition gives 

 and , where uk is the kth eigenvector of Σ. 

This says that the last eigenvector has the largest weight by noting that λK ≤ 1. Hence, both 

Wald and VC prefer the situations in which the mean vector μ of Z and the last eigenvector 

of Σ are in the same direction. However, VC performs even better than Wald in such cases. 

Since the last eigenvector of Σ usually contains elements of different signs and magnitudes 

in practical settings, so VC has more power than Wald to detect heterogeneous effects in 

such settings.

3.3 Robust Detection of Homogeneous and Heterogeneous Effects

Across the genome, the effects of genetic variants on multiple phenotypes vary by locus. 

Either SUM or VC test could lose substantial power under their non-favoring alternatives. 

Hence, we need to develop more robust and powerful testing procedures to detect both 

homogeneous and heterogeneous effects. Decomposing the effect vector μ = (μ1, ⋯, μK)T 

into the shared common effect across phenotypes and departures of individual effects from 

the common effect, we have the following linear mixed model for the summary statistics

(5)

where μ0 is a scalar denoting the shared common effect and bk = μk − μ0 denotes the 

departure of the effect of a genetic variant on the kth phenotype from the common effect, 

which is assumed to be mutually independent and follows an arbitrary distribution F with 

mean 0 and variance τ. If τ = 0, then this model reduces to the homogeneous effect model in 

Section 3.1. if μ0 = 0, then this model reduces to the heterogeneous effect model in Section 

3.2. Therefore, model (5) is more general and includes the homogeneous and heterogeneous 

effect models as special cases.

Under Model (5), testing for the associations between a genetic variant and K phenotypes is 

equivalent to jointly testing H0 : μ = 0, τ = 0, i.e., jointly testing for the fixed effect and the 

variance component in mixed model (5). Under H0, the score of μ0 is
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Following Sun et al. (2013), we derive the score for τ under H0 without restricting μ0 = 0

(6)

where  is the MLE of μ0 under τ = 0, which is simply the sample mean of the Zk’s, i.e. 

. Because the second term in (6) does not depend on data, we could use 

the first term to construct the test statistic for H0 : μ = 0, τ = 0 as

It can be shown that  and  are statistically independent under H0. The proof is given in 

the Web Appendix B.1. The variance of  is , where 

. The variance of  is , where 

 and . The score test  is the same as 

the SUM test which can powerfully detect the homogeneous effect, while  can detect 

heterogeneity effects. Therefore, a robust testing procedure can be obtained by combining 

 and , which are both quadratic functions of Z.

We can use the following linear combination

(7)

where  and ϕ ∈ [0, 1]. However, ϕ is usually unknown in practice and 

therefore needs to be chosen. We can use the inverse-variance weighting scheme which 

minimizes the variance of Tϕ with

The resulting Tϕ is refereed to as mixVar. We can also use inverse standard deviation 

weighting so that  and  are of equal variance,

This resulting Tϕ is refereed to as mixSD. These two weighting schemes only depend on the 

correlation matrix Σ and allocate more weight to the testing statistic that has smaller 
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variance (SD). The relative magnitude of ϕVar and ϕSD can vary case by case. For example, 

for ρ = 0.1 in a bivariate correlation matrix, ϕVar ≈ 0.27 and ϕSD ≈ 0.38; however, for ρ = 

0.6, ϕVar ≈ 0.8 and ϕSD ≈ 0.67. For any chosen ϕ, Tϕ follows a mixture of chi-squared 

distribution  under the null, where θj are the eigenvalues of the matrix Σ1/2Λϕ1/2. 

Its p-value can be easily computed using the Davies’ method (Davies, 1980).

Both the inverse variance and inverse standard deviation weighting schemes determine the 

relative importance of  and  solely based on their corresponding variances or standard 

deviations under the null. However, under the alternative, the variances of  and  are 

different from their counterparts under the null. Therefore, both schemes might not provide 

the optimal weighting scheme that yields the best power. Inspired by the ideas originally 

proposed in the rare variant analysis settings (Lee et al., 2012, 2013), we propose to choose 

the optimal ϕ such that Tϕ has the minimal p-value,

where pϕ is the p-value computed based on Tϕ for any fixed value of ϕ ∈ [0, 1]. In practice, 

PAda could be obtained by grid searching over a range of possible values 0 = ϕ1 < ϕ2 < … < 

ϕB = 1, where B is the number of grid points in the interval [0, 1]. If the observed value of 

PAda is denoted as , then the p-value of PAda can be computed as

(8)

where  and  denotes the inverse cumulative distribution function 

of .

The B-dimensional integration in (8) requires the joint distribution of . One 

can show that Tϕ has the same distribution as the random variable τ(ϕ)S0 + (1−ϕ)S1, where 

τ(ϕ) = ϕJT Σ−1J and  which follows a chi-squared distribution with one 

degree of freedom, , where the ηj are the non-zero eigen-values of the matrix 

. We can rwrite (8) as

(9)

where  denotes the cumulative distribution function of S1 which is a mixture of chi-

squared distributions defined above,  is the probability density function of a standard 

 random variable S0, and δ(x) is

Liu and Lin Page 9

Biometrics. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



So equation (9) could be easily computed using one dimensional numerical integration.

An alternative to combining the two testing statistics is to combine the two corresponding 

independent p-values of  and  using Fisher’s or Tippett’s procedure. Denote by 

and  the p-values of  and . Fisher’s p-value is

and the Tippett’s p-value is given by

We term these two methods as mixFisher and mixTippett respectively. Note that  could 

be easily calculated based on the null distribution , while  can be 

calculated from the mixture chi-square distribution , where the θj were defined 

above.

The Fisher method for combining p-values has asymptotic Bahadur efficiency in the sense 

that the resulting p-value converges to zero with the fastest rate under the alternative when 

the sample sizes goes to infinity (Littell and Folks, 1971). There is a subtle difference 

between mixFisher and mixTippett tests illustrated by comparing their rejection regions as 

shown in Web Figure S1. For example, suppose that  and , then 

mixFisher gives p-value 0.024 while mixTippett gives p-value 0.116. However, if Pμ = 0.02 

and Pτ = 0.8, then mixFisher has p-value 0.082 while mixTippett has p-value 0.04. Hence, 

mixFisher is more powerful when there exist both shared common effect and individual 

effects; while mixTippett is more powerful when there exists only the shared common effect 

or only individual effects. In practice, a causal genetic variant is more likely to have both 

shared common effect and individual heterogeneous effects on multiple phenotypes involved 

in a common disease process, one would expect that mixFisher is a better choice than 

mixTippett. We will illustrate this point in Section 5. We refer these mixed model based tests 

together as mix-type tests.

3.4 Graphical Comparison of the Rejection Boundaries of the Tests

We present in Figure 1 a graphical comparison of the rejection boundaries of our proposed 

tests (SUM, VC, mixSD and MixFisher) with those of the Wald and MinP test to gain a 

geometric insight of how these tests are related. The MinP test is defined as the minimum p-

value among the K marginal p-values (Conneely and Boehnke, 2007). The results of the 

other proposed tests are given in Supplemental Figure S2. We considered a bivariate normal 

Z test statistics with correlation ρ = 0.6. The rejection boundaries of the tests under 
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comparison are determined at the significance level 0.05 in the (Z1, Z2) space. The rejection 

boundary separates the acceptance region and the rejection region for each test. All the tests 

considered here have convex acceptance regions and therefore are all admissible (Birnbaum, 

1954) and their powers however depend on alternatives.

This graphical representation clearly illustrates why the SUM test cannot detect any 

alternative μ on the direction spanned by vector (−1, 1) because such alternatives are parallel 

to its rejection boundaries. Compared to Wald, the ellipse of VC has a longer major axis but 

a shorter minor axis. Hence, if the alternative is on the direction of (−1, 1), then the rejection 

boundary of VC along this direction is closer to the null than that of Wald, so VC tend to be 

more powerful; while if the alternative is on the direction of (1, 1), then the rejection 

boundary of VC along this direction has a longer distance from the null than that of Wald, so 

VC tend to be less powerful than Wald.

Figure 1 also shows that both SUM and VC are not robust because their rejection boundaries 

have relatively long distance from the null along some directions. Our proposed mix-type 

tests are developed to overcome the limitations of SUM and VC tests, which can be seen 

graphically as well. Specifically, the rejection boundary of SUM has infinite distance from 

the null along the direction of (−1,1), while the rejection boundaries of the mix-type tests 

along this direction is much closer to the null. On the direction of (1, 1), the rejection 

boundary of the mix-type tests have a much shorter distance from the null compared to VC. 

Hence, the mix-type tests are more robust than both SUM and VC.

Figure 1 and Web Figure S2 show that the mix-type tests have similar but slightly different 

rejection boundaries, therefore their powers are generally similar in most cases but can be 

slightly different in special cases. Using rejection boundaries, we can easily explain the 

potential power gain of using multivariate tests compared to univariate ones. For example, 

suppose we observe Z = (−1.95, 1.95)T for a SNP, then we cannot detect this SNP using 

univariate analysis at significance level 0.05, but this Z point falls into the rejection regions 

of the VC, mixAda, mixFisher and Wald tests and hence can be detected by those tests.

4. Simulation Studies

4.1 Type I error rates

We first investigated the type I error rates of our testing procedures at various significance 

levels. We set K = 4 and the correlation matrix Σ to be exchangeable with ρ = 0.1, 0.3, 0.5. 

We generated 107 multivariate normal random samples with mean 0 and covariance matrix 

equal to Σ as summary statistics. We applied our proposed methods to obtain p-values for 

each sample. Table 1 shows that the type I error rates of the proposed methods (SUM, VC, 

mixAda, mixFisher) are well controlled at α = 0.05, 0.001 and even at more stringent 

thresholds 10−5 and 10−6. Similar results were found for mixVar, mixSD and mixTippet in 

Web Table S1.

4.2 Power

Since there is no single test that is uniformly most powerful for general alternatives, our 

simulation studies aim at illustrating the relative performance of the proposed methods under 
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the alternatives of practical interest. In particular, we considered the following factors of 

practical interests: signal sparsity, effect heterogeneity and phenotype correlation structure. 

We included the MinP test and the Wald test for comparisons. All the empirical power is 

computed as the proportion of p-values that are less than significant level at 0.05.

We first considered K = 2, μ = (1, −1)T and three correlations ρ = 0.1, 0.5, 0.8 to illustrate 

how the correlation affects the power of multivariate tests. We simulate 104 bivariate normal 

random samples with mean vector equal to μ = (1, −1)T and correlation equal to ρ = 0.1, 0.5, 

0.8 respectively. The power of univariate (marginal) analysis to detect μ1 = 1 or μ2 = −1 is 

about 0.2, and the result of multivariate testing procedures with correlation taken into 

account is summarized in Table 2 and Web Table S2. For example, the power of VC 

increases from 0.27 to 0.91 when the correlation increases from 0.1 to 0.8.

We then considered K = 3, and two correlation matrices: Σ1 is a 3 × 3 exchangeable 

correlation matrix with off-diagonal element ρ = 0.5 and Σ2 is an unstructured correlation 

matrix estimated from the summary statistics from the lipids GWAS data (HDL, LDL and 

TG)

(10)

We considered the following five alternatives for K = 3: μ1 = (2, 2, 2)T with ℓ2-norm ‖μ1‖ = 

3.46, μ2 = (1.2, 1.2, 1.2)T with ‖μ2‖ = 2.08, μ3 = (1.63, −0.82, −0.82)T with ‖μ3‖ = 2 (the 

third eigenvector direction of Σ1), μ4 = (−1.21, 0.64, −1.46)T with ‖μ4‖ = 2 (the third 

eigenvector direction of Σ2), μ5 = (2.38, −1.72, −2.72)T with ‖μ5‖ = 4 (the first eigenvector 

direction of Σ2).

Motivated by eQTL studies, where one is interested in studying the effect of a SNP on a 

genetic pathway or network, which often consist of not a small number of gene expressions, 

we also considered the case in which there are K = 100 phenotypes. For simplicity, we set 

the between-phenotype correlation matrix Σ3 to be exchangeable with off-diagonal element 

equal to ρ = 0.2, and the mean vector to be homogeneous: μ6 = (1.4, 1.4, …, 1.4, 1.4)T.

We generated 10, 000 multivariate normal random samples with mean vectors and 

covariance matrices specified by those six settings. We summarize the results in Table 2 

where we compare SUM, VC, mixAda, mixFisher with Wald and MinP. The comparisons of 

these methods with all the other tests are given in Web Table S2.

As expected, the SUM test has the largest power for homogeneous effects μ1 and μ2, 

regardless of the correlation structures. The VC test has the largest power when the mean 

vectors are on the directions of the last eigenvectors of the correlation matrices as for 

alternatives μ3 and μ4. For the alternative μ3, the SUM test is almost powerless, indicating 

that there is no shared common effect. For the alternative μ4, the SUM test has decent power, 

suggesting that there exist both shared common effect and heterogeneous individual effects, 

and this well explains why mixFisher can be more powerful than Wald in this setting. For 
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the alternative μ5, both SUM and VC perform poorly since the mean is neither homogeneous 

nor on the last eigenvector direction of Σ2. However, both mixAda and mixFisher have good 

power. MinP performs better than the others for μ5 because there exist a strong signal −2.72. 

In the last setting with not a small number of phenotypes (K = 100), the Wald test has very 

low power while mixFisher and mixAda remain to be powerful. Web Table S2 presents more 

simulation results.

We next considered the sparse signal settings where a genetic variant affects only one 

phenotype. For the exchangeable correlation matrix Σ1 and unstructured correlation matrix 

Σ2, we considered the following mean vectors for Z: μ = (2.5, 0, 0)T, (0, 2.5, 0)T, (0, 0, 

2.5)T. The results are summarized in Figure 2 and Web Figure S3. The powers of each test 

for the three mean settings are the same when the correlation matrix is exchangeable but 

varies when the correlation matrix is unstructured, except for the MinP test. It was 

interesting to observe that, even in this sparse setting, the MinP test can be less powerful 

than VC, Wald and mix-type tests. This is because the non-signal phenotypes are correlated 

with the single signal phenotype and hence using non-signal phenotypes in constructing test 

statistics helps improve the power.

5. Re-analysis of the Global Lipids GWAS Data

Coronary artery disease (CAD) is a leading cause of death in the United States and 

worldwide. Serum concentrations of high-density lipoprotein (HDL) cholesterol, low-

density lipoprotein (LDL) cholesterol, total cholesterol (TC) and triglycerides (TG) are 

important risk factors for CAD and are therapeutic targets for drug development. The Global 

Lipids Genetics Consortium (GCLC) performed fixed-effects meta-analysis for each of the 

four lipids levels based on GWAS results from 46 cohorts comprising of more than 100,000 

individuals of European ancestry. A total of 5395 SNPs reached the genome-wide 

significance level (P < 5 × 10−8) for at least one of the four lipids, and individually there are 

2213,1769, 2593 and 1808 genome-wide significant SNPs for HDL, LDL, TC and TG 

respectively. Among those genome-wide significant SNPs, 95 of them were identified by 

Teslovich et al. (2010) after LD pruning. The meta-analysis summary statistics for the four 

lipids are publicly available at http://csg.sph.umich.edu//abecasis/public/lipids2010/, while 

cohort-specific summary statistics are not available. To compare with the multivariate 

analysis, the results of the univariate analysis are compared using the union of all the 5395 

significant SNPs across the four lipids. Note that this univariate analysis approach did not 

correct multiple testing on the four lipids traits.

We performed multivariate analysis of the lipids data with a total number of 2691421 shared 

SNPs across the four traits using the proposed methods. Since LDL and TC are highly 

correlated (correlation=0.88), we restricted multivariate analysis of three phenotypes HDL, 

LDL and TG to illustrate the methods. The correlation matrix of the three Z-scores (HDL, 

LDL and TG) was estimated using the sample correlation matrix over all the SNPs after LD 

pruning, and the result is given in equation (10). We applied all the proposed tests to the 

lipids data and the numbers of significant SNPs are summarized in Figures 3(a) and Web 

Figure S4. As many of these SNPs are in LD with each other, and also in LD with the SNPs 

identified by univariate analysis, we thus performed LD pruning using Plink to obtain 
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independent loci using very stringent LD threshold r2 < 0.01 in 500kb region (Purcell et al., 

2007). After LD pruning, the numbers of independent loci are summarized in Figure 3(b) 

and Web Figure S5. We presented QQ plots for both univariate analysis and multivariate 

analysis results in Web Figures S6–S8 and found the genomic inflation factors are all close 

to 1 (0.98–1.1). The Manhattan plots in Web Figures S9–S16 show that the significant SNPs 

spread across many chromosomes, suggesting that the lipids traits are likely to be polygenic.

Overall, as expected, there is no single test that can dominate others, because there is no 

UMP test in multivariate settings. For example, there are nine independent SNPs that were 

detected by the VC test but not by the Wald test, because these nine SNPs correspond to the 

alternatives that favor VC more than Wald. To illustrate the effect of including TC, which is 

highly correlated with LDL, in multiple phenotype analysis, we compared the joint analysis 

results with and without TC in Table S4. These top SNPs remain significant or nearly 

significant after including TC, although the levels of significance change in different 

degrees. More details can be found in Supplementary Section D. In practice, we suggest that 

both biological knowledge and statistical consideration be taken into account when one 

decides which phenotype to include in joint multiple phenotype analysis in the presence of 

high correlation among some phenotypes.

We further used an online physical and functional annotation tool SCAN to annotate the 

detected SNPs (Gamazon et al., 2010). For illustration purpose, we only presented top SNPs 

ranked by the p-value of the mixFisher method in Table 3 and Web Table S3. For instance, 

SNP rs5167 is a coding missense variant located in gene APOC2 that was unable to be 

detected by univariate analysis (the p-value of TC is 3.91E-05), but our mixFisher by 

analyzing three phenotypes detected it with p-value=7.45E-16. A recent exome-wide study 

found that SNP rs5167 was associated with HDL (Tang et al., 2015). This result 

demonstrates that joint analysis using mixFisher test and other mix-type tests can be more 

powerful than univariate analysis in detecting novel SNPs for follow-up functional studies.

6. Discussion

We proposed several testing procedures to detect genetic associations with multiple 

phenotypes using GWAS summary statistics of univariate phenotype analysis. We found that 

the correlation matrix between the summary statistics does not depend on the SNP genotype 

across the whole genome, and thus we can consistently and accurately estimate this 

correlation matrix by the sample correlation matrix across all the independent SNPs after LD 

pruning. This estimation procedure is valid if the GWAS summary statistics are obtained 

from one cohort, or multiple cohorts with possible overlapping subjects or phenotype-

specific meta-analysis. Compared to univariate analysis, multivariate analysis can leverage 

the correlation among phenotypes to improve power.

It is known that there is no uniformly most powerful test for multiple phenotype analysis. 

The power of a particular test depends on signal directions and sparsity, as well as between-

phenotype correlation structure. The SUM test can be more powerful than both Wald and 

VC when the effects are homogeneous. The VC test can be more powerful than SUM in the 

presence of heterogeneous effects, and is more powerful than the Wald test when the effect 
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vector lies close to direction as the last eigenvector of the correlation matrix of multiple 

phenotypes. Our mix-type tests are more robust than both SUM and VC with respect to the 

effect directions and can identify a good number of SNPs that Wald fail to detect. As shown 

in our simulation studies, the Wald test is less powerful when there exists both the shared 

common effect and the heterogeneous effects while the mix-type tests, such as mixFisher, 

are robust to both homogeneous and heterogeneous effects. When the number of phenotypes 

is not small as in eQTL studies, the Wald test can be subject to very low power while the 

mix-type tests, such as mixFisher, remain powerful. Therefore, our proposed mix-type tests 

are complimentary to the Wald test by providing new findings for understanding the 

underlying genetic architecture in multiple phenotype studies, especially when the number 

of phenotypes is not small. The mix-type tests are computationally efficient since we can 

compute their p-values analytically. This feature is practically appealing in large-scale 

GWASs, where millions of genetic markers are analyzed.

There are several advantages of using summary statistics over using individual level data. 

First, the summary statistics are more accessible than individual level phenotype and 

genotype data. Second, the summary statistics within each study cohort have been controlled 

for study-specific confounders, such as study-specific population stratification. With the 

increasing availability of GWAS summary statistics, our methods provide a cost-effective 

way for analyzing multiple phenotypes. Future research is needed to compare the power and 

robustness of the proposed methods using cohort-specific phenotype-specific summary 

statistics versus using meta-analysis phenotype-specific summary statistics.

Our results show that the proposed mix-type tests, such as mixFisher, and the classical Wald 

test compliment each other for new discoveries by joint analysis of multiple phenotpyes. The 

results of the lipid GWAS indicate each test can identify additional SNPs that might be 

missed by others. If is of future research interest to develop an omnibus test to improve 

analysis by combining the evidence of different tests, e.g, combining the Wald test and the 

mixFisher test.

Our MPAT methods are applicable to GWAS studies where study subjects are unrelated. 

MPAT accounts for population structures, as it is based on summary statistics which have 

often adjusted for population structures using principal components (Price et al., 2006). 

Future research is needed to extend the proposed methods to account for familial and cryptic 

relatedness, e.g., using mixed models (Chen et al., 2016). Another area of future research is 

to develop multiple phenotype analysis of secondary phenotypes collected in case-control 

studies. The inverse probability weighted methods (Yung and Lin, 2016) can be extended to 

MPAT tests by accounting for the fact that case-control samples do not represent the general 

population in multiple secondary phenotype analysis. Extension of the proposed methods to 

analyzing multiple phenotypes in rare variant association studies is of great future interest.

Rare variant association tests usually need to be conducted using multiple SNPs in a SNP 

set. The methods in the paper are developed for single SNP analysis, and are based on 

normally distributed Z-scores. To extend the proposed methods to test for rare variants in a 

SNP set for multiple phenotypes, one needs to aggregate summary individual SNP-

phenotype score statistics across multiple phenotypes and multiple SNPs in a SNP set. This 
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requires accounting for both between-phenotype correlation and between-SNP correlaton, 

i.e., LD among SNPs, in a SNP set. Future research is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The rejection boundaries (solid lines without arrows or curves) of the six tests (SUM, VC, 

mixAda, mixFisher, Wald and MinP) at the significance level 0.05 for a bivariate normal Z = 

(Z1, Z2)T with correlation ρ = 0.6 under the null. The longer solid lines with arrows 

represents the direction where Z has the largest variation and the shorter solid lines with 

arrows represents the direction (orthogonal to the longer solid lines) where Z has the second 

largest variation under the null. The dotted lines mark the univariate critical values at ±1.96 

for Z1 and Z2 respectively. This figure appears in color in the electronic version of this 

article.
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Figure 2. 
Powers of the tests when a genetic variant affects only one of the three phenotypes. Case j (j 
= 1, ⋯, 3) refers to the case where a genetic variant has effect only on the jth phenotype, i.e., 

the mean vector μ has a non-zero value in the jth position and 0 otherwise. The upper panel 

assumes an exchangeable correlation matrix with the non-zero mean value equal to 2.5, and 

the lower panel assumes the unstructured correlation matrix in (10) with the non-zero mean 

value equal to 2.5. This figure appears in color in the electronic version of this article.
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Figure 3. 
Joint Analysis of Global Lipids GWAS Summary Statistics. The genome-wide significance 

level is 5 × 10−8.
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