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Summary

The methylotrophic yeast Pichia pastoris (Komaga-
taella spp.) is widely used as cell factory for recombi-
nant protein production. In the past recent years,
important breakthroughs in the systems-level quanti-
tative analysis of its physiology have been achieved.
This wealth of information has allowed the develop-
ment of genome-scale metabolic models, which make
new approaches possible for host cell and biopro-
cess engineering. Nevertheless, the predictive accu-
racy of the previous consensus model required to be
upgraded and validated with new experimental data
sets for P. pastoris growing on glycerol or methanol
as sole carbon sources, two of the most relevant
substrates for this cell factory. In this study, we have
characterized P. pastoris growing in chemostat cul-
tures using glycerol or methanol as sole carbon
sources over a wide range of growth rates, thereby
providing physiological data on the effect of growth
rate and culture conditions on biomass macromolec-
ular and elemental composition. In addition, these
data sets were used to improve the performance of
the P. pastoris consensus genomic-scale metabolic
model iMT1026. Thereupon, new experimentally
determined bounds, including the representation of
biomass composition for these growth conditions,
have been incorporated. As a result, here, we present
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version 3 (v3.0) of the consensus P. pastoris genome-
scale metabolic model as an update of the iMT1026
model. The v3.0 model was validated for growth on
glycerol and methanol as sole carbon sources, demon-
strating improved prediction capabilities over an
extended substrate range including two biotechnologi-
cally relevant carbon sources.

Introduction

Pichia pastoris (Komagataella spp.) has become one of
the most commonly used hosts for recombinant protein
production (Corchero et al., 2013; Gasser et al., 2013)
including biopharmaceuticals (Martinez et al., 2012;
Walsh, 2014). Since 1995, the number of genes hetero-
logously expressed in this yeast has steadily increased
(Bill, 2014). The establishment of P. pastoris as widely
used cell factory has been supported by the develop-
ment of improved high cell density operational strategies
(Cos et al., 2006), synthetic biology tools, such as the
availability of novel constitutive and inducible promoters
(Prielhofer et al., 2013; Weinhandl et al., 2014), the
application of novel genetic engineering techniques for
its manipulation (Vogl et al, 2013; Weninger et al.,
2015), as well as increased body of knowledge of
P. pastoris at the genetic and physiological levels.

Moreover, progress in synthetic biology of this yeast
has also opened the door towards utilizing this yeast as
whole-cell  biocatalyst for non-native value-added
metabolite production (Pscheidt and Glieder, 2008; Heyland
et al., 2010; Cheng et al., 2014; Geier et al., 2015).

At an industrial scale, reduced cost of raw materials is
as important as high production yields for cost-effective
processes (Kroll et al., 2010; Gustavsson and Lee,
2016). In addition, in order to optimize the metabolite
biosynthesis process to obtain high vyields, it is also
important to select the most appropriate substrate (Gold-
man, 2010). In this context, glycerol is a by-product in
the conventional biodiesel production process and there-
fore represents an attractive opportunity for revalorization
of an industrial waste stream, that is, for the develop-
ment of a glycerol-based integrated biorefinery concept
(Kiss et al., 2015). Indeed, glycerol is becoming an
attractive carbon source in fermentation processes to
produce high added value compounds (Johnson and
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Taconi, 2007; Yang et al., 2012; Valerio et al., 2015).
Furthermore, the reduction degree of glycerol (4.67) is
different from that of glucose (4.0), and therefore, higher
yields of certain secondary metabolites can be obtained
from this compound (da Silva et al., 2009). Nonetheless,
crude glycerol is far from being pure and contents sev-
eral other compounds such as methanol (Posada et al.,
2012). Methanol is usually toxic for microbes with the
exception of methylotrophic microorganisms. Thus, sub-
sequent purification and refinement steps should be
applied to the raw glycerol if it has to be used by non-
methylotrophic organisms. On the other hand, methanol
is also an increasingly interesting C1 compound as
building block for value-added compound biosynthesis
(Schrader et al., 2009; Khosravi-Darani et al., 2013;
Nguyen et al.,, 2016). In this context, P. pastoris is able
to efficiently use glycerol and/or methanol as energy and
carbon sources (Sola et al., 2007; Celik et al., 2008;
Jorda et al, 2014). In addition, the most extensively
used promoters for heterologous gene expression in
P. pastoris (namely, Pgap, constitutive and P 40y, induci-
ble) are directly associated with glycerol and methanol
metabolism (Cos et al., 2006; Gasser et al, 2013).
Therefore, P. pastoris appears as an organism of high
potential for the development of the glycerol biorefinery
concept.

Genome-scale metabolic models (GSMM) allow to
predict the phenotype of a microorganism in a range of
conditions, including those derived from genetic modifi-
cation (Oberhardt et al., 2009; Kim et al., 2012). This
capability makes GSMM a powerful tool for the design of
metabolic engineering strategies to enhance productivi-
ties or implementing new pathways (Cvijovic et al.,
2011; Gustavsson and Lee, 2016). Nevertheless, valida-
tion of GSMM for different conditions requires the avail-
ability of extensive cultivation data information describing
its physiology. In addition, a wide range of information
on biomass composition enables building specific bio-
mass equations to accurately describe cell growth in
each case (Dikicioglu et al., 2015).

Three independent GSMM for P. pastoris were initially
published, namely iPP668 (Chung et al., 2010), PpaM-
BEL1254 (Sohn et al., 2010) and iLC915 (Caspeta et al.,
2012). More recently, the consensus model iIMT1026
has been published (Tomas-Gamisans et al., 2016), inte-
grating and upgrading the previous models. The consen-
sus iIMT1026 model showed a significant improvement in
prediction accuracy and was validated for two sets of
conditions: growth on glucose as a sole carbon source
under different oxygen availability conditions and growth
on different glycerol and methanol mixtures as carbon
sources at different growth rates. However, given the
impact of biomass composition on the model predictive
accuracy in a context-dependent manner (Dikicioglu
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et al., 2015), this model was still not suitable for describ-
ing growth on glycerol or methanol as single carbon
sources. This is because biomass composition equations
take a major role on prediction reliability, and small
changes in that composition, or using an inadequate bio-
mass equation, may rend model calculations inaccurate
(Dikicioglu et al., 2015). Hence, GSMMs are in continu-
ous evolution (e.g. for Saccharomyces cerevisiae (Aung
et al., 2013)) usually involving error-fixing steps related
to poor or wrong gene annotation (Dikicioglu et al.,
2014), or extending GSMM capabilities for a broader
range of cultivation conditions.

In this work, we expand the iIMT1026 model capabili-
ties by implementing the capacity of accurately describ-
ing P. pastoris growth phenotype when using glycerol or
methanol as sole carbon sources.

A series of chemostat cultures were performed at a
wide range of growth rates using glycerol or methanol as
sole carbon sources in order to provide comprehensive
physiological data sets needed to upgrade the model.
This included quantitative analyses of the elemental and
macromolecular biomass composition for each tested
growth condition. This allowed to introduce new biomass
reaction equations to the metabolic model specific for
growth on glycerol or methanol. Furthermore, the new
version of the model (v3.0) was validated for growth on
these two substrates within the tested growth rate range.

Results and discussion
Physiological macroscopic parameters

Pichia pastoris X-33 strain was cultivated in carbon-
limited chemostat cultures at different dilution rates to
characterize its physiology using different carbon
sources. This information was used to estimate the ener-
getic parameters and to calibrate the model for such car-
bon sources. Glycerol cultivations were carried out at
different dilution rates (D): 0.035, 0.050, 0.065, 0.100,
0.130 and 0.160 h~'. At 0.160 h™', the inflowing gas
was supplied with an air:O, mixture (92.5:7.5) due to the
higher O, demand and cell concentration. Due to this
operational limitation, no higher dilution rates were tested,
despite P. pastoris has been reported to grow at higher
growth rates (Cos et al., 2006). Methanol limiting chemo-
stats were run at 0.035, 0.050, 0.065, 0.080, 0.100 and
0.130 h™'. At 0.130 h™ ", bioreactor washed out. Biomass
concentration, CO, production and O, consumption contin-
uously decreased, and methanol accumulated. According
to a chemostat washout kinetics (Doran, 1995), maximum
growth rate on methanol was estimated to be between 0.11
and 0.12 h~', which is in agreement with previously
reported values (Barrigon et al., 2015).

Based on the chemostat data, specific productivities
and yields were calculated for each condition (Table 1).

© 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial

Biotechnology, 11, 224-237



226 M. Tomas-Gamisans, P. Ferrer and J. Albiol

Table 1. Macroscopic growth parameters after the reconciliation procedure for glycerol and methanol cultivations at different dilution rates.

Carbon gs (mmol - Joz (mmol - Jcoz (mmol - dx (Cmmol -

source Hsp (h™")  Hexp (h77) gDCW ' . h™") gbCW'.h") gDCW'.-h™") gDCW'.-h") VYys(ox 9s ') RQ

Glycerol  0.035 0.085 + 0.001 —0.58 + 0.05 —0.82 +0.13 053 + 0.11 1.22 + 0.04 0.65 + 0.03 0.64 + 0.03
0.050 0.049 + 0.002 —0.85+ 0.06 —1.26+0.10  0.84 + 0.08 1.70 + 0.14 0.62 + 0.05 0.67 + 0.07
0.065 0.064 + 5e-4 —1.07 + 0.01  —152+0.02 1.00 + 0.02 2.22 + 0.02 0.64 + 5e-4 0.65 + 5e-4
0.100 0.094 + 0.004 —152 4 0.08 —2.04+0.11  1.28 + 0.08 3.27 + 0.15 0.71 + 0.04 0.63 + 0.01
0.130 0.124 + 0.001 —1.92 +0.08 —2.36+0.15 1.41 +0.13 4.36 + 0.24 0.71 + 0.04 0.60 + 0.07
0.160 0.154 + 0.002 —2.41 4+ 0.03 —292+0.01 174+ 1e-3 5.47 + 0.08 0.70 + 2e-3 0.60 + 3e-3
Average 0.67 + 0.04 0.63 £+ 0.03

Methanol  0.035 0.035 + 0.001 —-2.81+0.16 —2.98 + 022  1.59 + 0.14 1.22 + 0.02 0.38 + 0.01 0.53 + 0.01
0.050 0.049 + 2e-4 388+ 010 —4.07 +£0.15 215+ 0.10 1.73 + 0.01 0.39 + 0.01 0.53 + 0.01
0.065 0.065 + 0.001 —4.87 + 0.22  —4.97 + 029 255+ 0.18 2.33 + 0.04 0.41 + 0.01 0.51 + 0.01
0.080 0.084 + 0.001 -6.23+0.16 —6.36 +0.18 327 + 0.12 2.96 + 0.13 0.42 + 0.02 0.51 + 0.02
0.100 0.099 + 0.001 -7.82+ 028 —822+0.37 434+ 024 3.47 + 0.04 0.40 + 0.01 0.53 + 0.01
Average 0.40 + 0.01 0.52 + 0.01

ugp corresponds to the set point growth rate and jie,p,, the measured experimental p.

In both glycerol and methanol cultivation series, main
growth parameters show a linear correlation with growth
rate (u).

Regarding biomass vyields (Yxs), there is a slight
decrease at lower growth rates on both carbon sources,
similarly as reported by Van Dijken et al. (1976) and Reb-
negger et al. (2014). Despite this apparent correlation,
there are no statistically significant differences within the
tested range, and average Yxs and RQ can be calculated
for the abovementioned range of growth rates. Average
Yxs in methanol is 0.40 gx - gs~' and is in accordance with
yields previously reported for P. pastoris and other yeast
(Hazeu and Donker, 1983). This value is considerably
lower than 0.67 gx - gs ', the average Y,s for glycerol. The
Yxs for glycerol ranged between 0.62 and 0.71 gx - g5,

similar to yields on this substrate reported for different
Pichia species and other yeasts (Taccari et al., 2012).

Macromolecular and elemental biomass composition

Growth rate-dependent stoichiometry. To investigate the
potential impact of growth rate on biomass composition,
samples of the cultures were taken for analysis of the
biomass elemental and macromolecular composition at
different dilution rates. In particular, we analysed the
biomass composition at four different growth rates for
glycerol (1 = 0.035, 0.065, 0.100 and 0.160 h~") and three
for methanol (u=0.035, 0.065 and 0.100 h~'). The
experimental data sets and the calculated (reconciled)
biomass composition are summarized in Fig. 1 and Table 2.
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Fig. 1. Comparison of the reconciled macromolecular composition of glycerol and methanol cultures at different growth rates.
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Table 2. Detailed reconciled elemental and macromolecular composition of cells grown on glycerol and methanol at different growth rates, and the averaged biomass composition used for

defining the stoichiometric coefficients in iIMT1026 v3.0. Values represent weight/weight % + SD.

Glucose®

Average methanol®

Average glycerol®

Methanol

Glycerol

0.100

0.065

0.035

0.160

0.100

0.065

0.035

37.0 £+ 24
36.9 + 35

50.1 £ 0.8
273+ 15

410+ 15
359 + 2.0
25+ 04
7.8 £ 0.6
0.19 + 0.01
0.46 + 0.08
5.6 + 0.7
7.0+ 0.6

51.5 + 2.1
235+ 13

50.7 £ 0.5
289 £ 0.8

48.6 + 1.0

433 + 238
339 +£13

411 +£29
359 + 3.1

412 +04
37.0 £ 11

36.0 +£ 6.7
456 £ 75

Protein

29.0 +£ 28
22 +0.2
57 £ 0.6

Carbohydrate

Lipid
RNA
DNA
SO,
H,0

6.2 £33
6.6 + 0.7
0.13 + 0.01

20+ 02
7.0+ 0.6
0.18 + 0.01
0.63 £+ 0.04

24 + 0.6
71 +04
0.18 + 0.02
0.66 + 0.06
8.1+ 0.7
6.6 + 0.1

1.9 £ 0.1
6.3+13
0.18 + 4e-3
0.69 £ 0.05

2.8 + 3e-2

91 + 26
0.18 + 0.01
0.46 + 0.11

22+ 05

76 +1.2
0.18 + 0.01
0.45 £ 0.10

1.8+ 04
6.7 + 1.1
0.19 + 0.01

1.3+£03

6.0 + 0.1
0.19 + 1e-3
0.28 + 0.06

0.19 + 4e-3
0.63 + 4e-3
8.4 + 0.1
53+ 2.1

0.3+ 0.3
6.3+ 24
6.4 + 04

0.40 + 1e-3
57 +0.2
7.0 + 0.1

72 +09
6.3 + 0.6

62+ 1.8
52+ 2.0

6.6 + 0.2
58 + 1.1

6.6 + 2.5
6.0 + 0.9

5.8 + 0.6
53+ 1.0

Metals

6.3 £ 0.2
69 + 04
36.4 +14
0.2 + 0.1
71 +04

430 + 1.4

42.28 + 0.53
6.43 + 0.05
10.06 + 0.16
33.83 + 0.46
0.41 £+ 0.01

41.98 + 0.27
6.24 + 0.06
8.58 + 0.31

35.11 + 0.58
0.30 + 0.08

7.8 £ 0.6

418 £ 0.2
6.5 + 0.1
104 + 04
334 £ 0.7
0.43 + 0.03
7.4 + 0.1

6.5+ 0.2
10.2 + 0.1

0.4 + 0.02

59+ 18

43.2 + 0.1
339 +1.6

422 + 0.8
6.6 + 0.1
9.7 + 0.1

352 + 1.3

0.41 + 0.01
59 +20

6.44 + 0.08
9.22 + 0.24
34.98 + 0.40
0.30 + 0.04

42.44 + 1.00

419 +£ 0.9
6.3 £ 0.2
8.7 + 0.7

36.0 £ 2.6

0.25 + 0.04

419 + 0.1
6.24 + 2e-3
8.4 + 0.1
35.4 + 4e-2
0.30 + 1e-3

6.3 + 3e-2

74 +1.2
378 £ 22
0.25 + 0.06

42.3 + 0.1

Orzow

7.0+ 0.6

7.7 £ 4e-3 6.8 + 1.1 6.6 £1.3

59+ 1.0

(2]
o}
<
2]
<

a. Average compositions are weighted averages using 1/SD.

0.1 h™'. Data taken from Carnicer et al. (2009).

b. Corresponding to P. pastoris growing at D
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Notably, the protein and RNA fractions positively cor-
relate with growth rate in both glycerol- and methanol-
fed cultivation series. This increment on protein and
RNA with increasing growth rates is at expenses of car-
bohydrate content. This trade-off between RNA—protein
and carbohydrate content has been widely reported in
yeast species (Verduyn et al, 1990; Verduyn, 1991),
including in P. pastoris (Jorda et al., 2014). The increase
in protein fraction is consistent with the measured
changes in the elemental composition: the nitrogen con-
tent is also higher at high growth rates (Table 2).
Nonetheless, only the correlation of RNA and growth
rate is statistically significant. This stoichiometric depen-
dence of biomass components on growth rate can be
described on the basis of the growth rate hypothesis
(GRH). Essentially, GRH attributes this shift to the tight
control of the expensive protein synthesis system
(Henriksen et al., 1996). At higher growth rates, cells
need a higher ribosomal content to maintain the enzy-
matic machinery. The ribosomes are reported to consist
of 53% RNA and 47% protein in Aspergillus niger
(Hangeraaf and Muller, 2001). Thus, the increase in
ribosome levels has a deep impact in overall cell protein
and RNA content. As mentioned above, the increase in
protein and RNA would be at expenses of the carbohy-
drate content. Biomass characterization in S. cerevisiae
showed similar results, with a decrease in carbohydrate
content at higher growth rates (Kuenzi and Fiechter,
1972; Lange and Heijnen, 2001). At low growth rates,
there is a larger fraction of carbon source not used for
energy or cell machinery (protein/RNA) generation which
is stored in the form of carbohydrates. As growth rate
increases more and more, carbon source is derived
towards energy and biosynthetic machinery generation
at the expense of stored carbohydrates (Pejin and
Razmovski, 1993).

Regarding the lipid fraction, no statistically significant
differences were found across the series of methanol
biomass samples collected at different growth rates.
Conversely, the cell lipid fraction shows a positive corre-
lation with the growth rate in glycerol-grown cells. Never-
theless, a negative correlation of lipid content with
growth rates has been commonly reported (Meeuwse
et al., 2011; Rakicka et al., 2015). Therefore, the posi-
tive correlation observed in our case may be attributable
to the strong reduction in relative carbohydrate content,
which seems to be not entirely compensated by the
increase in RNA and protein content.

Carbon source effects on biomass composition. Besides
the impact of the specific growth rate on biomass
composition described above, other factors such as the
carbon source are also known to have a significant
influence (Jorda et al., 2014). In our case, the effect of
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the carbon source can be appreciated in Fig. 1: cells
grown on methanol show a significantly higher protein
fraction than those grown on glycerol. This protein
fraction is also higher than the one described for
glucose-grown cells (Table 2). However, similar profiles
are observed when comparing glycerol-specific biomass
composition to the original biomass composition for
glucose-grown cells (Table 2) previously reported by
Carnicer etal. (2009). Indeed, none of the
macromolecular components of the glucose-grown
biomass showed any significant difference with the
glycerol-grown biomass in terms of relative abundances.
In contrast, growth on methanol has a higher impact on
the relative abundance of macromolecules, mainly
increasing the protein fraction. This effect was also
observed by Jorda etal. (2014) in a study where
P. pastoris was grown in chemostats using different
glycerol:methanol mixtures as carbon source. The
corresponding biomass composition analyses showed
that protein content increased when the methanol/
glycerol ratio was higher. Similarly, P. pastoris cells
growing on a glucose:methanol mix in chemostat
cultivations showed higher protein content than when
growing on glucose as a sole carbon source under
analogous conditions (Jorda et al., 2012). Consequently,
the increase in cell protein content seems to be directly
related to methanol utilization and, more specifically, to
the amount of enzymes needed for methanol
assimilation (RuBmayer et al., 2015). In fact, it is known
that genes encoding for the methanol utilization pathway
such as the alcohol oxidase (AOX) and
dihydroxyacetone synthase (DAS), two major enzymes
involved in the initial steps of methanol metabolism, are
highly induced in the presence of methanol (RuBmayer
et al., 2015). They are reported to account for up to 10—
20% of total protein in methylotrophic yeasts (Van Dijken
et al, 1976; Stewart et al, 2001). This fact, together
with the significant increase in the cell volume occupied
by peroxisomes in methanol-grown cells, may be a
plausible explanation of the increase in cell protein
content in these conditions (van der Klei et al., 2006;
Veenhuis and van der Klei, 2014).

On the other hand, amino acid composition analysis of
the cell proteome showed no significant differences
when comparing cells grown at different growth rates for
each substrate Table S1 (Appendix S1). However, the
amino acid composition of biomass differed significantly
for some amino acids when comparing glycerol- versus
methanol-grown cells (Table S1). In addition, the subset
of amino acids showing significant differences of relative
abundances in methanol-grown cells (compared to the
glycerol condition) was compared with the amino acid
composition of enzymes related to the methanol metabo-
lization pathway (Fig. 2). This analysis clearly reveals

His — Glx

—a&— Methanol

—e— Glycerol /

@ AOX 1 /
DAS1 o \
FDH1 /

- FLD / \

- CTA1 / \

Tyr Ala

Fig. 2. Comparison of average amino acid profiles from glycerol
and methanol cultures in relation to amino acid abundance in the
most abundant proteins in methanol metabolization. Amino acid
abundance is presented as mol/mol %. Glycerol and methanol rep-
resent the average amino acid composition of glycerol and methanol
cultivations respectively. Other variables correspond to the most
abundant proteins in the presence of methanol: alcohol oxidase
(AOX1), dihydroxyacetone synthase (DAS1), formate dehydroge-
nase (FDH1), formaldehyde dehydrogenase (FLD), catalase
(CTAT1). GIx and Asx represent the pair of Asp/Asn and Glu/GIn
respectively.

how the amino acid composition of the methanol metab-
olization enzymes affects the overall cell amino acid
composition with respect to glycerol. Therefore, the
higher protein fraction in biomass composition in metha-
nol appears to be related to the increased content of
methanol-assimilating pathway enzymes.

In terms of cell total lipid content, no statistically signif-
icant differences were found when comparing the aver-
age carbon source-specific biomass compositions. In
addition, there are neither differences with previously
described lipid fractions for cells grown on glucose nor
with those grown in glucose-methanol mixtures
(Carnicer et al., 2009; Jorda et al., 2014). Nevertheless,
there are significant differences in the lipid composition
profile of cells depending on the carbon source (Fig. 3,
Table S2 in Appendix S1). Specifically, these differences
are found in triacylglycerols (TAG), free fatty acids (FFA)
and phosphatidic acid (PA). There is a higher content of
TAG and PA at expenses of FFA in glycerol-grown cells,
whereas in methanol-grown cells, FFA is the major lipid
fraction, and TAG and PA are present only in trace
amounts. Glycerol is a direct precursor for many lipids.
In addition, the relative content of both TAG and PA,
which are lipid molecules with a glycerol backbone, is
increased in glycerol-grown cells. Therefore, these
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Fig. 3. Average lipid profile for biomass grown on glycerol (black) and methanol (grey). Triacylglycerols (TAG), free fatty acids (FFA), sterols
(STE), cardiolipin (CAR), phosphatidic acid (PA), phosphatidylcholine (PC) and phosphatidylinositol/phosphatidylserine (PI/PS).

differences seem to reflect the lower synthesis cost of
TAG and PA from its direct precursor glycerol.

When formulating a biomass equation for glycerol
and methanol growth conditions, despite that certain
biomass components appear to be correlated with
biomass-specific growth rate, statistical analyses do not
show significant differences associated with growth rate.
In contrast, statistically significant differences are found
when comparing average glycerol and methanol biomass
compositions. Consequently, new biomass equations
have been formulated for growth on glycerol and metha-
nol incorporating specific equations for each relevant
macromolecule (proteins, lipids) as well as for the frac-
tional contribution of each macromolecule to biomass.
The coefficients for the biomass equations were directly
extracted from the average carbon source-specific com-
positions reported in Table 2.

Energetic parameters estimation. Prior to model
validation, energetic parameters have to be estimated in
order to assure accurate predictions of cell performance.
These parameters are the growth associated and the
non-growth associated maintenance energy (GAME and
NGAME respectively). NGAME values differed
significantly for glycerol and methanol growth conditions.
On the one hand, growth on glycerol showed a NGAME
of 2.51 mmol ATP - gpcw ' - h™", which is similar to the
corresponding value previously calculated for glucose
growth conditions, 2.81 mmol ATP gocw |- h7!
(Rebnegger et al., 2016; Tomas-Gamisans et al., 2016).
In contrast, the NGAME calculated for methanol growth
is 0.44 mmol ATP -gpcw '-h™', ie. much lower
compared with the corresponding values calculated for
the other carbon sources.

For GAME estimation for growth on glycerol, physio-
logical parameters corresponding to the p = 0.035 h~!
condition were not considered, as a metabolic shift
seems to change the phenotypic profile at this (and
lower) growth rates (Rebnegger et al., 2014). This can

be directly inferred from the specific CO, production rate
(gco2) and specific O, consumption rate (qo2) observed
at this growth rate, which do not follow the same linear
trend as in the rest of measured range (Fig. 4). Hence,
taking into account this consideration, GAME for glycerol
was estimated to be 70.66 mmol ATP - gpcw |, that is,
2.4-fold lower than for methanol (166.77 mmol
ATP - gocw '). As mentioned above, there is an impor-
tant change in protein composition in methanol-grown
cells compared to glycerol growth due to the high levels
of enzymes associated with methanol metabolization.
The metabolic overload resulting from the maintenance
of this cell machinery could be one of the reasons for
the higher GAME besides the fact that growth on highly
reduced substrates such as methanol (reduction degree
(RD) of 6) is known to be usually less efficient (higher
energy dissipation and lower biomass yields) compared
to glycerol (RD 4.67) or glucose (RD 4; Heijnen and Van
Dijken, 1992). When compared to glucose culture condi-
tions, GAME for glycerol growth is very similar to the
72 mmol ATP - gpcw ' calculated for glucose growth in
our previous study (Tomas-Gamisans et al. (2016)).

Model validation. The updated model, iIMT1026 v3.0
(Appendix S3 and available at BioModels Database with
model ID MODEL1612130000), integrating the new
specific biomass equations for growth on glycerol and
methanol as sole carbon sources, was used to estimate
the main macroscopic growth parameters as described
in Experimental procedures section. The version 3.0 of
iMT1026 accurately predicts macroscopic growth
parameters within the range of tested growth rates for
both carbon sources (Fig. 4).

Despite the great overall performance, model deviates
from the experimental data by overestimating go. and
gcoz in the case of glycerol growth at 0.035 h™' (Fig. 4).
P. pastoris has been reported to reduce maintenance
energy requirements at very low growth rates associated
with metabolic adaptations and changes in gene
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expression (Rebnegger et al., 2014, 2016). To take into
account this lower maintenance energy requirement, a
series of additional simulations were carried out by con-
straining the NGAME at values lower than 2.51 mmol
ATP gocw ' - h™' (i.e. the default value set for glycerol-
grown cells) and maximizing growth at a given substrate
uptake rate. In this way, iIMT1026 v3.0 can be used to
accurately predict the main macroscopic growth

parameters for glycerol growth at 0.035 h~' when
NGAME is lowered (Fig. S1 in Appendix S1). In particu-
lar, values between 1 and 1.5 mmol ATP gpcw ' - h™’
allow the best accuracy in predicting the experimental
data at 0.085 h™", as shown in Fig. S1. According to
these calculations, there is between a twofold and three-
fold reduction of NGAME at the lower growth rate range.
Notably, these results are in agreement with Rebnegger
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et al. (2016), who reported threefold reduction in the
maintenance requirements at low growth rates.
Compared to iMT1026 v2.0, this new version improves
the accuracy in the prediction of the main macroscopic
variables for glycerol- or methanol-grown biomass
(Fig. 5) In addition, To demonstrate the importance of
using accurate NGAME and GAME as well as precise
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condition-specific biomass composition equations, a ser-
ies of simulations were performed by changing each one
of NGAME, GAME and biomass equations, and its over-
all accuracy was compared (Table S3 in Appendix S1).
Results showed the best accuracy when all the parame-
ters were adjusted to each specific carbon source. Thus,
simulations using glycerol- or methanol-specific biomass
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Fig. 5. Performance of iMT1026 v3.0 and iMT1026 v2.0 models compared to experimental data for the glycerol and methanol cultivations at
different growth rates. For the simulations, the specific substrate uptake rate was set as constraint, and biomass was maximized. In iIMT1026
v3.0, the specific biomass equations, as well as new non-growth associated maintenance energy values for glycerol and methanol, were
enabled accordingly to the corresponding carbon source-specific simulation.
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equations and estimated NGAME and GAME showed an
overall deviation around 2%, while those simulations of
glycerol and methanol cultivation data using the glucose-
specific biomass equation and energetic parameters
resulted in average deviations of 7-10%. The isolated
adjustment of one of the two energetic parameters to
those calculated in iIMT1026 v3.0 does not result in a
significant increase in overall accuracy in all the cases.
Despite improvements can be observed when predicting
glycerol cultivation data with adjusted both GAME and
NGAME parameters when methanol cultivation data are
simulated, no such improvement is observed by chang-
ing only one of the two parameters. However, the setting
of both GAME and NGAME values to those calculated
specifically for glycerol and methanol has a positive
effect on model prediction accuracy for both carbon
sources, and model prediction deviations are reduced to
3-5%. Finally, an alternative approach was tested using
the glucose-specific biomass equation and recalibrating
the GAME values, as described in ‘Energetic parameters
calculation’ section in ‘Experimental Procedures’ and
according to the experimental values for glycerol and
methanol cultivations. As reported in Table S3, simula-
tions performed with these recalibrated GAME values
are able to reduce the deviation of estimated values from
experimental data (2-4%), but discrepancy still remained
over the deviation of iIMT1026 v3.0 that uses specific
energetic parameters and macromolecular biomass
equations. Hence, the calculation of new non-growth
associated maintenance energy coefficient according to
Pirt's equation (Pirt, 1982) and the subsequent recalibra-
tion of growth associated maintenance energy might be
an alternative for adapting genome-scale metabolic mod-
els to expand the model to other carbon sources. Thus
even without having new carbon source-specific biomass
macromolecular compositions, a GSMMs could be used
for simulations with alternative carbon sources. However,
such approach implies a penalty in overall prediction
accuracy; thus, it could be used assuming higher devia-
tions (more than twofold higher in the glycerol example,
Table S3). Moreover, despite achieving acceptable
macroscopic parameter estimations (2-5%) without
adapting the biomass composition, an inaccurate
description of biomass composition may result in false
predictions of gene or enzyme essentiality (Duarte et al.,
2004). In addition, metabolic flux distribution is sensitive
to biomass composition (Dikicioglu et al., 2015); there-
fore, a wrong or inaccurate biomass equation may result
in the estimation of erroneous flux distributions. There-
fore, adapting the biomass equations to the condition-
specific composition would be the more accurate
approach that would reflect the in vivo flux distribution
with greater accuracy.

Conclusions

In this study, we analysed the performance of P. pastoris
growing in chemostat cultures using glycerol or methanol
as single carbon source over a wide range of growth
rates. The observed biomass composition changes in
terms of protein and RNA content as a function of
growth rate further supports the growth rate effect
hypothesis on biomass composition; i.e. for both carbon
sources, higher content of protein and RNA was
observed at higher growth rates. Moreover, biomass
composition also showed a strong dependence on car-
bon source, as protein content in biomass was higher in
methanol-grown cells. In addition, the carbon source has
a significant impact on lipid and amino acid profiles.

Overall, the information gathered on biomass composi-
tion at different growth rates and carbon sources allowed
to calculate average biomass compositions for glycerol-
and methanol-grown biomass. This allowed us to extend
the iIMT1026 model with new biomass equations for
growth on glycerol or methanol as sole carbon sources.
Energetic maintenance requirements were estimated for
the first time in P. pastoris in both carbon sources. Fur-
thermore, the model was validated for the range of
growth rates tested, and it accurately described the
experimental physiological data. Minor discrepancies
between experimental data and simulations were found
for glycerol at lower growth rates, where a nonlinear
behaviour of growth parameters has been reported due
to a metabolic shift on metabolism that enables P. pas-
toris to reduce its maintenance energy requirements.
Such discrepancies can be easily taken into account by
decreasing the value of maintenance energy require-
ments included in the model. Experimental data derived
from chemostat cultivations provide information for calcu-
lating carbon source-specific energetic parameters.
These values allow for significantly improving the preci-
sion of estimated macroscopic behaviour. Therefore, the
recalibration of energetic parameters, both NGAME and
GAME, may be used for extending the model to alterna-
tive carbon sources. Furthermore, the characterization of
biomass and definition of condition-specific biomass
equations enhance model performance and accuracy
and allow for a more precise and realistic calculation of
metabolic flux distribution.

In summary, the third version of iIMT1026, v3.0,
consensus model for P. pastoris, provides to the
scientific community an improved metabolic engineering
and analysis tool with expanded capabilities for predict-
ing the metabolic phenotype in a broader range of condi-
tions as well as an improved tool for future design of
model-based metabolic engineering of the P. pastoris
cell factory.
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Experimental procedures
Strain and cultivation conditions

Pichia pastoris wild-type X-33 (Invitrogen — Thermo Fisher
Scientific, Carlsbad, CA, USA) was cultivated in carbon
source-limited chemostat cultures at a range of dilution
rates. Continuous cultures were performed at a working
volume of 1 lin a 2 | benchtop bioreactor Biostat B (Sarto-
rius AG, Gottingen, Germany) for glycerol cultures and in
a Biostat B+ (Sartorius AG) for methanol cultivations. Two
independent chemostat series were performed for each
carbon source of increasing dilution rates (D) of 0.035,
0.050, 0.065, 0.100, 0.130 and 0.160 h~" for glycerol and
0.035, 0.050, 0.065, 0.080, 0.100 and 0.130 h™' for
methanol. For preculture, 150 ml of YPG media (2% (w/v)
peptone, 1% (w/v) yeast extract and 2% (w/v) glycerol) in
1 | of shake flasks was inoculated with a cryostock at an
initial ODggo of 0.15—0.30 and incubated at 150 rpm and
25°C (Infors HT Multitron, Bottmingen, Switzerland) for
approximately 24 h. Cells were centrifuged and resus-
pended in sterile demineralized water and used to inocu-
late the bioreactor for the batch phase. Once the batch
phase was concluded, chemostat phase was initiated at
the specific growth rate by appropriately setting the corre-
sponding inlet flow and enabling outlet flow to keep the
reactor volume constant to 1 |. Both for batch and chemo-
stat culture, stirring was set to 700 rpm, aeration rate to
1 vvm, temperature was maintained at 25°C and pH 5.0
automatically controlled with 15% ammonia. The off-
gases were cooled dawn in a condenser at 4°C and fur-
ther desiccated in two silica gel columns. For the glycerol
cultures, off-gas CO, and O, fractions were analysed
through BCP-CO, and BCP-O, Sensors (BlueSens gas
sensor GmbH, Herten, Germany). On the other hand,
methanol off-gas composition was analysed by means of
a mass spectrometer Omnistar™ 300 02 (Balzers Instru-
ments, Balzers, Liechtenstein). Each dilution rate was
kept for at least five residence times, and three culture
samples were taken along the last volume change.

Batch medium composition was previously described in
Baumann et al. (2008). Chemostat medium composition was
also taken from Baumann et al. (2008), except that glucose
was replaced by glycerol or methanol as carbon source.
Thus, briefly chemostat medium contained per litre: 50 g car-
bon source (glycerol or methanol), 0.84 g citric acid, 4.35 g
(NH4),HPO,, 0.01 g CaCl, - 2H,O, 1.7g KCI, 0.65g
MgSO, - 7H,0O, 1 ml Biotin (0.2 g1™") and 1.6 ml PTM1
trace salts stock solution (prepared as described in Baumann
et al., 2008). pH was adjusted to 5.0 with 25% HCI.

Analytical methods

Extracellular metabolite quantification. Glycerol,
methanol, arabitol, succinate, acetate and ethanol were
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analysed by HPLC. Triplicate samples (2 ml each) were
centrifuged at 12 000 rpm for 2 min (Minispin,
Eppendorf, Hamburg, Germany). The supernatant was
collected and filtered through 0.45 um nitrocellulose
membrane filters (Merck Millipore, Carrigtwohill, Ireland).
Duplicate samples were analysed by HPLC (HP 1050
liquid chromatograph, Dionex Corporation, Sunnyvale,
CA, USA) using an ICSep ICE COREGEL 87H3 column
(Transgenomic Inc., Omaha, NE, USA). The mobile
phase was 8 mM sulphuric acid. Injection volume was
20 pl. Data were quantified by Chromeleon 6.80
Software (Dionex Corporation, Sunnyvale, CA, USA).
Average relative standard deviation (RSD) of the
analysis was about 1%.

Biomass quantification. Biomass in culture broth was
monitored during cultivation by measuring the optical
density at 600 nm. Dry cell weight (DCW) was quantified
accordingly to the method described in Jorda et al. (2012).
Biomass concentration was determined in ftriplicate.
Biomass concentration average RSD was about 2%.

Biomass composition analysis. Both for the glycerol and
methanol cultivations, biomass composition was
analysed at the following growth rates: 0.035, 0.065,
0.100 h™'. Additionally, for the glycerol cultivations,
biomass analyses were also carried out at 0.160 h™.

Elemental analysis.—C, H, N, S were analysed by
combustion at 1200°C and subsequent gas
chromatography in a Flash 2000 Elemental Analyzer
(Thermo Fisher Scientific, Waltham, MA, USA). Oxygen
was determined through an oxygen-specific pyrolysis at
1060°C. Ash content was determined by subtraction of
the C, H, N, O, S fractions as remaining component.

Amino acid analysis.—Fifteen milligrams of lyophilized
biomass was hydrolysed with 6M HCI for 24 h at 105°C.
Then, deionized water (MiliQ) was added up to complete
50 ml. Filtered aliquots were vacuum-dried and finally
resuspended in water. Samples were then derivatized
wit  6-aminoquinolyl-N-hydroxysuccinimidyl carbamate
according to AccQ-Tag method (Waters, Milford, MA
USA). Derivatized amino acids were analysed with a
Waters 2487 (Waters) UV detector at 254 nm in a
gradient system HPLC Waters 600 (Waters).

Biomass samples for the determination of total protein,
carbohydrates, DNA and RNA content were prepared
and analysed as described in Carnicer et al. (2009).

Statistical analysis

Standard reconciliation procedures (Lange and Heijnen,
2001; Verheijen, 2010) were applied to elemental
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composition and major macromolecular components
(proteins, carbohydrates, DNA and RNA). The resulting
biomass elemental composition was subsequently used
to perform chemostat cultivation data reconciliation and
consistency analyses (Noorman et al., 2000). Both for
biomass macromolecular and elemental composition as
well as for chemostat substrate and product data, a sta-
tistical consistency test, based on h-index as described
by Noorman et al. (2000) was passed with a confidence
level of 95%. Consequently, there was no evidence for
gross measurement errors.

Global macromolecular, amino acid and lipid composi-
tion data were analysed with statistical tests available in
Microsoft Excel. Two-tailed Student’s ttest was used to
determine statistically significant differences in biomass
composition between carbon source and growth rates.

Modelling

Pichia pastoris iMT1026 v2.0 (Tomas-Gamisans et al.,
2016) updated at BioModels database (Chelliah et al.,
2015) ID: MODEL1508040001 (Appendix S2) was used
as starting model for further updating. The model was
edited incorporating new average carbon source-specific
biomass equations using standard scripts from
coBrAa TOOLBOX V2.0.6 (Schellenberger et al., 2011).
Appendix S4 includes the coBra commands necessary
to add these new equations into the existing model. The
biomass stoichiometric coefficients are directly derived
from the carbon source-specific average biomass com-
position determined experimentally and summarized in
Table 2. All simulations were carried out with the cosra
TooLBoX v2.0.6 under Matlab 2014 (Mathworks, Natick,
MA, USA) with semL TooLBox v4.1.0 (Keating et al., 2006)
and libsemL LIBRARY v5.12.0 (Bornstein et al., 2008). Flux
balance analysis (FBA) with linear optimization was used
to predict metabolic phenotypes by setting the appropri-
ate flux constraints. To test model accuracy and validate
it for each carbon source, biomass production was con-
strained to each of the experimentally tested growth
rates, and the absolute value of substrate uptake rate
was minimized performing a FBA. The resulting macro-
scopic fluxes (O, and substrate consumption and CO,
production) were calculated and compared with the cor-
responding experimental values. iMT1026 v3.0 model
was saved in SBML format, validated for syntax and
internal consistency and submitted to BioModels data-
base with the ID: MODEL1612130000. This model is
also available in Appendix S3.

Energetic parameters calculation. ATP requirement for
cellular maintenance was determined by the following
energetic parameters estimation procedure. These
requirements were divided into growth associated

maintenance energy (GAME) and non-growth associated
maintenance energy (NGAME). For NGAME calculation,
the substrate uptake rate was represented against the
growth rate (p) according to Pirt’'s equation (Pirt, 1982).
In the y-intercept of this linear regression, ATP turnover
was maximized (n = 0). These ATP values (for glycerol
and methanol) are set as lower bounds in ‘ATPM’
reaction, representing NGAME.

Using the obtained values for NGAME, GAME was
determined by adjusting ATP stoichiometric coefficient
in the corresponding biomass equation to fit biomass—
substrate yields according to the experimental data.
These simulations were carried out by maximizing the
biomass production in a FBA, at the different growth
rates, constraining the substrate uptake rate according
to the experimental data and iteratively fitting the ATP
stoichiometric coefficient to the less global residual error
of predicted biomass to the experimental values.
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Appendix S1

Table S1. Amino acid composition of cell protein extracts
for all the growth conditions tested. Values represent %
mol/mol + SD.

Table S2. Biomass lipid profile in all the tested condi-
tions. Values represent % w/w of the lipid fraction + SD.
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Table S3. Evaluation of macroscopic parameter predic-
tion accuracy using different energetic parameters and bio-
mass composition configurations.

Fig. S1. Prediction of macroscopic growth parameters in
glycerol-grown cells at 0.035 h™' using different values for
non-growth associated maintenance (ATPM). Substrate
uptake rate was constrained according to the experimental
data and different values for the ‘ATPM’ reaction were
tested. Default ATPM corresponding to glycerol-grown bio-
mass is 2.9 mmol ATP.gocw *h™'. qcop: expefimental
(solid line) and predicted (@); growth rate: experimental
(dotted line) and predicted (O); goz: experimental (dashed
line) and predicted (V).

Appendix S2. iMT1026v2.xml. Second version of
iIMT1026 (v2.0) model in SBML format.

Appendix S3. iMT1026v3.xml. New updated version of
iMT1026 (v3.0) in SBML format.

Appendix S4. iMTv3Edition.txt. COBRA commands
applied to iIMT1026 v2.0 for the generation of iMT1026 v3.0.
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