Review

Lipoquality control by phospholipase A_2 enzymes

By Makoto MURAKAMI*1,*2,*3,†

(Communicated by Kunihiko SUZUKI, M.J.A.)

Abstract: The phospholipase A_2 (PLA₂) family comprises a group of lipolytic enzymes that typically hydrolyze the $sn-2$ position of glycerophospholipids to give rise to fatty acids and lysophospholipids. The mammalian genome encodes more than 50 PLA₂s or related enzymes, which are classified into several subfamilies on the basis of their structures and functions. From a general viewpoint, the PLA_2 family has mainly been implicated in signal transduction, producing bioactive lipid mediators derived from fatty acids and lysophospholipids. Recent evidence indicates that PLA2s also contribute to phospholipid remodeling for membrane homeostasis or energy production for fatty acid β -oxidation. Accordingly, PLA₂ enzymes can be regarded as one of the key regulators of the quality of lipids, which I herein refer to as *lipoquality*. Disturbance of PLA_2 -regulated lipoquality hampers tissue and cellular homeostasis and can be linked to various diseases. Here I overview the current state of understanding of the classification, enzymatic properties, and physiological functions of the PLA_2 family.

Keywords: phospholipase, lipid, fatty acid, phospholipid, membrane, lipidomics

1. Introduction

In terms of signal transduction, the phospholipase A_2 (PLA₂) reaction, which hydrolyzes the $sn-2$ position of phospholipids to yield fatty acids and lysophospholipids, has been considered to be of particular importance, since arachidonic acid (AA, C20:4), one of the polyunsaturated fatty acids (PUFAs) released from membrane phospholipids by $PLA₂$, is metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) to lipid mediators including prostaglandins (PGs) and leukotrienes (LTs), which are often referred to as eicosanoids (Fig. 1).

Lysophospholipids or their metabolites, such as lysophosphatidic acid (LPA) and platelet-activating factor (PAF), are categorized into another class of PLA_2 -driven lipid mediators (Fig. 2A, B). More recently, a novel class of anti-inflammatory lipid mediators derived from ω 3 PUFAs, such as eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), has also been attracting much attention (Fig. 2C). These lipid mediators exert numerous biological actions on target cells mainly by acting on their cognate G protein-coupled receptors. The pathophysiological roles of individual lipid mediators have been summarized in recent reviews.^{1)–4)}

However, this principal concept appears to be insufficient to fully explain the biological aspects and physiological roles of the PLA_2 family. Phospholipids comprise numerous molecular species that contain various combinations of fatty acids esterified at the $sn-1$ and $sn-2$ positions and several polar head groups at the $sn-3$ position. Many, if not all, PLA_2 enzymes recognize such differences in the fatty acyl and/or head group moieties in their substrate phospholipids. Moreover, several enzymes in the PLA_2 family also catalyze the phospholipase A_1 (PLA₁), lysophospholipase, neutral lipid lipase, or even transacylase/

 \ast1 Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.

^{*2} Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
*3 AMED.CREST Japan A

AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.

[†] Correspondence should be addressed: M. Murakami, Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: makmurak@m.utokyo.ac.jp).

Fig. 1. The eicosanoid-biosynthetic pathway (AA metabolism). The AA released by PLA_2 from cellular membrane is metabolized to various eicosanoids through the COX and LOX pathways. Structures and representative bioactivities of individual eicosanoids and their biosynthetic enzymes are shown. H- and L-PGDS, hematopoietic and lipocalin-type PGD2 synthases, respectively; PGFS, $PGF_{2\alpha}$ synthase, PGIS, PGI₂ synthase; mPGES-1, microsomal PGE₂ synthase-1; TXS, TX synthase; 12-HHT, 12-hydroxyheptadecatrenoic acid; 12-HETE, 12-hydroxyeicosatetraenoic acid; FLAP, 5-LOX-activating protein; LTA4H, LTA4 hydrolase; LTC4S, LTC₄ synthase.

acyltransferase reaction rather than or in addition to the genuine PLA_2 reaction. Therefore, the fatty acids and lysophospholipids released by different PLA_2s are not always identical; rather, in many situations, specific fatty acids and lysophosholipids can be released by a particular PLA_2 in the presence of a given microenvironmental cue. In this context, PLA_2 enzymes act as one of the critical regulators of spatiotemporal lipid profiles, namely the quality of lipids (lipoquality). To comprehensively understand the lipoquality regulation by individual PLA_2s in various pathophysiological contexts, their precise enzymatic, biochemical and cell biological properties, tissue and cellular distributions, and availability of phospholipid substrates in various pathophysiological settings should be taken into consideration.

Herein, I overview current understanding of the biological aspects of various PLA_2 enzymes in the context of lipoquality.

2. Substrate specificity of PLA_2 s; a general view

Obviously, the substrate specificity of individual PLA2s is the critical determinant of lipoquality. The in vitro enzymatic activity of PLA_2s may be influenced by the assay conditions employed, such as the composition of the substrate phospholipids, concentrations of PLA_2s and substrates, presence of detergents, and pH. Hence, the enzymatic properties of individual PLA2s determined in different studies may not be entirely identical. Since natural membranes contain numerous phospholipid molecular species, the results obtained using artificial phosphoOH

Fig. 2. Lysophospholipid-derived lipid mediators (LPA and PAF) and PUFA-derived anti-inflammatory lipid mediators (lipoxin, resolvin and protectin). (A) Two biosynthetic pathways for LPA. LPA is produced by fatty acid deacylation of phosphatidic acid (PA) by PLA_2 (or PLA_1), or by removal of the polar head group of lysophosphatidylcholine (LPC), which is produced from PC by PLA_2 (or PLA_1), by a lysophospholipase D termed autotaxin (ATX). In most if not all in vivo situations, the ATX-dependent route is dominant for the production of LPA. DAG, diacylglycerol; DGK, diacylglycerol kinase; PLD, phospholipase D. (B) Biosynthesis and degradation of PAF. Alkyl-PC is converted by PLA2 to alkyl-LPC (LysoPAF), which is then acetylated by LPC acyltransferase 2 (LPCAT2) to give rise to PAF. PAF is deacetylated to LysoPAF by PAFAH, a unique group of PLA2s. LysoPAF is converted back to alkyl-PC by LPCAT3. (C) Anti-inflammatory PUFA metabolites derived from ω 6 AA (lipoxin A₄; LXA₄), ω 3 EPA (resolvin E1; RvE1), and ω 3 DHA (RvD1 and protectin D1; PD1). The double bond characteristic of the ω 3 and ω 6 PUFAs is shadowed.

lipid vesicles comprising only one or a few phospholipid species may not always reflect the true enzymatic properties of a given PLA_2 . Addition of an excess amount of recombinant or purified PLA_2 to an enzyme assay often results in hydrolysis of bulk phospholipids, which makes precise evaluation of its substrate specificity difficult. The results obtained using a commercially available PLA_2 assay kit, in which a synthetic, chromophoric phospholipid is used as a substrate, should be interpreted carefully, since some PLA_{2S} are unable to hydrolyze it efficiently. In this regard, mass spectrometric examination of the in vitro hydrolysis of natural membrane phospholipids extracted from the affected tissues or cells by PLA2, particularly at a low (physiologically relevant) concentration of the enzyme, could provide a valuable clue to the in vivo substrates and products pids extracted from the affected tissues or cells by PLA₂, particularly at a low (physiologically relevant) concentration of the enzyme, could provide a valuable clue to the *in vivo* substrates and products of this enz in vitro assay using natural membranes is recapitulated in several in vivo systems, often with even more

selective patterns of hydrolysis that are relevant to the results of studies using PLA_2 knockout and/or transgenic mice (see below). Importantly, the mobilization of distinct lipids by PLA_2s in vivo relies not only on their intrinsic enzymatic properties, but also on tissue- or disease-specific contexts such as the lipid composition of target membranes, the spatiotemporal availability of downstream lipid-metabolizing enzymes, or the presence of cofactor(s) that can modulate the enzymatic function, which may account for why distinct PLA_2 enzymes even in the same subfamily exert specific functions with different lipid profiles in distinct settings.

RvD1 PD1

OH

Hereafter, I describe the current understanding of various PLA_2s in the context of lipoquality. The classification, distributions, properties and functions of individual PLA_2s , whose pathophysiological functions have currently been studied using their gene-manipulated mice, are summarized in Table 1.

Table 1. Properties of PLA2 subtypes and their biological roles Table 1. Properties of PLA2 subtypes and their biological roles

680 M. MURAKAMI [Vol. 93,

 $Continued\ on\ next\ page.$ Continued on next page:

 $\begin{tabular}{l|p{0.5cm}|} \hline \multicolumn{3}{c}{\textbf{F}}\textbf{m} \textbf{y} \textbf{m} \textbf{b} \textbf{c} \textbf{c} \textbf{w} \textbf{b} \textbf{c} \textbf{c} \textbf{b} \textbf{c} \textbf{c} \textbf{b} \textbf{c} \textbf{c}$ Enzymes whose in vivo functions have been analyzed using knockout mice are summarized.

No. 9 \Box Lipoquality control by phospholipase A_2 enzymes 681

3. Lipoquality control by intracellular PLA_2s

The cPLA₂ family. The cytosolic PLA_2 682 M. MURAKAMI
 3. Lipoquality control by intracellular PLA₂s end
 (parrol) The cPLA₂ family. The cytosolic PLA₂ μ M

(cPLA₂) family comprises 6 isoforms (α – ζ), among max which cPLA₂ β , δ , ε and ζ map to the same chromosomal locus (Fig. 3A).⁸⁾ cPLA₂ α (also known as group IVA PLA_2) is undoubtedly the best known $PLA₂$ and its biological roles in association with lipoquality have been well documented.⁹⁾ cPLA₂ α is the only PLA_2 that shows a striking substrate specificity for AA-containing phospholipids. Strictly speaking, cPLA₂ α can also hydrolyze phospholipids containing EPA, yet the low abundance of this $\omega 3$ PUFA relative to other fatty acids including ω 6 AA in cell membranes allows $cPLA_2\alpha$ to release AA rather specifically in most situations. Upon cell activation, cPLA₂ α translocates from the cytosol to the phosphatidylcholine (PC)-rich perinuclear,

MAPK MAPKAPK

 S^{505} S^{727}

C2 domain

 \ast

Catalytic center

 \ast

endoplasmic reticulum (ER) and Golgi membranes (particularly Golgi) in response to an increase in the μ M range of cytosolic Ca²⁺ concentration, and is maximally activated by phosphorylation through mitogen-activated protein kinases (MAPKs) and other kinases.10),11) In addition, the phosphoinositide PIP2 and ceramide-1-phosphate modulate the subcellular localization and activation of $cPLA_2\alpha$ ^{12),13} The AA released by cPLA₂ α is converted by the sequential action of constitutive COX-1 or inducible COX-2 and terminal PG synthases to PGs or by the sequential action of 5-LOX and terminal LT synthases to LTs (Fig. 3B).

Mice deficient in cPLA₂ α display a number of phenotypes that can be explained by reductions of PGs and/or LTs. Under physiological conditions, $cPLA_2\alpha$ -deficient mice display a hemorrhagic tendency, impaired female reproduction, gastrointestinal ulcer, and renal malfunction, among others. $(14)-18$) Under pathological conditions, $cPLA_2\alpha$ -deficient mice are protected against bronchial asthma, pulmonary fibrosis, cerebral infarction, Alzheimer's disease, experimental autoimmune encephalomyelitis, collagen-induced arthritis, metabolic diseases, intestinal cancer and so on, whereas they suffer from more nary fibrosis, cerebral infarction, Alzheimer's disease, experimental autoimmune encephalomyelitis, collagen-induced arthritis, metabolic diseases, intestinal cancer and so on, whereas they suffer from more severe colitis these phenotypes are recapitulated in mice lacking one or more of the biosynthetic enzymes or receptors for PGs and LTs, lending strong support to the notion that $\text{cPLA}_2\alpha$ lies upstream of eicosanoid biosynthesis in many situations. For instance, as is the case for $cPLA_2\alpha$ -deficient mice, mice lacking LTC_4 synthase (LTC_4S), LTD_4 receptor (CysLT1), $LTB₄$ receptor (BLT1), or $PGD₂$ receptor (DP1) are protected from asthma, 25)–27) revealing the critical role of the $cPLA_2\alpha$ -LTB₄/LTC₄/PGD₂ axis in this allergic disease. Likewise, the decrease of PGE_2 in $cPLA_2\alpha$ -deficient mice can account largely, even if not solely, for the mitigation of arthritis, autoimmune encephalomyelitis, cancer and neurodegeneration as well as the exacerbation of colitis, since these phenotypes are mimicked by mice lacking PGE_2 synthase (mPGES-1) or either of the four PGE_2 receptors (EP1 \sim 4).^{28)–32)} Furthermore, cPLA₂ α -triggered release of AA by platelets is coupled not only with biosynthesis of the pro-thrombotic eicosanoid thromboxane A_2 (TXA₂), but also with β -oxidationmediated bioenergetics for blood clotting.33) Importantly, inherited human $\text{cPLA}_2\alpha$ mutations are associated with reduced eicosanoid biosynthesis, platelet dysfunction, and intestinal ulceration, $34,35$ thus mimicking $cPLA_2\alpha$ deletion in mice.

 ζ). The C2 domain, which is essential for Ca²⁺-dependent membrane translocation, is conserved in $cPLA_2$ enzymes except for cPLA₂ γ , whose C-terminal region is farnesylated. (B) A schematic diagram of stimulus-induced cPLA₂ α activation. For details, see the text.

 $cPLA_2$ α (PLA2G4A) cPLA2β (PLA2G4B)

A

Fig. 4. The iPLA₂/PNPLA family. Structures of iPLA₂/PNPLA enzymes (PNPLA1 \sim 9), which are subdivided into lipase and phospholipase types, are shown. The patatin domain, which is characteristic of this family, is conserved in all of these enzymes. The biological functions and enzymatic properties of the individual enzymes are indicated on the right. For details, see the text.

On the other hand, the enzymatic activities and biological functions of $cPLA_2$ isoforms other than $cPLA_2\alpha$ have remained largely unknown. Reportedly, cPLA₂ β (group IVB PLA₂), which has a unique $\lim C$ domain in the N-terminal region, display PLA_1 , PLA_2 and lysophospholipase activities.³⁶⁾ cPLA₂ (group IVC PLA_2), which uniquely lacks the C2 domain characteristic of the cPLA2 family, is Cterminally farnesylated and possesses lysophospholipase and transacylase activities in addition to PLA_2 activity.³⁷⁾ cPLA₂ δ (group IVD PLA₂), whose expression is elevated in human psoriatic skin, 38) shows PLA₁ activity in preference to PLA₂ activity.³⁶⁾ cPLA₂ ε (group IVE PLA₂) exhibits a unique transacylase activity that transfers $sn-1$ fatty acid of PC to an amino residue of phosphatidylethanolamine (PE) to form N-acyl-PE, a precursor of the endocannabinoid lipid mediator N-acylethanolamine.³⁹ cPLA₂ ζ (group IVF PLA_2) displays both PLA_1 and PLA_2 activities without fatty acid selectivity. $40)$ However, acylase activity that transfers sn -1 fatty acid of PC to
an amino residue of phosphatidylethanolamine (PE)
to form *N*-acyl-PE, a precursor of the endocannabi-
noid lipid mediator *N*-acylethanolamine.³⁹⁾ cPLA₂
(grou ing to the in vitro assays employed, implying that analyses using gene-manipulated mice for these

enzymes will be necessary for clarifying their biological roles in the context of lipoquality.

The $iPLA_2/PNPLA$ family. The human genome encodes 9 Ca^{2+} -independent PLA₂ (iPLA₂) enzymes (Fig. 4). These enzymes are now more generally referred to as patatin-like phospholipase domain-containing lipases $(PNPLA1\sim 9)$, as all members in this family share a patatin domain, which was initially discovered in patatin (iPLA₂ α), a potato protein.^{41),42)} Mammalian iPLA₂/PNPLA isoforms include lipid hydrolases or transacylases with specificities for diverse lipids such as phospholipids, neutral lipids, sphingolipids, and retinol esters. Generally speaking, enzymes bearing a large and unique N-terminal region (PNPLA6 \sim 9) act mainly on phospholipids (phospholipase type), whereas those lacking the N-terminal domain (PNPLA1 \sim 5) act on neutral lipids (lipase type). Analysis of mutant mouse models and clinical symptoms of patients with mutations for these enzymes have provided valuable insights into the physiological roles of the $iPLA_2$ PNPLA family in various forms of homeostatic lipid metabolism that are fundamental for life.

Among the $iPLA_2/PNPLA$ family, PNPLA9 $(iPLA_2\beta,$ also known as group VIA PLA₂) is the only isoform that acts primarily as a PLA_2 with poor fatty acid selectivity.^{43),44)} Although PNPLA8 (iPLA₂ γ or group VIB PLA_2) displays PLA_2 activity, it acts as a PLA_1 toward phospholipids bearing $sn-2$ PUFA.^{45),46} Accordingly, hydrolysis of PUFA-bearing phospholipids by PNPLA8/iPLA₂ γ typically gives rise to 2-lysophospholipids (having a PUFA at the sn-2 position) rather than 1-lysophospholipids (having a saturated or monounsaturated fatty acid at the $sn-1$ position). PNPLA6 (iPLA₂ δ) and its closest paralog PNPLA7 (iPLA₂ θ) have lysophospholipase activity that cleaves lysophosphatidylcholine to yield fatty acid and glycerophosphocholine. $47,48$) Genetic mutations or deletions of these phospholipid-targeting PNPLAs cause various forms of metabolic dysfunction and neurodegeneration.^{49)–53)} In particular, $PNPLA9/IPLA₂\beta$ is also referred to as the parkinsonism-associated protein PARK14, whose mutations impair Ca^{2+} signaling in dopaminergic neurons.⁵⁴⁾ Apart from the metabolic and neurodegenerative phenotypes, the lack of $PNPLA9/IPLA_2\beta$ leads to male infertility through an unknown mechanism.⁵⁵⁾

PNPLA2 ($iPLA_2$), more generally known as adipose triglyceride lipase (ATGL), is a major lipase that hydrolyzes triglycerides in lipid droplets to release fatty acids as a fuel for β -oxidation-coupled energy production, a process known as lipolysis.⁵⁶⁾ Genetic deletion or mutation of PNPLA2 leads to massive accumulation of triglycerides in multiple tissues leading to multi-organ failures, 57 while protecting from cancer-associated cachexia by preventing fat loss.58) The activity of PNPLA2 is regulated positively by ABHD5 (see below) and negatively by perilipin and G0S2, which modulate the accessibility of PNPLA2 to lipid droplets.⁵⁹⁾ The fatty acids released from lipid droplets by PNPLA2 act as endogenous ligands for the nuclear receptor $PPAR\alpha$ or $PPAR\delta$, which accelerates energy consumption.⁵⁹,⁶⁰) The regulatory mechanisms and metabolic roles of PNPLA2 have been detailed in other elegant reviews.^{61),62)} Mutations of PNPLA3 (iPLA₂ ε) are highly associated with non-alcoholic fatty liver disease.63) Although the catalytic activity of PNPLA3 is controversial, it may serve as a triglyceride lipase, since its loss-of function mutation increases cellular triglyceride levels.64) Furthermore, recent evidence suggests that PNPLA3 acts as a retinyl-palmitate lipase in hepatic stellate cells to fine-tune the plasma levels of retinoids. The expressions of PNPLA2 and PNPLA3 are nutritionally regulated in a reciprocal

way; PNPLA2 is upregulated, while PNPLA3 is downregulated, upon starvation, and vice versa upon feeding.65) Biochemical and cell biological studies have suggested that PNPLA4 (iPLA₂ η , which is absent in mice) might be involved in retinol ester metabolism $^{66)}$ and that PNPLA5 might participate in triglyceride lipolysis coupled with autophagosome formation, 67 although the *in vivo* relevance of these in vitro observations is unclear.

Unlike most PNPLA isoforms that are ubiquitously expressed in many tissues, PNPLA1 is localized predominantly in the upper layer of the epidermis. PNPLA1 acts as a unique transacylase, catalyzing the transfer of linoleic acid (LA; C18:2) in triglyceride to the ω -hydroxy residue of ultra-longchain fatty acid in ceramide to form ω -O-acylceramide, a lipid component essential for skin barrier function.68),69) Accordingly, genetic deletion or mutation of PNPLA1 hampers epidermal ω -O-acylceramide formation, thereby severely impairing skin barrier function and causing ichthyosis. The unique role of PNPLA1 in the acylceramide-metabolic pathway in the epidermis is depicted in Fig. 5.

The PAFAH family. The PAF-acetylhydrolase (PAFAH) family comprises one extracellular and three intracellular PLA_{2S} that were originally found to have the capacity to deacetylate and thereby inactivate the lysophospholipid-derived lipid mediator PAF.70),71) Type-I PAFAH is a heterotrimer composed of two catalytic subunits, group XIIIA and XIIIB PLA₂s, and a regulatory subunit LIS-1, the causative gene for a type of Miller Diecker syndrome.72) Deficiency of type-I PAFAH leads to male infertility through an unknown mechanism.⁷³⁾ Type-II PAFAH (group VIIB PLA_2) preferentially hydrolyzes oxidized phospholipids (i.e., phospholipids having an oxygenated fatty acid at the $sn-2$ position) in cellular membranes, thereby protecting cells from oxidative damage.74) Although plasma-type PAFAH (group VIIA PLA_2) is a secreted protein, it is described here as its structure is close to type-II PAFAH. Plasma-type PAFAH is now more generally called lipoprotein-associated PLA_2 (Lp-PLA₂), existing as a low-density lipoprotein (LDL)-bound form in human plasma.75) A series of studies have revealed the correlation of L_p -PLA₂ with atherosclerosis, likely because this enzyme liberates toxic oxidized fatty acids from modified LDL with pro-atherogenic potential.^{76),77)} Furthermore, deficiency of L_P -PLA₂ decreases intestinal polyposis and colon tumorigenesis in $Apc^{Min/+}$ mice,⁷⁸⁾ suggesting an anti-tumorigenic role for PAF in this setting.

Fig. 5. The role of PNPLA1 in epidermal acylceramide biosynthesis. Structures of the metabolites and enzymes or transporters responsible for individual steps in the acylceramide-biosynthetic pathway are indicated. Mutations or deletions of these enzymes cause ichthyosis in both human and mouse. PNPLA1 catalyzes the transacylation of LA from triglyceride to ω -OH ceramide, leading to the formation of ω -O-acylceramide, which is an essential component of lipid lamellae and the cornified lipid envelope in the uppermost epidermis. For details, see the text. ELOVL6, fatty acid elongase 6; CYP4F22/39, cytochrome P450 family F22 (in human) and F39 (in mouse); CERS3, ceramide synthase 3; ABCA12, ABC transporter 12; UGCG, UDP-glucose ceramide glucosyltransferase; GBA, O-glucocerebrosidase; ALOXE3, epidermal-type lipoxygenase 3; ALOX12B, 12R-lipoxygenase; TGM1, transglutaminase 1.

Lysosomal PLA₂. Lysosomal PLA₂ (LPLA₂), also known as group XV $PLA₂$, is homologous with lecithin cholesterol acyltransferase (LCAT) and catalytically active under mildly acidic conditions.79) $LPLA₂$ hydrolyzes both $sn-1$ and $sn-2$ fatty acids in phospholipids and contributes to phospholipid degradation in lysosomes. Genetic deletion of $LPLA_2$ results in unusual accumulation of non-degraded lung surfactant phospholipids in lysosomes of alveolar macrophages, leading to phospholipidosis, 80 perturbed presentation of endogenous lysophospholipid antigens to CD1d by invariant natural killer T $(iNKT)$ cells,⁸¹⁾ and impairment of adaptive T cell immunity against mycobacterium.82)

The PLAAT family. The PLA-acyltransferase (PLAAT) family (3 enzymes in humans and 5 enzymes in mice) is structurally similar to lecithin retinol acyltransferase (LRAT). Members of this family, including group XVI PLA_2 (PLA2G16),

display PLA_1 and PLA_2 activities, as well as acyltransferase activity that synthesizes N-acyl-PE, to various degrees.⁸³⁾ PLA2G16 is highly expressed in adipocytes, and PLA2G16-deficient mice are resistant to diet-induced obesity. 84 PLA2G16 and its paralogs in this family have also been implicated in tumor invasion and metastasis,⁸⁵⁾ vitamin A metabolism, 86 peroxisome biogenesis, 87 and cellular entry and clearance of Picornaviruses.⁸⁸⁾

The ABHD family. The α/β hydrolase (ABHD) family is a newly recognized group of lipolytic enzymes, comprising at least 19 enzymes in humans.⁸⁹⁾ Enzymes in this family typically possess both hydrolase and acyltransferase motifs. Although the functions of many of the ABHD isoforms still remain uncertain, some of them have been demonstrated to act on neutral lipids or phospholipids as lipid hydrolases. ABHD3 selectively hydrolyzes phospholipids with medium-chain fatty acids.90)

Fig. 6. The sPLA₂ family. The phylogenetic tree of sPLA₂ isoforms, which are subdivided into classical sPLA₂s ($I/II/V/X$ branch) and atypical sPLA2s (III and XII branches), is shown. The pathophysiological roles and related types of lipid metabolism (target substrates or products; shown in blue) for the individual isoforms are indicated. For details, see the text.

ABHD4 releases fatty acids from multiple classes of N-acyl-phospholipids to produce N-acyl-lysophospholipids.91) ABHD6 acts as lysophospholipase or monoacylglycerol lipase, the latter being possibly related to the regulation of 2-arachidonoyl glycerol $(2-AG)$ signaling.^{92 $)$,93 $)$ 2-AG is an endocannabinoid} lipid mediator that plays a role in the retrograde neurotransmission and is considered to be produced mainly by diacylglycerol lipase α ⁹⁴⁾ Interestingly, in the brain, the AA released from 2-AG by monoacylglycerol lipase, rather than that released from phospholipids by $cPLA_2\alpha$ (see above), is linked to the production of a pool of PGE_2 that promotes fever.2),95) ABHD12 hydrolyzes lysophosphatidylserine (LysoPS), and is therefore referred to as LysoPS lipase.⁹⁶⁾ Mutations in the human $ABHD12$ gene result in accumulation of LysoPS in the brain and cause a disease called PHARC, which is characterized by polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract. $97)$ ABHD16A acts as a phosphatidylserine (PS) -selective PLA_2 (referred to as PS lipase), being located upstream of ABHD12 in the PS-catabolic pathway.96) Although ABHD5

(also called CGI-58) does not have a catalytic activity because of the absence of a serine residue in the catalytic center, it greatly enhances PNPLA2 directed hydrolysis of triglycerides in lipid droplets by acting as an essential lipolytic cofactor. 98

4. Lipoquality control by secreted PLA2s

General aspects. The secreted PLA_2 (sPLA_2) family contains 10 catalytically active isoforms and one inactive isoform in mammals.^{42 $)$,99 $)$ Based on the} structural and evolutional relationships, these enzymes are categorized into classical (IB, IIA, IIC, IID, IIE, IIF, V and X) and atypical (III and XII) classes (Fig. 6). The $sPLA_2$ family strictly hydrolyzes the $sn-2$ position of phospholipids, a feature that differs from intracellular PLA₂s that often display PLA₁, lysophospholipase, lipase, or transacylase/acyltransferase activity (see above). Individual sPLA_2 s exhibit unique tissue and cellular distributions, suggesting their distinct biological roles. As sPLA_2 s are secreted and require Ca^{2+} in the mM range for their catalytic action, their principal targets are phospholipids in the extracellular space, such as microparticles, surfactant, lipoproteins, and foreign phospholipids in microbe membranes or dietary components. The biochemical properties and pathophysiological functions of sPLA_2 s have been detailed in several recent reviews.5),100) Here, I describe several key features of lipoquality regulation by the $sPLA_2$ family.

In terms of the lipoquality, sPLA_2s have long been considered to display no apparent selectivity for sn-2 fatty acid species in the substrate phospholipids. This view was based on the fact that $sPLA_2-IB$ and -IIA, two prototypic sPLA_2 s that were initially identified through classical protein purification from the pancreas and sites of inflammation, respectively,^{101),102)} as well as a number of snake venom PLA₂s that belong to group I and II sPLA₂s, are capable of releasing fatty acids non-selectively. However, recent lipidomics-based evaluation of the substrate specificity of $sPLA_2s$ toward natural membranes (see above) has revealed that several sPLA_2s can distinguish sn-2 fatty acyl moieties in phospholipids under physiologically relevant conditions. In general terms, $sPLA_2-IB$, $-IIA$ and $-IIE$ do not discriminate fatty acid species, $sPLA_2-V$ tends to prefer those with a lower degree of unsaturation such as oleic acid $(OA; C18:1)$, and $sPLA_2-IID$, $-IIF$, $-III$ and -X tend to prefer PUFAs including AA and DHA. Several sPLA_2 s can also distinguish differences in the polar head groups of phospholipids. For instance, $sPLA_2-X$ is very active on PC, while $sPLA_2-IIA$ has much higher affinity for PE than for PC, and this substrate selectivity has been partly ascribed to their crystal structures.103),104) Therefore, in order to comprehensively understand the specific biological roles of this enzyme family, it is important to consider when and where different sPLA_2s are expressed, which isoforms are involved in what types of pathophysiology, why they are needed, and how they exhibit their unique functions by driving specific types of lipid metabolism.

Classical sPLA₂s. sPLA₂-IB, also known as "pancreatic $sPLA_2$ ", is synthesized as an inactive zymogen in the pancreas, and its N-terminal propeptide is cleaved by trypsin to yield an active enzyme in the duodenum.¹⁰¹⁾ The main role of sPLA_2 -IB is to digest dietary and biliary phospholipids in the intestinal lumen. Perturbation of this process by gene disruption or pharmacological inhibition of sPLA_2 -IB leads to resistance to diet-induced obesity, insulin resistance, and atherosclerosis due to decreased phospholipid digestion and absorption in the gastrointestinal tract.^{105)–108} The human $PLA2G1B$ gene maps to an obesity-susceptible locus.¹⁰⁹⁾

 $sPLA_2-IIA$ is often referred to as "inflammatory" sPLA2", since its expression is induced by proinflammatory cytokines such as TNF α and IL-1 β or by bacterial products such as lipopolysaccharide.¹¹⁰⁾ In mice, however, sPLA_2 -IIA in mice is distributed only in intestinal Paneth cells (in BALB/c, C3H, NZB and DBA, etc.) or not expressed at all due to a natural frameshift mutation (in C57BL/6, A/J, C58/ J, P/J , 129/Sv and B10.RIII, etc.).^{111),112)} The bestknown physiological function of $\text{SPLA}_2\text{-HA}$ is the degradation of bacterial membranes, thereby providing the first line of antimicrobial defense in the host.^{113),114)} Consistent with this, $\text{sPLA}_2\text{-IIA}$ preferentially hydrolyzes PE and phosphatidylglycerol, which are enriched in bacterial membranes. Under sterile conditions, sPLA_2 -IIA attacks phospholipids in microparticles, particularly those in extracellular mitochondria (an organelle that evolutionally originated from bacteria), which are released from activated platelets or leukocytes at inflamed sites.¹¹⁵⁾ Hydrolysis of microparticular phospholipids by $sPLA₂-IIA$ results in production of pro-inflammatory eicosanoids and lysophospholipids as well as in release of mitochondrial DNA as a danger-associated molecular pattern (DAMP). Thus, $\text{sPLA}_2\text{-IIA}$ is primarily involved in host defense by killing bacteria and triggering innate immunity, while over-amplification of the response leads to exacerbation of inflammation.

 $sPLA_2-IIA$, $-IIC$, $-IID$, $-IIE$ and $-IIF$ are often classified into the group II subfamily $(sPLA_2-HC)$ is a pseudogene in human), since they share structural characteristics and map to the same chromosome locus. $sPLA_2-IID$ is constitutively expressed in dendritic cells (DCs) in lymphoid organs. $sPLA_2$ -IID is an "immunosuppressive SPLA_2 " that attenuates DC-mediated adaptive immunity by hydrolyzing PE probably in microparticles to mobilize antiinflammatory ω 3 PUFAs and their metabolites such as resolvin D1 $(RvD1).^{7}$ As such, $sPLA_2$ -IID-null mice exhibit more severe contact hypersensitivity and psoriasis, whereas they are protected against infection and cancer because of enhanced anti-viral and anti-tumor immunity.^{7),116),117)} Unlike $sPLA_2$ -IIA, which is stimulus-inducible (see above), sPLA_2 -IID is downregulated by pro-inflammatory stimuli, consistent with its anti-inflammatory role.

In mice, $sPLA_2-IIE$ instead of $sPLA_2-IIA$ is upregulated in several tissues under inflammatory or other conditions. sPLA_2 -IIE is expressed in hair follicles in association with the growth phase of the hair cycle¹¹⁸⁾ and induced in adipose tissue in

Fig. 7. Properties of sPLA₂-IIF. (A) A schematic procedure for identification of the lipid metabolism driven by sPLA₂-IIF in differentiating keratinocytes. Phospholipids extracted from the culture supernatants of mouse keratinocytes (a representative mass spectrometric profile of phospholipids is shown; IS, internal standard; cps, count per second) were incubated with a physiologically relevant concentration of recombinant sPLA₂-IIF and then taken for the lipidomics analysis. (B) In the assay shown in (A) , $sPLA_2$ -IIF preferentially increased plasmalogen-type (P-) lysophosphatidylethanolamine (LPE) species as well as PUFAs. Values represent AUC (area under the curve; mean \pm SEM, n = 4). (C) The results shown in (B), together with *in vivo* analyses using sPLA₂-IIF-transgenic and knockout mice, 6) indicate that SPLA_2 -IIF preferentially hydrolyzes P-PE bearing DHA to liberate P-LPE and DHA under physiological conditions. For more details, please see ref. 6.

association with obesity in mice.¹¹⁹⁾ sPLA_2 -IIE hydrolyzes PE without apparent fatty acid selectivity in hair follicles and lipoproteins, and accordingly, sPLA₂-IIE-deficient mice display subtle abnormalities in hair follicles¹¹⁸⁾ and are modestly protected from diet-induced obesity and hyperlipidemia.¹¹⁹⁾

 $sPLA_2-IIF$ has a long C-terminal extension containing a free cysteine, which might contribute to formation of a homodimer, and is more hydrophobic than other $sPLA_2s^{120}$ Physiologically,

 $sPLA_2$ -IIF is an "epidermal $sPLA_2$ " that is expressed predominantly in the upper epidermis and induced by IL-22, a Th17 cytokine, in psoriatic skin.⁶⁾ sPLA_2 -IIF preferentially hydrolyzes PUFA-containing plasmalogen-type PE in keratinocyte-secreted phospholipids to produce plasmalogen-type lysophosphatidylethanolamine (P-LPE; lysoplasmalogen), which in predominantly in the upper epidermis and induced
by IL-22, a Th17 cytokine, in psoriatic skin.⁶⁾ sPLA₂-
IIF preferentially hydrolyzes PUFA-containing plas-
malogen-type PE in keratinocyte-secreted phospho-
lipids to p Accordingly, $sPLA_2$ -IIF-null mice are protected against epidermal-hyperplasic diseases such as psor-

Fig. 8. Fatty acid selectivity of SPLA_2 -V. Lipids extracted from the spleen of 1-year-old SPLA_2 -V-deficient $(-/-)$ and littermate control $(+/+)$ mice were subjected to mass spectrometric lipidomics analysis (values are mean \pm SEM, $*P < 0.05$ and $*P < 0.01$). Experiments were performed in accordance with the procedure described previously (5). Y-axis indicate relative abundance (AUC; area under the curve) of each product per mg tissue. Free fatty acid (FFA) species with a lower degree of unsaturation, including PA (16:0), palmitoleic acid (16:1), stearic acid (18:0; SA), OA (18:1), LA (18:2), eicosanoic acid (20:0) and eicosenoic acid (C20:1), but not PUFAs including AA (20:4), EPA (20:5), DPA (22:5) and DHA (22:6), were significantly reduced in $sPLA_2$ -V-deficient mice relative to control mice. Accordingly, LA metabolites, including 9- and 13-hydroxyoctadecadienoic acids (HODEs) among others, were substantially decreased in mutant mice relative to control mice, whereas none of the AA, EPA and DHA metabolites differed significantly between the genotypes. These results are consistent with the view that sPLA₂-V has a propensity to preferentially hydrolyze phospholipids having sn-2 fatty acids with a lower degree of unsaturation, as illustrated at right bottom.

iasis and skin cancer, while $sPLA_2$ -IIF-transgenic mice spontaneously develop psoriasis-like skin. $^{6)}$

Although $sPLA_2-V$ was previously thought to be a regulator of AA metabolism, 121 , 122) it is now becoming obvious that this SPLA_2 has a preference for phospholipids having fatty acids with a lower degree of unsaturation. $sPLA_2$ -V is markedly induced in adipocytes during obesity as a "metabolic sPLA2" and hydrolyzes PC in hyperlipidemic LDL to release OA and to a lesser extent LA, which counteract adipose tissue inflammation and thereby ameliorates obesity-associated metabolic disorders.119) Transgenic overexpression of $sPLA_2-V$, but not other $sPLA_2s$, results in neonatal death due to a respiratory defect,

which is attributable to the ability of $sPLA_2-V$ to potently hydrolyze PC with palmitic acid (PA, C16:0), a major component of lung surfactant.¹²³⁾ This unique substrate preference of sPLA_2 -V has also been supported by a recent lipidomics analysis of the spleen (a tissue where $sPLA_2$ -V is abundantly expressed), in which the levels of fatty acids with a lower degree of unsaturation (e.g. PA, OA and LA), rather than PUFAs (AA, EPA and DHA), are significantly reduced in $sPLA_2$ -V-deficient mice relative to wild-type mice (Fig. 8). This is in contrast to the spleen of $sPLA_2$ -IID-deficient mice, in which ω 3 PUFAs and their metabolites are selectively diminished, $\frac{7}{2}$ revealing distinct lipoquality regulation by different sPLA2s. Another intriguing feature of $sPLA_2-V$ is that it is the only "Th2-prone $sPLA_2$ " induced in M2 macrophages by the Th2 cytokines IL-4 and IL-13 and promotes Th2-driven pathology such as asthma. Gene ablation of $sPLA_2-V$ perturbs proper polarization and function of M2 macrophages in association with decreased Th2 immunity, 124) although the underlying lipid metabolism responsible for this event remains obscure. Probably because of this alteration in the macrophage phenotype, $sPLA_2-V$ -null macrophages have a reduced ability to phagocytose extracellular materials. Accordingly, $sPLA_2-V-null$ mice are more susceptible to fungal infection and arthritis due to defective clearance of hazardous fungi and immune complexes, respectively.^{125),126)} Likewise, sPLA₂-V-null mice suffer from more severe lung inflammation caused by bacterial or viral infection, 127 which could also be explained by poor clearance of these microbes by alveolar macrophages.

Among the mammalian sPLA₂s, sPLA₂-X has the highest affinity for PC leading to release of fatty acids, with an apparent tendency for PUFA preference. sPLA_2 -X is activated by cleavage of the Nterminal propeptide by furin-type convertases. 128 $sPLA_2-X$ is expressed abundantly in colorectal epithelial and goblet cells and has a protective role in colitis by mobilizing anti-inflammatory ω 3 PUFAs.²⁴⁾ Consistently, sPLA_2 -X-transgenic mice exhibit global anti-inflammatory phenotypes in association with elevation of systemic ω_3 PUFA levels.²⁴⁾ In the process of reproduction, $sPLA_2$ -X secreted from the acrosomes of activated spermatozoa hydrolyzes sperm membrane phospholipids to release DHA and docosapentaenioc acid (DPA, C22:5), the latter facilitating fertilization.^{24),129)} Additionally, sPLA_2 -X-null mice are protected from asthma, accompanied by decreased levels of pulmonary ω 6 AA-derived eicosanoids.¹³⁰⁾ Unlike the situation in sPLA_2 -V-null mice (see above), however, the Th2 response per se is not affected in the asthma model¹³¹⁾ and the lung damage is milder following influenza infection¹³²⁾ in $sPLA_2$ -X-null mice, illustrating the distinct actions of different $sPLA_2s$ in the same tissue.

Atypical sPLA₂s. sPLA₂-III is unusual in that it consists of three domains, in which the central $sPLA_2$ domain similar to bee venom group III $sPLA_2$ is flanked by large and unique N- and Cterminal domains.133) The enzyme is processed to the $sPLA_2$ domain-only form that retains full enzymatic activity.¹³⁴⁾ Although sPLA₂-III does not discriminate the polar head groups, it tends to prefer sn-2

PUFAs in the substrate phospholipids. $sPLA_2$ -III is expressed in the epididymal epithelium and acts on immature sperm cells passing through the epididymal duct in a paracrine manner to allow sperm membrane phospholipid remodeling, a process that is prerequisite for sperm motility.¹³⁵⁾ sPLA_2 -III is also secreted from mast cells and acts on microenvironmental fibroblasts to produce $PGD₂$, which in turn promotes proper maturation of mast cells.¹³⁶⁾ Accordingly, mice lacking sPLA_2 -III exhibit male hypofertility and reduced anaphylactic responses.

 $sPLA_2-XIIA$ is evolutionally far distant from other sPLA₂s.¹³⁷⁾ sPLA₂-XIIA is expressed in many tissues at relatively high levels, yet its enzymatic activity is weaker than that of other sPLA_2s . The properties and physiological roles of $\rm sPLA_2\text{-}XIIA$ are currently unclear and await future studies using $sPLA₂-XIIA-deficient$ mice. Apart from lipoquality regulation, sPLA_2 -XIIB is a catalytically inactive protein due to substitution of the catalytic center histidine by leucine.¹³⁸⁾ sPLA₂-XIIB deficiency impairs hepatic lipoprotein secretion,¹³⁹⁾ although the mechanism is unclear.

 $sPLA_2$ receptor. Beyond the lipoquality control by sPLA₂s, several sPLA₂s binds to sPLA_2 receptor (PLA2R1, also known as the C-type lectin Clec13c) with different affinities.¹⁴⁰⁾ In mice, PLA2R1 binds to $sPLA_2-IB$, $-IIA$, $-IIE$, $-IIF$ and $-X$ with high affinity, $sPLA_2-V$ with moderate affinity, and $sPLA_2-IID$, $-III$ and $-XIIA$ with low or no affinity.¹³⁸⁾ PLA2R1 is homologous to sPLA_2 -inhibitory proteins present in snake plasma and exists as an integral membrane protein or as a soluble protein resulting from shedding or alternative splicing. PLA2R1 may act as a clearance receptor or endogenous inhibitor that inactivates sPLA_2 s, as a signaling receptor that transduces SPLA_2 -dependent signals in a catalytic activity-independent manner, or as a pleiotropic receptor that binds to non-s PLA_2 ligands. In support of its clearance role, $Pla2r1^{-/-}$ mice show more severe asthma, likely due to defective clearance of pro-asthmatic $sPLA_2-X$.¹⁴¹⁾ In support of its signaling role, PLA2R1, probably through binding to myocardial sPLA2s or other ways, promotes the migration and growth of myofibroblasts and thereby protects against cardiac rupture in a model of myocardial infarction.142) PLA2R1 has recently attracted attention as a major autoantigen in membranous nephropathy, a severe autoimmune disease leading to podocyte injury and proteinuria, $^{143)}$ although it is not clear whether this role of PLA2R1 is $sPLA_2$ dependent or -independent.

No. 9 1 2012 1 2014 1 2016 1 2016 1 2017 1 2018 1 2019 1 201

Families	$PLA2$ genes	Human diseases	References
$cPLA_2$	PLA2G4A	Platelet dysfunction, Intestinal ulceration	35
iPLA ₂	PNPLA ₁	Ichthyosis	177
	PNPLA2	Chanarin-Dorfman syndrome (neutral lipid strage disease with myopathy)	178
	PNPLA3	Non-alchoholic fatty liver disease (NASH, NAFLD)	63
	PNPLA6	Ataxia, Hereditary spastic paraplegia, Boucher-Neuhauser and Gordon Holmes syndromes	179
		Photoreceptor degeneration	53
	PNPLA7	Psychophysiological endophenotype	180
	PNPLA8	Myopathy	51
	PNPLA9/PLA2G6	Parkinson's disease, Infantile neuroaxonal dystrophy (INAD)	49
		Familial melanoma	181
PAFAH	PAFAH/PLA2G7A	Cardiovascular disease	182
ABHD	ABHD5	Chanarin-Dorfman Syndrome with ichtyosis	98
	ABHD12	PHARC syndrome (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract)	97
$sPLA_2$	PLA2G1B	Obesity	109
	PLA2G2A	Cardiovascular disease	142, 183
		Gastric cancer	184
	PLA2G2D	Body weight loss in COPD (chronic obstructive pulmonary disease)	185
	PLA2G2E	Ulcerative colitis	186
	PLA2GS	Colorectal cancer	187, 188
		Alzheimer's disease	189
	PLA2G5	Hyperlipidemia in type II diabetes	114, 190
		Benign fleck retina	191

Table 2. Representative PLA_2 mutations in human diseases

5. Concluding remarks

By applying lipidomics approaches to knockout or transgenic mice for various PLA_2s , it has become evident that individual enzymes regulate specific forms of lipid metabolism, perturbation of which can be eventually linked to distinct pathophysiological outcomes. Knowledge of lipoquality control by individual PLA_2s acquired from studies using animal models should be translated to humans. Current knowledges on the relationship between $PLA₂$ gene mutations and human diseases are summarized in Table 2. Nonetheless, future development of more comprehensive and highly sensitive lipidomics techniques will contribute to the discovery of novel $PLA₂$ driven lipid pathways that could be biomarkers or druggable targets for particular diseases.

Acknowledgments

I sincerely thank my laboratory members at the University of Tokyo and the Tokyo Metropolitan Institute of Medical Sciences who have contributed their expertise to acquire a better understanding of PLA2 biology. In particular, I thank Drs. Kei Yamamoto, Tetsuya Hirabayashi, Yoshitaka Taketomi, Hiroyasu Sato, Yoshimi Miki, Remi Murase, Seiko Masuda and Noriko Ueno among others for collecting the experimental data and information on which this review is based. In the interest of brevity, I have referenced other reviews whenever possible and apologize to the authors of the numerous original papers that were not explicitly cited. This work was supported by AMED-CREST from the Japan Agency for Medical Research and Development and by JSPS KAKENHI Grant Numbers JP15H05905 and JP16H02613.

References

- 1) Shimizu, T. (2009) Lipid mediators in health and disease: enzymes and receptors as therapeutic inflammation. Annu. Rev. Pharmacol. Toxicol. imizu, T. (2
disease: enzy
targets for
inflammation
49, 123–150.
- targets for the regulation of immunity and
inflammation. Annu. Rev. Pharmacol. Toxicol.
49, 123–150.
arumiya, S. and Furuyashiki, T. (2011) Fever,
inflammation, pain and beyond: prostanoid re-
ceptor research during these 2) Narumiya, S. and Furuyashiki, T. (2011) Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years. FASEB J. 19, 129
arumiya
inflamm
ceptor 1
25, 813
arhan, C
are lead
- 3) Serhan, C.N. (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510,
- 4) Aikawa, S., Hashimoto, T., Kano, K. and Aoki, J. (2015) Lysophosphatidic acid as a lipid mediator with multiple biological actions. J. Biochem. 157, $\frac{1}{8}$, $\frac{1}{8}$
are leads, $\frac{92-10!}{8000}$
ikawa, $\frac{1}{81-89}$.
- 5) Yamamoto, K., Miki, Y., Sato, H., Murase, R., Taketomi, Y. and Murakami, M. (2017) Secreted phospholipase A_2 specificity on natural membrane phospholipids. Methods Enzymol. **583**, $101-117$. manus, est, manusculic acid as a lipid mediato
(2015) Lysophosphatidic acid as a lipid mediato
with multiple biological actions. J. Biochem. 157
81–89.
amamoto, K., Miki, Y., Sato, H., Murase, R.
Taketomi, Y. and Murakami,
- 6) Yamamoto, K., Miki, Y., Sato, M., Taketomi, Y., Nishito, Y., Taya, C., Muramatsu, K., Ikeda, K., Nakanishi, H., Taguchi, R., Kambe, N., Kabashima, K., Lambeau, G., Gelb, M.H. and Murakami, M. (2015) The role of group IIFsecreted phospholipase A_2 in epidermal homeostasis and hyperplasia. J. Exp. Med. 212, 1901– pencypromant C. K., Miki, Y., Sato, M., Taketomi, Y., Nishito, Y., Taya, C., Muramatsu, K., Ikeda, K., Nakanishi, H., Taguchi, R., Kambe, N., Kabashima, K., Lambeau, G., Gelb, M.H. and Murakami, M. (2015) The role of group 1919.
- 7) Miki, Y., Yamamoto, K., Taketomi, Y., Sato, H., Shimo, K., Kobayashi, T., Ishikawa, Y., Ishii, T.,

Nakanishi, H., Ikeda, K., Taguchi, R., Kabashima, K., Arita, M., Arai, H., Lambeau, G., Bollinger, J.M., Hara, S., Gelb, M.H. and Murakami, M. (2013) Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid Nakanishi, H., Ikeda, K., Tagucl
Kabashima, K., Arita, M., Arai, H., L.
G., Bollinger, J.M., Hara, S., Gelb, M
Murakami, M. (2013) Lymphoid tissue p
lipase A₂ group IID resolves contact
sensitivity by driving antiinflamm

- 8) Ohto, T., Uozumi, N., Hirabayashi, T. and Shimizu, T. (2005) Identification of novel cytosolic phospholipase A₂s, murine cPLA₂ δ , ε , and ζ , which form a gene cluster with $\text{cPLA}_2\beta$. J. Biol. Chem.
280. 24576–24583. $\frac{280}{3}$ bensitivity by drived
mediators. J. Exp.
hto, T., Uozumi, N.
T. (2005) Identific
pholipase A₂s, mu
form a gene cluste:
280, 24576–24583. $T. (2005)$ Identification.
T. (2005) Identification
form a gene cluster
280, 24576–24583.
slie, C.C. (2015)
physiological function.
- 9) Leslie, C.C. (2015) Cytosolic phospholipase A₂: physiological function and role in disease. J. Lipid Res. **56**, 1386–1402.
- 10) Clark, J.D., Lin, L.L., Kriz, R.W., Ramesha, C.S., Sultzman, L.A., Lin, A.Y., Milona, N. and Knopf, J.L. (1991) A novel arachidonic acid-selective cytosolic PLA₂ contains a Ca^{2+} -dependent translocation domain with homology to PKC and Fas. 56, 1386–1402.
Res. 56, 1386–1402.
lark, J.D., Lin, L.L., Kriz,
Sultzman, L.A., Lin, A.Y.,
J.L. (1991) A novel ara
cytosolic PLA₂ contains a
location domain with ho
GAP. Cell **65**, 1043–1051.
- 11) Lin, L.L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A. and Davis, R.J. (1993) cPLA₂ is phosphorylated and activated by MAP kinase. out.
cytosolic PLA₂ control of the location
location domain
GAP. Cell **65**, 10
n, L.L., Wartman
Seth, A. and I
phosphorylated a
Cell **72**, 269–278.
- 12) Casas, J., Gijon, M.A., Vigo, A.G., Crespo, M.S., Balsinde, J. and Balboa, M.A. (2006) Phosphatidylinositol 4,5-bisphosphate anchors cytosolic group IVA phospholipase A_2 to perinuclear membranes and decreases its calcium requirement for Cell 72, 269–278.
Cell 72, 269–278.
Sasas, J., Gijon, M.A., Vigo, A.G., Crespo, M.S.,
Balsinde, J. and Balboa, M.A. (2006) Phosphati-
dylinositol 4,5-bisphosphate anchors cytosolic
group IVA phospholipase A₂ to perinucle 162.
- 13) Stahelin, R.V., Subramanian, P., Vora, M., Cho, W. and Chalfant, C.E. (2007) Ceramide-1-phosphate binds group IVA cytosolic phospholipase A_2 via a novel site in the C2 domain. J. Biol. Chem. 282, Franslocation
162.
ahelin, R.V., ;
and Chalfant
binds group I
novel site in 1
20467–20474.
- 14) Bonventre, J.V., Huang, Z., Taheri, M.R., O'Leary, E., Li, E., Moskowitz, M.A. and Sapirstein, A. (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase movel site in the C2 doma
novel site in the C2 doma
20467–20474.
Diventre, J.V., Huang, Z.,
E., Li, E., Moskowitz, M
(1997) Reduced fertility a
injury in mice deficient in
A₂. Nature **390**, 622–625.
- 15) Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J. and Shimizu, T. (1997) Role of cytosolic phospholipase A_2 in allergic response and parturition. Nature 390, *A*₂. Natu
*A*₂. Natu
ozumi, *N*
Ishii, *S*.,
Ruta, *K*.
(1997) I
allergic
618–622.
- 16) Wong, D.A., Kita, Y., Uozumi, N. and Shimizu, T. (2002) Discrete role for cytosolic phospholipase $A_2\alpha$ in platelets: studies using single and double mutant mice of cytosolic and group IIA secretory 618–622.
Vong, D.A., Kita, Y., Uozumi, N. and Shimizu, (2002) Discrete role for cytosolic phospholipa
 $A_2\alpha$ in platelets: studies using single and dou
mutant mice of cytosolic and group IIA secrete
phospholipase A_2 .
- 17) Haq, S., Kilter, H., Michael, A., Tao, J., O'Leary, E., Sun, X.M., Walters, B., Bhattacharya, K., Chen, X., Cui, L., Andreucci, M., Rosenzweig, A., Guerrero, J.L., Patten, R., Liao, R., Molkentin, J., Picard, M., Bonventre, J.V. and Force, T. (2003) Deletion of cytosolic phospholipase A_2 promotes striated muscle growth. Nat. Med. **9**, 944–951. prospendence 12: 0 Enc. 12: 0 Enc. 12: 0 Enc. 3, 13: 0 Enc. 3, 19: 0 Chea. 12: 0 C
- 18) Le, T.D., Shirai, Y., Okamoto, T., Tatsukawa, T., Nagao, S., Shimizu, T. and Ito, M. (2010) Lipid

signaling in cytosolic phospholipase $A_2\alpha$ -cyclooxygenase-2 cascade mediates cerebellar longterm depression and motor learning. Proc. Natl. signaling in cytosolic phospholip

oxygenase-2 cascade mediates covern depression and motor learnin

Acad. Sci. U.S.A. **107**, 3198–3203.

- 19) Nagase, T., Uozumi, N., Ishii, S., Kume, K., Izumi, T., Ouchi, Y. and Shimizu, T. (2000) Acute lung injury by sepsis and acid aspiration: a key role for Example 2 cascade mediates cerebellar long-
cytogenase-2 cascade mediates cerebellar long-
term depression and motor learning. Proc. Natl.
Acad. Sci. U.S.A. 107 , 3198–3203.
agase, T., Uozumi, N., Ishii, S., Kume, K., Iz 46.
- 20) Hegen, M., Sun, L., Uozumi, N., Kume, K., Goad, M.E., Nickerson-Nutter, C.L., Shimizu, T. and Clark, J.D. (2003) Cytosolic phospholipase $A_2\alpha$ deficient mice are resistant to collagen-induced arthritis. J. Exp. Med. 197, 1297–1302. μ_1 _{art} σ_2 by separature dependent in the cytosolic phospholipase A_2 . Nat. Immun 46.
46.
egen, M., Sun, L., Uozumi, N., Kume, M.E., Nickerson-Nutter, C.L., Shimizt
Clark, J.D. (2003) Cytosolic phospholij
defici
- 21) Miyaura, C., Inada, M., Matsumoto, C., Ohshiba, T., Uozumi, N., Shimizu, T. and Ito, A. (2003) An essential role of cytosolic phospholipase $A_2\alpha$ in prostaglandin E_2 -mediated bone resorption associated with inflammation. J. Exp. Med. 197, arthritis. J.

iyaura, C.,

T., Uozumi

essential rc

prostagland

ciated witl

1303–1310.
- 22) Marusic, S., Leach, M.W., Pelker, J.W., Azoitei, M.L., Uozumi, N., Cui, J., Shen, M.W., DeClercq, C.M., Miyashiro, J.S., Carito, B.A., Thakker, P., Simmons, D.L., Leonard, J.P., Shimizu, T. and Clark, J.D. (2005) Cytosolic phospholipase $A_2\alpha$ deficient mice are resistant to experimental autoimmune encephalomyelitis. J. Exp. Med. 202, M.L., Uo
C.M., Mi
Simmons
Clark, J.
deficient
immune
841–851.
- 23) Sanchez-Mejia, R.O., Newman, J.W., Toh, S., Yu, G.Q., Zhou, Y., Halabisky, B., Cisse, M., Scearce-Levie, K., Cheng, I.H., Gan, L., Palop, J.J., Bonventre, J.V. and Mucke, L. (2008) Phospholipase A_2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat. on Comercia, R.O., Newton
C.Q., Zhou, Y., Halabisk,
Levie, K., Cheng, I.H.,
Bonventre, J.V. and Mu
lipase A₂ reduction amel
in a mouse model of A
Neurosci. **11**, 1311–1318.
- 24) Murase, R., Sato, H., Yamamoto, K., Ushida, A., Nishito, Y., Ikeda, K., Kobayashi, T., Yamamoto, T., Taketomi, Y. and Murakami, M. (2016) Group X secreted phospholipase A_2 releases $\omega 3$ polyunsaturated fatty acids, suppresses colitis, and promotes sperm fertility. J. Biol. Chem. 291, Francisch

urase, R.,

Nishito, Y.

T., Taketa

Group X s

polyunsatu

and promotor 6895–6911.
- 25) Kim, D.C., Hsu, F.I., Barrett, N.A., Friend, D.S., Grenningloh, R., Ho, I.C., Al-Garawi, A., Lora, J.M., Lam, B.K., Austen, K.F. and Kanaoka, Y. (2006) Cysteinyl leukotrienes regulate Th2 celldependent pulmonary inflammation. J. Immunol. $6895-6911.$
im, D.C., Hsu, I
Grenningloh, R.J.M., Lam, B.K.
(2006) Cysteiny
dependent pulm
 $176, 4440-4448.$
- 26) Tager, A.M., Bromley, S.K., Medoff, B.D., Islam, S.A., Bercury, S.D., Friedrich, E.B., Carafone, A.D., Gerszten, R.E. and Luster, A.D. (2003) Leukotriene B_4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982– dependent pulmonary inflammation. J. Immunol.
176, 4440–4448.
176, 4440–4448.
S.A., Bercury, S.D., Friedrich, E.B., Carafone,
S.A., Bercury, S.D., Friedrich, E.B., Carafone,
A.D., Gerszten, R.E. and Luster, A.D. (2003)
Leu 990.
- 27) Matsuoka, T., Hirata, M., Tanaka, H., Takahashi, Y., Murata, T., Kabashima, K., Sugimoto, Y., Kobayashi, T., Ushikubi, F., Aze, Y., Eguchi, N., Urade, Y., Yoshida, N., Kimura, K., Mizoguchi, A., Honda, Y., Nagai, H. and Narumiya, S. (2000) Prostaglandin D_2 as a mediator of allergic asthma. Science ²⁸⁷, 2013–2017.
- 28) Esaki, Y., Li, Y., Sakata, D., Yao, C., Segi-Nishida,

E., Matsuoka, T., Fukuda, K. and Narumiya, S. (2010) Dual roles of PGE₂-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Lipoquality control by

E., Matsuoka, T., Fukuda, K. and Narumiya, S

(2010) Dual roles of PGE₂-EP4 signaling in mous

experimental autoimmune encephalomyelitis

Proc. Natl. Acad. Sci. U.S.A. **107**, 12233–12238.

- 29) Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y. and Narumiya, S. (2009) Prostaglandin E_2 -EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med. 15, enporme
Proc. Na
ao, C., Sa
Kuroiwa.
(2009) P
immune
entiation
633–640.
- 30) Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., Oshima, M. and Taketo, M.M. (2001) Acceleration of intestinal polyposis through prostaglandin receptor EP2 in entiation and Th17 cell expansion. Nat. Med. 15,
633–640.
moshita, M., Takaku, K., Sasaki, N., Sugimoto,
Y., Ushikubi, F., Narumiya, S., Oshima, M. and
Taketo, M.M. (2001) Acceleration of intestinal
polyposis through pros
- 31) Hoshino, T., Nakaya, T., Homan, T., Tanaka, K., Sugimoto, Y., Araki, W., Narita, M., Narumiya, S., Suzuki, T. and Mizushima, T. (2007) Involvement of prostaglandin E_2 in production of amyloid- β peptides both in vitro and in vivo. J. μ_1 ²⁰¹⁶ knockout mice. Nat. M
 *Apc*²⁷¹⁶ knockout mice. Nat. M

Sugimoto, Y., Araki, W., Narit

S., Suzuki, T. and Mizushima, '

ment of prostaglandin E₂ i

amyloid- β peptides both *in vit*

Biol. Chem. **282**,
- 32) Kabashima, K., Saji, T., Murata, T., Nagamachi, M., Matsuoka, T., Segi, E., Tsuboi, K., Sugimoto, Y., Kobayashi, T., Miyachi, Y., Ichikawa, A. and Narumiya, S. (2002) The prostaglandin receptor EP4 suppresses colitis, M., Matsuoka, T., Segi, E., Tsuboi, K., Sugimoto, Y., Kobayashi, T., Miyachi, Y., Ichikawa, A. and Narumiya, S. (2002) The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J. Clin. Invest. 109,
- 33) Slatter, D.A., Aldrovandi, M., O'Connor, A., Allen, S.M., Brasher, C.J., Murphy, R.C., Mecklemann, S., Ravi, S., Darley-Usmar, V. and O'Donnell, V.B. (2016) Mapping the human platelet lipidome reveals cytosolic phospholipase A_2 as a regulator of mitochondrial bioenergetics during activation. Suboro B.A., Aldrovandi, I.
S.M., Brasher, C.J., Murj
S., Ravi, S., Darley-Usn
V.B. (2016) Mapping the
reveals cytosolic phospho
of mitochondrial bioenerg
Cell Metab. **23**, 930–944.
- 34) Adler, D.H., Phillips, J.A. 3rd, Cogan, J.D., Iverson, T.M., Schnetz-Boutaud, N., Stein, J.A., Brenner, D.A., Milne, G.L., Morrow, J.D., Boutaud, O. and Oates, J.A. (2009) The enteropathy of prostaglandin deficiency. J. Gastroenterol. 44 (Suppl Cell Met
Cell Met
dler, D.H
T.M., Sc
D.A., Mi
Oates, J
glandin
19), 1–7.
- 35) Adler, D.H., Cogan, J.D., Phillips, J.A. 3rd, Schnetz-Boutaud, N., Milne, G.L., Iverson, T., Stein, J.A., Brenner, D.A., Morrow, J.D., Boutaud, O. and Oates, J.A. (2008) Inherited human cPLA₂ α deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction. J. Clin.
Invest. 118, 2121–2131. $\text{Schnetz-Boutaud}, \text{N.}, \text{I}$
Schnetz-Boutaud, N., Brenner,
Boutaud, O. and Oate
human cPLA₂ α deficiin
impaired eicosanoid bios
ulceration, and platele
Invest. 118, 2121–2131.
- 36) Ghomashchi, F., Naika, G.S., Bollinger, J.G., Aloulou, A., Lehr, M., Leslie, C.C. and Gelb, M.H. (2010) Interfacial kinetic and binding properties of mammalian group IVB phospholipase A_2 (cPLA₂ β) and comparison with the Invest. 118, 2121-2131.

Invest. 118, 2121-2131.

homashchi, F., Naika, G.S., Bollinger, J.G.,

Aloulou, A., Lehr, M., Leslie, C.C. and Gelb,

M.H. (2010) Interfacial kinetic and binding

properties of mammalian group IVB 36111.
- 37) Underwood, K.W., Song, C., Kriz, R.W., Chang, X.J., Knopf, J.L. and Lin, L.L. (1998) A novel calcium-independent phospholipase A_2 , cPLA₂ γ , that is prenylated and contains homology to other cPLA₂ isoforms. J. Biol. Chem. **285**, 36100–36111.

Inderwood, K.W., Song, C., Kriz, R.W., Chang, X.J., Knopf, J.L. and Lin, L.L. (1998) A novel

calcium-independent phospholipase A₂, cPLA₂ γ , that is prenyl
- 38) Chiba, H., Michibata, H., Wakimoto, K., Seishima,

M., Kawasaki, S., Okubo, K., Mitsui, H., Torii, H. and Imai, Y. (2004) Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A_2 , cPLA₂ δ , induced in psoriatic skin. J. Biol. Chem.
279. 12890–12897. μ , Kawasaki, S., Cand Imai, Y. (2004)
epithelium-specific
cPLA₂ δ , induced in
279, 12890–12897.

- 39) Ogura, Y., Parsons, W.H., Kamat, S.S. and Cravatt, B.F. (2016) A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat. Chem. Biol. **12**, 669–671. epithelium-specific cytosolic phospholipase
cPLA₂ δ , induced in psoriatic skin. J. Biol. Che
279, 12890–12897.
gura, Y., Parsons, W.H., Kamat, S.S. a
Cravatt, B.F. (2016) A calcium-dependent as
transferase that prod
- 40) Ghosh, M., Loper, R., Ghomashchi, F., Tucker, D.E., Bonventre, J.V., Gelb, M.H. and Leslie, C.C. (2007) Function, activity, and membrane targeting of cytosolic phospholipase $A_2\zeta$ in mouse
lung fibroblasts. J. Biol. Chem. **282**, 11676– transferase that produces *N*-acyl phosphatidy-
transferase that produces *N*-acyl phosphatidy-
ethanolamines. Nat. Chem. Biol. 12, 669–671.
hosh, M., Loper, R., Ghomashchi, F., Tucker,
D.E., Bonventre, J.V., Gelb, M.H. a 11686.
- 41) Kienesberger, P.C., Oberer, M., Lass, A. and Zechner, R. (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. Franchischer Bibroblasts. J. Biol. Chem.
11686.
ienesberger, P.C., Oberer, M., Zechner, R. (2009) Mammalian p
containing proteins: a family with d
activities involved in multiple biolog
J. Lipid Res. 50 (Suppl), S63–S68.
- 42) Murakami, M., Taketomi, Y., Miki, Y., Sato, H., Hirabayashi, T. and Yamamoto, K. (2011) Recent progress in phospholipase A_2 research: from cells
to animals to humans. Prog. Lipid Res. $50, 152$ containing proteins: a family with diverse lipolytic
activities involved in multiple biological functions.
J. Lipid Res. 50 (Suppl), S63–S68.
urakami, M., Taketomi, Y., Miki, Y., Sato, H.,
Hirabayashi, T. and Yamamoto, K. 192.
- 43) Tang, J., Kriz, R.W., Wolfman, N., Shaffer, M., Seehra, J. and Jones, S.S. (1997) A novel cytosolic calcium-independent phospholipase A_2 contains eight ankyrin motion and the progress in phospholipase A_2 research: from cells
to animals to humans. Prog. Lipid Res. 50, 152–
192.
ang, J., Kriz, R.W., Wolfman, N., Shaffer, M.,
Seehra, J. and Jones, S.S. (1997) A nov 8575.
- 44) Larsson, P.K., Claesson, H.E. and Kennedy, B.P. (1998) Multiple splice variants of the human calcium-independent phospholipase A_2 and their effect on enzyme activity. J. Biol. Chem. 273, eight and
 8575 .

arsson, P
 (1998) M

calcium-i

effect on
 $207-214$.
- 45) Liu, X., Moon, S.H., Jenkins, C.M., Sims, H.F. and Gross, R.W. (2016) Cyclooxygenase-2 mediated oxidation of 2-arachidonoyl-lysophospholipids identifies unknown lipid signaling pathways. Cell effect on enzyme activity.

effect on enzyme activity.

207–214.

u, X., Moon, S.H., Jenkins,

Gross, R.W. (2016) Cycloc

oxidation of 2-arachidor

identifies unknown lipid sig

Chem. Biol. **23**, 1217–1227.
- 46) Moon, S.H., Jenkins, C.M., Liu, X., Guan, S., Mancuso, D.J. and Gross, R.W. (2012) Activation of mitochondrial calcium-independent phospholipase $A_2\gamma$ (iPLA₂ γ) by divalent cations mediating arachidonate release and production of down-Chem. Biol. 23, 1217–1227.
Chem. Biol. 23, 1217–1227.

ioon, S.H., Jenkins, C.M., Liu, X., Guan, S., Mancuso, D.J. and Gross, R.W. (2012) Activation

of mitochondrial calcium-independent phospholi-

pase $A_2\gamma$ (iPLA₂14895.
- 47) Kienesberger, P.C., Lass, A., Preiss-Landl, K., Wolinski, H., Kohlwein, S.D., Zimmermann, R. and Zechner, R. (2008) Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J. Biol. Chem. 283, 14895.

14895.

14895. P.C. Wolinski, H., K.

281, S. H., S. 1908–5917.
- 48) Quistad, G.B., Barlow, C., Winrow, C.J., Sparks, S.E. and Casida, J.E. (2003) Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc. Natl. Acad. Sci. U.S.A. 100, nsum

283, 5908–

283, 5908–

uistad, G.E.

S.E. and C.

brain neur

pholipase.

7983–7987.
- 49) Morgan, N.V., Westaway, S.K., Morton, J.E., Gregory, A., Gissen, P., Sonek, S., Cangul, H., Coryell, J., Canham, N., Nardocci, N., Zorzi, G., Pasha, S., Rodriguez, D., Desguerre, I., Mubaidin,

A., Bertini, E., Trembath, R.C., Simonati, A., Schanen, C., Johnson, C.A., Levinson, B., Woods, C.G., Wilmot, B., Kramer, P., Gitschier, J., Maher, E.R. and Hayflick, S.J. (2006) PLA2G6, encoding a phospholipase A_2 , is mutated in neurodegenerative disorders with high brain iron. A., Bertini, E., Trembat
Schanen, C., Johnson, C.Z.
C.G., Wilmot, B., Kraz
Maher, E.R. and Hayflic
encoding a phospholipa
neurodegenerative disorde
Nat. Genet. **38**, 752–754.

- 50) Mancuso, D.J., Sims, H.F., Yang, K., Kiebish, M.A., Su, X., Jenkins, C.M., Guan, S., Moon, S.H., $\text{Piełka}, T., Nassir, F., Schappe, T., Moore, K., Han, X., Abumrad, N.A. and Gross, R.W. (2010) Genetic ablation of calcium-independent phospholipase A₂ \gamma prevents obesity and insulin resistance during high fat feeding by mitochondrial uncupling and increased adipocyte fatty acid oxidation. J. Biol. Chem. 285, 36495–36510.$ Han, X., Abumrad, N.A. and Gross, R.W. (2010) Genetic ablation of calcium-independent phospholipase $A_2\gamma$ prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid
- 51) Saunders, C.J., Moon, S.H., Liu, X., Thiffault, I., Coffman, K., LePichon, J.B., Taboada, E., Smith, L.D., Farrow, E.G., Miller, N., Gibson, M., Patterson, M., Kingsmore, S.F. and Gross, R.W. (2015) Loss of function variants in human *PNPLA8* encoding calcium-independent phospholipase $A_2\gamma$ recapitulate the mitochondri Patterson, M., Kingsmore, S.F. and Gross, R.W. (2015) Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase $A_2\gamma$ recapitulate the mitochondriopathy of the homologous null mouse. Hum. Mutat. 36,
- 52) Topaloglu, A.K., Lomniczi, A., Kretzschmar, D., Dissen, G.A., Kotan, L.D., McArdle, C.A., Koc, A.F., Hamel, B.C., Guclu, M., Papatya, E.D., Eren, E., Mengen, E., Gurbuz, F., Cook, M., Castellano, J.M., Kekil, M.B., Mungan, N.O., Yuksel, B. and Ojeda, S.R. (2014) Loss-of-function mutations in *PNPLA6* encoding neuro-
pathy target esterase underlie pubertal fail Castellano, J.M., Kekil, M.B., Mungan, N.O., Yuksel, B. and Ojeda, S.R. (2014) Loss-offunction mutations in PNPLA6 encoding neuropathy target esterase underlie pubertal failure and neurological deficits in Gordon Holmes syndrome.
- 53) Kmoch, S., Majewski, J., Ramamurthy, V., Cao, S., Fahiminiya, S., Ren, H., MacDonald, I.M., Lopez, I., Sun, V., Keser, V., Khan, A., Stranecky, V., Hartmannova, H., Pristoupilova, A., Hodanova, K., Piherova, L., Kuchar, L., Baxova, A., Chen, R., Barsottini, O.G., Pyle, A., Griffin, H., Splitt, M., Sallum, J., Tolmie, J.L., Sampson, J.R., Chinnery, P., Care4Rare Canada, Banin, E., Sharon, D., Dutta, S., Grebler, R., Helfrich-Foerster, C., Pedroso, J.L., Kretzschmar, D., Cayouette, M. and Koenekoop, R.K. (2015) Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nat. Commun. 6, 5614.
- 54) Zhou, Q., Yen, A., Rymarczyk, G., Asai, H., Trengrove, C., Aziz, N., Kirber, M.T., Mostoslavsky, G., Ikezu, T., Wolozin, B. and Bolotina, V.M. (2016) Impairment of PARK14 dependent Ca^{2+} signalling is a novel determinant of Parkinson's disease. Nat. Commun. 7, 10332.
- 55) Bao, S., Miller, D.J., Ma, Z., Wohltmann, M., Eng, G., Ramanadham, S., Moley, K. and Turk, J. (2004) Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced for Parkinson's disease. Nat. Commun. 7, 1
ao, S., Miller, D.J., Ma, Z., Wohltmann, M.
G., Ramanadham, S., Moley, K. and T1
(2004) Male mice that do not express group
phospholipase A₂ produce spermatozoa
impaired motilit
- 56) Zimmermann, R., Strauss, J.G., Haemmerle, G.,

Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A. and Zechner, R. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science **306**, 1383– vol. 93,
Schoiswohl, G., Birner-Gruenberger, R., Riederer,
M., Lass, A., Neuberger, G., Eisenhaber, F.,
Hermetter, A. and Zechner, R. (2004) Fat
mobilization in adipose tissue is promoted by
adipose triglyceride lipase. Sc 1386.

- 57) Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussl, C., Eder, S., Kratky, D., Wagner, E.F., Klingenspor, M., Hoefler, G. and Zechner, R. (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, Gorkiewi
Heldmaid
Kratky,
Hoefler,
lipolysis
lacking a
734–737.
- 58) Das, S.K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B., Gorkiewicz, G., Tamilarasan, K.P., Kumari, P., Trauner, M., Zimmermann, R., Vesely, P., Haemmerle, G., Zechner, R. and Hoefler, G. (2011) Adipose triglyceride lipase contributes to cancer-associated ror vi. B., Eder, S., Schauer,
Temmel, H., Guertl, B.,
Tamilarasan, K.P., Kumari, I
Zimmermann, R., Vesely, P.,
Zechner, R. and Hoefler, G.
triglyceride lipase contributes to
cachexia. Science **333**, 233–238.
- 59) Yang, X., Lu, X., Lombes, M., Rha, G.B., Chi, Y.I., Guerin, T.M., Smart, E.J. and Liu, J. (2010) The G_0/G_1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride triglyceride lipase contributes to
cachexia. Science **333**, 233–238.
ang, X., Lu, X., Lombes, M., Rh.
Guerin, T.M., Smart, E.J. and L
 G_0/G_1 switch gene 2 regulates
through association with adi
lipase. Cell Metab. 11, 1
- 60) Haemmerle, G., Moustafa, T., Woelkart, G., Buttner, S., Schmidt, A., van de Weijer, T., Hesselink, M., Jaeger, D., Kienesberger, P.C., Zierler, K., Schreiber, R., Eichmann, T., Kolb, D., Kotzbeck, P., Schweiger, M., Kumari, M., Eder, S., Schoiswohl, G., Wongsiriroj, N., Pollak, N.M., Radner, F.P., Preiss-Landl, K., Kolbe, T., Rulicke, T., Pieske, B., Trauner, M., Lass, A., Zimmermann, R., Hoefler, G., Cinti, S., Kershaw, E.E., Schrauwen, P., Madeo, F., Mayer, B. and Zechner, R. (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via E., somswear, G., Wongsmer, H., Peiss-Landl, K., Kolbe, T.
Radner, F.P., Preiss-Landl, K., Kolbe, T.
Rulicke, T., Pieske, B., Trauner, M., Lass, A.
Zimmermann, R., Hoefler, G., Cinti, S., Kershaw
E.E., Schrauwen, P., Made Rammermann, R., Hoeffer, G., Cinti, S., Kershaw, E.E., Schrauwen, P., Madeo, F., Mayer, B. and Zechner, R. (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17, 1
- 61) Lass, A., Zimmermann, R., Oberer, M. and Zechner, enzyme complex mediates the catabolism of PPAR- α and PGC-1. Nat. Med. 17, 1076–1085.
ass, A., Zimmermann, R., Oberer, M. and Zechner
R. (2011) Lipolysis—a highly regulated multi-
enzyme complex mediates the catabolism of
cellular fat stores. Prog. Lipid Res. 5 France and Town. Hand Town Hand Town and Town Hand R. (2011) Lipolysis—a highly regulated
R. (2011) Lipolysis—a highly regulated
enzyme complex mediates the catabol
cellular fat stores. Prog. Lipid Res. 50, 14
oung, S.G. a
- 62) Young, S.G. and Zechner, R. (2013) Biochemistry and pathophysiology of intravascular and intra-
- 63) Romeo, S., Kozlitina, J., Xing, C., Pertsemlidis, A., Cox, D., Pennacchio, L.A., Boerwinkle, E., Cohen, J.C. and Hobbs, H.H. (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic and pathophysiology of intravascular and interesting of intravascular and interesting cellular lipolysis. Genes Dev. 27, 459–484.

omeo, S., Kozlitina, J., Xing, C., Pertsemlidis, Cox, D., Pennacchio, L.A., Boerwinkle, E.,
- 64) Li, J.Z., Huang, Y., Karaman, R., Ivanova, P.T., Brown, H.A., Roddy, T., Castro-Perez, J., Cohen, J.C. and Hobbs, H.H. (2012) Chronic overexpression of PNPLA 3^{1148M} in mouse liver causes hepatic *STORTAA3* confers susceptibility to nona
fatty liver disease. Nat. Genet. **40**, 1461–, J.Z., Huang, Y., Karaman, R., Ivanov.
Brown, H.A., Roddy, T., Castro-Perez, J.,
J.C. and Hobbs, H.H. (2012) Chronic oversion of PNPLA3
- 65) Huang, Y., He, S., Li, J.Z., Seo, Y.K., Osborne, T.F., Cohen, J.C. and Hobbs, H.H. (2010) A feedforward loop amplifies nutritional regulation of PNPLA3. Proc. Natl. Acad. Sci. U.S.A. 107, 8180 of PNI
1893 steatosis. J
1892, H. H. Cohen, J. Cohen, J. Cohen
1892–7897.
- 66) Gao, J. and Simon, M. (2005) Identification of a

novel keratinocyte retinyl ester hydrolase as a transacylase and lipase. J. Invest. Dermatol. 124, novel kera
transacylas
1259–1266.

- 67) Dupont, N., Chauhan, S., Arko-Mensah, J., Castillo, E.F., Masedunskas, A., Weigert, R., Robenek, H., Proikas-Cezanne, T. and Deretic, V. (2014) Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 24, $(1259-126$
upont, N.
E.F., Ma
Proikas-
Neutral lute to at
 $609-620$.
- 68) Hirabayashi, T., Anjo, T., Kaneko, A., Senoo, Y., Shibata, A., Takama, H., Yokoyama, K., Nishito, Y., Ono, T., Taya, C., Muramatsu, K., Fukami, K., Munoz-Garcia, A., Brash, A.R., Ikeda, K., Arita, M., Akiyama, M. and Murakami, M. (2017) PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat. Commun. 8, 14609.
- 69) Ohno, Y., Kamiyama, N., Nakamichi, S. and Kihara, A. (2017) PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω -O-acylceramide. Nat. Commun. 8, 14610. Commun. 8, 14609.
Commun. 8, 14609.
hno, Y., Kamiyama, N., Nakamichi, S.
Kihara, A. (2017) PNPLA1 is a transa
essential for the generation of the skin barrie
 ω -O-acylceramide. Nat. Commun. 8, 14610.
attori, M. and Arai
- 70) Hattori, M. and Arai, H. (2015) Intracellular PAF-
- 71) Kono, N. and Arai, H. (2015) Intracellular plateletactivating factor acetylhydrolase, type II: A unique cellular phospholipase A_2 that hydrolyzes oxidatively modified phospholipids. Enzymes 38, acetylhydrolase type I. Enzymes **38**, 23–36.

Sono, N. and Arai, H. (2015) Intracellular planetivating factor acetylhydrolase, type I unique cellular phospholipase A_2 that hydroxidatively modified phospholipids. Enzyme
- 72) Ho, Y.S., Swenson, L., Derewenda, U., Serre, L., Wei, Y., Dauter, Z., Hattori, M., Adachi, T., Aoki, J., Arai, H., Inoue, K. and Derewenda, Z.S. (1997) Brain acetylhydrolase that inactivates plateletactivating factor is a G-protein-like trimer. Nature 343–54.
343–54.
3, Y.S., Swee, Y., Dan
3., Arai, H., Brain acety
activating fa
385, 89–93.
- 73) Koizumi, H., Yamaguchi, N., Hattori, M., Ishikawa, T.O., Aoki, J., Taketo, M.M., Inoue, K. and Arai, H. (2003) Targeted disruption of intracellular type I platelet activating factor-acetylhydrolase catalytic subunits causes severe impairment in **385**, 89–93.

oizumi, H., Yamaguchi, N., Hattori, M., Ishikawa, T.O., Aoki, J., Taketo, M.M., Inoue, K. and Arai, H. (2003) Targeted disruption of intracellular type I platelet activating factor-acetylhydrolase catalytic 12494.
- 74) Kono, N., Inoue, T., Yoshida, Y., Sato, H., Matsusue, T., Itabe, H., Niki, E., Aoki, J. and Arai, H. (2008) Protection against oxidative stress-induced hepatic injury by intracellular type II platelet-activating factor acetylhydrolase by metabolism of oxidized phospholipids in vivo. From, N., Inoue, T., Yoshida
Matsusue, T., Itabe, H., Niki,
Arai, H. (2008) Protection
stress-induced hepatic injury
type II platelet-activating fact
by metabolism of oxidized phos
J. Biol. Chem. 283, 1628–1636.
- 75) Tjoelker, L.W., Wilder, C., Eberhardt, C., Stafforini, D.M., Dietsch, G., Schimpf, B., Hooper, S., Le Trong, H., Cousens, L.S., Zimmerman, G.A., Yamada, Y., McIntyre, T.M., Prescott, S.M. and Gray, P.W. (1995) Antiinflammatory properties of a platelet-activating Factor acetylhydrolase. The U.S., Wilder, C., Eberhardt, Stafforini, D.M., Vilder, C., Schimpf, Hooper, S., Le Trong, H., Cousens, J
Zimmerman, G.A., Yamada, Y., McIntyre, T
Prescott, S.M. and Gray, P.W. (1995) Andramatory
- 76) Wilensky, R.L., Shi, Y., Mohler, E.R. 3rd, Hamamdzic, D., Burgert, M.E., Li, J., Postle, A., Fenning, R.S., Bollinger, J.G., Hoffman, B.E., Pelchovitz, D.J., Yang, J., Mirabile, R.C., Webb, C.L., Zhang, L., Zhang, P., Gelb, M.H., Walker, M.C., Zalewski, A. and Macphee, C.H. (2008) Inhibition of lipoprotein-associated phospholipase

A2 reduces complex coronary atherosclerotic A_2 enzymes A_2 reduces complex coronary atherosclerot plaque development. Nat. Med. 14, 1059–1066. A_2 reduces complex coronary atherosclerotic
plaque development. Nat. Med. **14**, 1059–1066.
orson, M.A. (2009) Phospholipase A_2 inhibitors in
atherosclerosis: the race is on. Lancet **373**, 608–

- 77) Corson, M.A. (2009) Phospholipase A_2 inhibitors in 610.
- 78) Xu, C., Reichert, E.C., Nakano, T., Lohse, M., Gardner, A.A., Revelo, M.P., Topham, M.K. and Stafforini, D.M. (2013) Deficiency of phospholipase A2 group 7 decreases intestinal polyposis and colon tumorigenesis in $Apc^{Min/+}$ mice. Cancer R 610.
 R C., Reichert, E.

Gardner, A.A., Rev

Stafforini, D.M. (2)

lipase A_2 group 7 c

and colon tumorigen

Res. 73, 2806–2816.
- 79) Abe, A., Hiraoka, M., Wild, S., Wilcoxen, S.E., Paine, R. 3rd and Shayman, J.A. (2004) Lysosomal phospholipase A_2 is selectively expressed in France A₂ group 7 decreases intestinal polyposis
and colon tumorigenesis in $Apc^{Min/+}$ mice. Cancer
Res. **73**, 2806–2816.
be, A., Hiraoka, M., Wild, S., Wilcoxen, S.E.,
Paine, R. 3rd and Shayman, J.A. (2004) Lysoso-
mal p 42611.
- 80) Hiraoka, M., Abe, A., Lu, Y., Yang, K., Han, X., Gross, R.W. and Shayman, J.A. (2006) Lysosomal phospholipase A_2 and phospholipidosis. Mol. Cell.
Biol. **26**, 6139–6148. Frame, Frame
Biologies $\frac{1}{2}$
alveolar macrophage
42611.
iraoka, M., Abe, A.,
Gross, R.W. and Sha
phospholipase A_2 and
Biol. **26**, 6139–6148.
- 81) Paduraru, C., Bezbradica, J.S., Kunte, A., Kelly, R., Shayman, J.A., Veerapen, N., Cox, L.R., Besra, G.S. and Cresswell, P. (2013) Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition. Proc. Natl. Acad. Sci. U.S.A. 110, Biol. 26, 6
Biol. 26, 6
shayman, C.
Shayman, G.S. and C
phospholip
recognition
5097–5102.
- 82) Schneider, B.E., Behrends, J., Hagens, K., Harmel, N., Shayman, J.A. and Schaible, U.E. (2014) Lysosomal phospholipase A_2 : a novel player in host immunity to Mycobacterium tuberculosis.
Eur. J. Immunol. 44, 2394–2404. recognition. Proc. Natl. Acad. S
recognition. Proc. Natl. Acad. S
5097–5102.
chneider, B.E., Behrends, J., Hag
N., Shayman, J.A. and Schaib
Lysosomal phospholipase A₂: a
host immunity to Mycobacterit
Eur. J. Immunol. **44**
- 83) Uyama, T., Ikematsu, N., Inoue, M., Shinohara, N., Jin, X.H., Tsuboi, K., Tonai, T., Tokumura, A. and Ueda, N. (2012) Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family.
J. Biol. Chem. 287, 31905-31919. Fur. J. Immunol. 44, 2394–2404.
Eur. J. Immunol. 44, 2394–2404.
Jin, X.H., Tsuboi, K., Tonai, T.,
and Ueda, N. (2012) Generation
phatidylethanolamine by member
pholipase A/acyltransferase (PL
J. Biol. Chem. 287, 31905–3191
- 84) Jaworski, K., Ahmadian, M., Duncan, R.E., Sarkadi-Nagy, E., Varady, K.A., Hellerstein, M.K., Lee, H.Y., Samuel, V.T., Shulman, G.I., Kim, K.H., de Val, S., Kang, C. and Sul, H.S. (2009) AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat. Med. ¹⁵, 159–168.
- 85) Xiong, S., Tu, H., Kollareddy, M., Pant, V., Li, Q., Zhang, Y., Jackson, J.G., Suh, Y.A., Elizondo-Fraire, A.C., Yang, P., Chau, G., Tashakori, M., Wasylishen, A.R., Ju, Z., Solomon, H., Rotter, V., Liu, B., El-Naggar, A.K., Donehower, L.A., Martinez, L.A. and Lozano, G. (2014) Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proc. Natl. Acad. Sci. U.S.A. 111, Fraire, A.C.,
Fraire, A.C.,
Wasylishen, *I*
Liu, B., El-Martinez, L.*J*
phospholipase
of mutant p5:
11145–11150.
- 86) Golczak, M., Sears, A.E., Kiser, P.D. and Palczewski, K. (2015) LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nat. Chem. Biol. 11, phosph
of mut
11145-
olczak,
Palcze
facilita
swapp
26–32.
- 87) Uyama, T., Kawai, K., Kono, N., Watanabe, M., Tsuboi, K., Inoue, T., Araki, N., Arai, H. and Ueda, N. (2015) Interaction of phospholipase A/ acyltransferase-3 with Pex19p: a possible involve-

ment in the down-regulation of peroxisomes. J. ment in the down-regulation α
Biol. Chem. **290**, 17520–17534.

- 88) Staring, J., von Castelmur, E., Blomen, V.A., van den Hengel, L.G., Brockmann, M., Baggen, J., Thibaut, H.J., Nieuwenhuis, J., Janssen, H., van Kuppeveld, F.J., Perrakis, A., Carette, J.E. and Brummelkamp, T.R. (2017) PLA2G16 represents a switch between entry and clearance of Example, J., von Castelmur, E., Blo
van den Hengel, L.G., Brockmann, I.
J., Thibaut, H.J., Nieuwenhuis, J., Van Kuppeveld, F.J., Perrakis, A., C
and Brummelkamp, T.R. (2017) PLA
sents a switch between entry and c
Picornavi
- 89) Thomas, G., Brown, A.L. and Brown, J.M. (2014) In vivo metabolite profiling as a means to identify uncharacterized lipase function: recent success stories within the alpha beta hydrolase domain Picornaviridae. Nature 541, 412–416.
homas, G., Brown, A.L. and Brown, In *in vivo* metabolite profiling as a means uncharacterized lipase function: rec
stories within the alpha beta hydrol (ABHD) enzyme family. Biochim.
- (ABHD) enzyme family. Biochim. Biophys. Acta
 1841, 1097–1101.

ong, J.Z., Cisar, J.S., Milliken, D., Niessen, S.,

Wang, C., Trauger, S.A., Siuzdak, G. and

Cravatt, B.F. (2011) Metabolomics annotates

ABHD3 as a physio 90) Long, J.Z., Cisar, J.S., Milliken, D., Niessen, S., Wang, C., Trauger, S.A., Siuzdak, G. and Cravatt, B.F. (2011) Metabolomics annotates ABHD3 as a physiologic regulator of medium-
- 91) Lee, H.C., Simon, G.M. and Cravatt, B.F. (2015) ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous Start, B.F. (2011) Metabolomic
Cravatt, B.F. (2011) Metabolomic
ABHD3 as a physiologic regulator
chain phospholipids. Nat. Chem. Biol.
se, H.C., Simon, G.M. and Cravatt,
ABHD4 regulates multiple classes
phospholipids in th
- 92) Marrs, W.R., Blankman, J.L., Horne, E.A., Thomazeau, A., Lin, Y.H., Coy, J., Bodor, A.L., Muccioli, G.G., Hu, S.S., Woodruff, G., Fung, S., Lafourcade, M., Alexander, J.P., Long, J.Z., Li, W., Xu, C., Moller, T., Mackie, K., Manzoni, O.J., Cravatt, B.F. and Stella, N. (2010) The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Muccioli, G.G., Hu, S.S.
Lafourcade, M., Alexa
W., Xu, C., Moller, T.,
Cravatt, B.F. and Ste
hydrolase ABHD6 con
efficacy of 2-AG at ca
Neurosci. 13, 951–957.
- 93) Thomas, G., Betters, J.L., Lord, C.C., Brown, A.L., Marshall, S., Ferguson, D., Sawyer, J., Davis, M.A., Melchior, J.T., Blume, L.C., Howlett, A.C., Ivanova, P.T., Milne, S.B., Myers, D.S., Mrak, I., Leber, V., Heier, C., Taschler, U., Blankman, J.L., Cravatt, B.F., Lee, R.G., Crooke, R.M., Graham, M.J., Zimmermann, R., Brown, H.A. and Brown, J.M. (2013) The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Francy, Hoanova, P.T., M
Leber, V., Heier,
Cravatt, B.F., Le
M.J., Zimmerma
J.M. (2013) The
critical regulator
Rep. 5, 508–520.
- 94) Tanimura, A., Yamazaki, M., Hashimotodani, Y., Uchigashima, M., Kawata, S., Abe, M., Kita, Y., Hashimoto, K., Shimizu, T., Watanabe, M., Sakimura, K. and Kano, M. (2010) The endocannabinoid 2-arachidonoylglycerol prod Uchigashima, M., Kawata, S., Abe, M., Kita, Y., Hashimoto, K., Shimizu, T., Watanabe, M., Sakimura, K. and Kano, M. (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppres-327.
- 95) Kita, Y., Yoshida, K., Tokuoka, S.M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M. and Shimizu, T. (2015) Fever is mediated by conversion of endocannabinoid 2-arachidonoylglycerol to prostaglandin E_2 . PLoS One 10, e0133663.
- 96) Kamat, S.S., Camara, K., Parsons, W.H., Chen, D.H., Dix, M.M., Bird, T.D., Howell, A.R. and Cravatt, B.F. (2015) Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11, version
erol to pi
amat, S.
D.H., Di
Cravatt,
phosphat
and AB
164–171.
- 97) Blankman, J.L., Long, J.Z., Trauger, S.A., Siuzdak, G. and Cravatt, B.F. (2013) ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc. Natl. Acad.
Sci. U.S.A. 110, 1500–1505. lankman, J.L., Long, J.Z., T.
G. and Cravatt, B.F. (201
brain lysophosphatidylserin
deregulated in a murine 1
degenerative disease PHAR
Sci. U.S.A. 110, 1500–1505.
- 98) Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G., Schweiger, M., Kienesberger, P., Strauss, J.G., Gorkiewicz, G. and Zechner, R. (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarinbass, A., Zimmermann, R., Haemmerle, Riederer, M., Schoiswohl, G., Schweiger, Kienesberger, P., Strauss, J.G., Gorkiewicz and Zechner, R. (2006) Adipose triglyce lipase-mediated lipolysis of cellular fat stor activated by managed, 13, botaloo, 0.4dipose triglyceri

lipase-mediated lipolysis of cellular fat stores

activated by CGI-58 and defective in Chanari

Dorfman Syndrome. Cell Metab. 3, 309–319.

urakami, M., Sato, H., Miki, Y., Yamam
- and Taketomi, Y. (2015) A new era of secreted
- 99) Murakami, M., Sato, H., Miki, Y., Yamamoto, K.

and Taketomi, Y. (2015) A new era of secreted

phospholipase A_2 . J. Lipid Res. **56**, 1248–1261.

00) Murakami, M., Yamamoto, K., Miki, Y., Murase,

R., Sato, H. and T 100) Murakami, M., Yamamoto, K., Miki, Y., Murase, R., Sato, H. and Taketomi, Y. (2016) The roles of the secreted phospholipase A_2 gene family in immunology. Adv. Immunol. **132**, 91–134.
- 101) Seilhamer, J.J., Randall, T.L., Yamanaka, M. and Johnson, L.K. (1986) Pancreatic phospholipase A2: isolation of the human gene and cDNAs from matamar, m , n and Taketomi, Y . (2016) The roles
of the secreted phospholipase A_2 gene family in
immunology. Adv. Immunol. **132**, 91–134.
ilhamer, J.J., Randall, T.L., Yamanaka, M. and
Johnson, L.K. (1986) Pancrea 527.
- 102) Seilhamer, J.J., Pruzanski, W., Vadas, P., Plant, S., Miller, J.A., Kloss, J. and Johnson, L.K. (1989) Cloning and recombinant expression of phospholipase A_2 present in rheumatoid arthritic synovial Fluid. Diffusion of the main and luman lung. D
porcine pancreas and human lung. D
527.
ilhamer, J.J., Pruzanski, W., Vadas, I
Miller, J.A., Kloss, J. and Johnson,
Cloning and recombinant expression
lipase A₂ present in r
- 103) Pan, Y.H., Yu, B.Z., Singer, A.G., Ghomashchi, F., Lambeau, G., Gelb, M.H., Jain, M.K. and Bahnson, B.J. (2002) Crystal structure of human group X secreted phospholipase A_2 . Electrostatically neutral interfacial surface targets zwitterfluid. J. Biol. Chem. 264, 5335–5338.
an, Y.H., Yu, B.Z., Singer, A.G., Ghomashchi, F.,
Lambeau, G., Gelb, M.H., Jain, M.K. and
Bahnson, B.J. (2002) Crystal structure of human
group X secreted phospholipase A₂. Electrost 29093.
- 104) Scott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B. (1991) Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 254, ionic membranes. J. Biol. Chem. 277 , 29086–29093.

20093.

cott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B. (1991) Structures of

free and inhibited human secretory phospholipase
 A_2 f
- 105) Huggins, K.W., Boileau, A.C. and Hui, D.Y. (2002) Protection against diet-induced obesity and obesity-related insulin resistance in Group 1B PLA2-deficient mice. Am. J. Physiol. Endocrinol. Az from inflammatory
1007–1010.
1007–1010.
uggins, K.W., Boileau, A.C
Protection against diet-
obesity-related insulin re
PLA₂-deficient mice. Am.
Metab. **283**, E994–E1001.
- 106) Labonte, E.D., Kirby, R.J., Schildmeyer, N.M., Cannon, A.M., Huggins, K.W. and Hui, D.Y. (2006) Group 1B phospholipase A_2 -mediated lysophospholipid absorption directly contributes to PLA₂-deficient mice. Am. J. Physiol. Endocrinol.
Metab. **283**, E994–E1001.
abonte, E.D., Kirby, R.J., Schildmeyer, N.M.,
Cannon, A.M., Huggins, K.W. and Hui, D.Y.
(2006) Group 1B phospholipase A₂-mediated ly-
sophosph 941.
- 107) Hui, D.Y., Cope, M.J., Labonte, E.D., Chang, H.T., Shao, J., Goka, E., Abousalham, A., Charmot, D. and Buysse, J. (2009) The phospholipase A_2 inhibitor methyl indoxam suppresses diet-induced obesity and glucose intolerance in mice. Br. J. Paramacol. 157, 1263–1368.

1941.

1941. D.Y., Cope, M.J., Labonto Shao, J., Goka, E., Abousalh

and Buysse, J. (2009) The inhibitor methyl indoxam suppose intolerary

Pharmacol. **157**, 1263–1269.
- 108) Hollie, N.I., Konaniah, E.S., Goodin, C. and Hui, D.Y. (2014) Group 1B phospholipase A_2 inactivation suppresses atherosclerosis and metabolic

diseases in LDL receptor-deficient mice. Atherodiseases in LDL recept
sclerosis **234**, 377–380.

- 109) Wilson, S.G., Adam, G., Langdown, M., Reneland, R., Braun, A., Andrew, T., Surdulescu, G.L., Norberg, M., Dudbridge, F., Reed, P.W., Sambrook, P.N., Kleyn, P.W. and Spector, T.D. (2006) Linkage and potential association of obesity-related phenotypes with two genes on chromosome 12q24 in a female dizygous twin E., Braun, A., Andrew, T., Surdulescu
Norberg, M., Dudbridge, F., Reed,
Sambrook, P.N., Kleyn, P.W. and Specte
(2006) Linkage and potential associated obesity-related phenotypes with two ge
chromosome 12q24 in a female diz Franch, P.N., Balariage, 1., Reega, 1., Reega, 1., Reega, 1., D.
(2006) Linkage and potential association of obesity-related phenotypes with two genes on chromosome 12q24 in a female dizygous twin cohort. Eur. J. Hum. Gen
- 110) Pruzanski, W. and Vadas, P. (1991) Phospholipase effectors of inflammation. Immunol. Today 12, cohort. Eur. J. Hum. Genet. 14 , $340-348$.
ruzanski, W. and Vadas, P. (1991) Phospholipase A_2 —a mediator between proximal and distal
effectors of inflammation. Immunol. Today 12,
143–146.
- 111) Kennedy, B.P., Payette, P., Mudgett, J., Vadas, P., Pruzanski, W., Kwan, M., Tang, C., Rancourt, D.E. and Cromlish, W.A. (1995) A natural disruption of the secretory group II phospholipase A_2 gene in inbred mouse strains. J. Biol. Chem.
270, 22378–22385. 143–146.

143–146.

Pennedy, B.P., Paye

Pruzanski, W., Kv.

D.E. and Cromli

disruption of the se

A₂ gene in inbred
 270, 22378–22385.
- 112) MacPhee, M., Chepenik, K.P., Liddell, R.A., Nelson, K.K., Siracusa, L.D. and Buchberg, A.M. (1995) The secretory phospholipase A_2 gene is a candidate for the Mom1 locus, a major modifier of Apc^{Min} -induced intestinal neoplasia. 270, 22378–2238

acPhee, M., Chelson, K.K., S

Nelson, K.K., S

A.M. (1995) The

is a candidate f

modifier of Apc^{λ}

Cell 81, 957–966.
- 113) Weinrauch, Y., Abad, C., Liang, N.S., Lowry, S.F. and Weiss, J. (1998) Mobilization of potent plasma bactericidal activity during systemic bacterial challenge. Role of group IIA phospholimodifier of Apc^{Min} -induced intestinal
Cell 81, 957–966.
(einrauch, Y., Abad, C., Liang, N.S., L
and Weiss, J. (1998) Mobilization
plasma bactericidal activity during
bacterial challenge. Role of group IIA
pase A_2 . J. pase A_2 . J. Clin. Invest. **102**, 633–638.
- 114) Pernet, E., Brunet, J., Guillemot, L., Chignard, M., Touqui, L. and Wu, Y. (2015) Staphylococcus aureus adenosine inhibits sPLA_2 -IIA-mediated host killing in the airways. J. Immunol. **194**, $5312-5319$.
- 115) Boudreau, L.H., Duchez, A.C., Cloutier, N., Soulet, D., Martin, N., Bollinger, J., Pare, A., Rousseau, M., Naika, G.S., Levesque, T., Laflamme, C., Marcoux, G., Lambeau, G., Farndale, R.W., Pouliot, M., Hamzeh-Cognasse, H., Cognasse, F., Garraud, O., Nigrovic, P.A., Guderley, H., Lacroix, S., Thibault, L., Semple, J.W., Gelb, M.H. and Boilard, E. (2014) Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A_2 to promote inflammation. Blood 124, 2173–2183. Fouliot, M., Hamzeh-Cognasse, H., C.
Pouliot, M., Hamzeh-Cognasse, H., C.
Garraud, O., Nigrovic, P.A., Gu
Lacroix, S., Thibault, L., Semple, M.H. and Boilard, E. (2014) Plate
mitochondria serving as substrate for
group IIA
- 116) Miki, Y., Kidoguchi, Y., Sato, M., Taketomi, Y., Taya, C., Muramatsu, K., Gelb, M.H., Yamamoto, K. and Murakami, M. (2016) Dual roles of group IID phospholipase A_2 in inflamma-
tion and cancer. J. Biol. Chem. **291**, 15588-15601. meonomian service hospholipase A₂ to promote
inflammation. Blood 124, 2173–2183.
iki, Y., Kidoguchi, Y., Sato, M., Taketomi, Y.,
Taya, C., Muramatsu, K., Gelb, M.H.,
Yamamoto, K. and Murakami, M. (2016) Dual
roles of gro
- 117) Vijay, R., Hua, X., Meyerholz, D.K., Miki, Y., Yamamoto, K., Gelb, M., Murakami, M. and Perlman, S. (2015) Critical role of phospholipase severe acute respiratory syndrome-CoV infection.
J. Exp. Med. 212, 1851–1868. From and cancer. J. Biol. Chem.

ijay, R., Hua, X., Meyerholz

Yamamoto, K., Gelb, M., N

Perlman, S. (2015) Critical ro

A₂ group IID in age-related

severe acute respiratory syndr

J. Exp. Med. **212**, 1851–1868.
- A_2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection.
J. Exp. Med. 212, 1851–1868.
amamoto, K., Miki, Y., Sato, H., Nishito, Y., Gelb, M.H., Taketomi, Y. and Murakami, M. (2016) 118) Yamamoto, K., Miki, Y., Sato, H., Nishito, Y., Gelb, M.H., Taketomi, Y. and Murakami, M. (2016) Expression and function of group IIE phospholi-

15613.

- 119) Sato, H., Taketomi, Y., Ushida, A., Isogai, Y., Kojima, T., Hirabayashi, T., Miki, Y., Yamamoto, K., Nishito, Y., Kobayashi, T., Ikeda, K., K., Nishito, Y., Kobayashi, T., Ikeda, K., Taguchi, R., Hara, S., Ida, S., Miyamoto, Y., Watanabe, M., Baba, H., Miyata, K., Oike, Y., Gelb, M.H. and Murakami, M. (2014) The adipo Taguchi, R., Hara, S., Ida, S., Miyamoto, Y., Watanabe, M., Baba, H., Miyata, K., Oike, Y., Gelb, M.H. and Murakami, M. (2014) The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab. **20**, 119–132.
- 120) Valentin, E., Ghomashchi, F., Gelb, M.H., Lazdunski, M. and Lambeau, G. (1999) On the diversity of secreted phospholipases A_2 . Cloning, tissue distribution, and functional expression of two novel mouse group II enzymes. J. Biol. Chem. Principle Constanting Constanting Constanting E., Ghandard Constanting Constan
- 121) Murakami, M., Shimbara, S., Kambe, T., Kuwata, H., Winstead, M.V., Tischfield, J.A. and Kudo, I. (1998) The functions of five distinct mammalian phospholipase A_2 s in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2s are functionally redundant and act in concert with cytosolic phospholipase A_2 . J. Biol. matama, H_1 , Winstead, M.V., Tisch
(1998) The functions of fiphospholipase A_2 s in regu
release. Type IIa and typ
lipase A_2 s are functionally
concert with cytosolic ph
Chem. 273, 14411–14423.
- 122) Shinohara, H., Balboa, M.A., Johnson, C.A., Balsinde, J. and Dennis, E.A. (1999) Regulation of delayed prostaglandin production in activated P388D1 macrophages by group IV cytosolic and group V secretory phospholipase A_2s . J. Biol. Chem. 273 , $14411-14423$.
hinohara, H., Balboa, I
Balsinde, J. and Dennis, $\overline{}$
of delayed prostaglandin p
P388D1 macrophages by
group V secretory phosp
Chem. 274 , $12263-12268$.
- 123) Ohtsuki, M., Taketomi, Y., Arata, S., Masuda, S., Ishikawa, Y., Ishii, T., Takanezawa, Y., Aoki, J., Arai, H., Yamamoto, K., Kudo, I. and Murakami, M. (2006) Transgenic expression of group V, but not group X, secrete Ishikawa, Y., Ishii, T., Takanezawa, Y., Aoki, J., Arai, H., Yamamoto, K., Kudo, I. and Murakami, M. (2006) Transgenic expression of group V, but not group X , secreted phospholipase A_2 in mice leads to neonatal lethality because of lung dysfunction. J. Biol. Chem. $281, 36420-36433$.
- 124) Ohta, S., Imamura, M., Xing, W., Boyce, J.A. and Balestrieri, B. (2013) Group V secretory phospholipase A_2 is involved in macrophage activation and is sufficient for macrophage effector functions in allergic pulmonary inflammation. J. Immunol.
190, 5927–5938. dysfunction. J. I
hta, S., Imamura
Balestrieri, B. (2
lipase A₂ is invol
is sufficient for allergic pulmon.
190, 5927–5938.
- 125) Balestrieri, B., Maekawa, A., Xing, W., Gelb, M.H., Katz, H.R. and Arm, J.P. (2009) Group V secretory phospholipase A_2 modulates phagosome maturation and regulates the innate immune response against Candida albicans. J. Immunol. ama g. b

190, 5927–5938.

alestrieri, B., Ma

Katz, H.R. an

secretory phosph

maturation and

response against

182, 4891–4898.
- 126) Boilard, E., Lai, Y., Larabee, K., Balestrieri, B., Ghomashchi, F., Fujioka, D., Gobezie, R., Coblyn, J.S., Weinblatt, M.E., Massarotti, E.M., Thornhill, T.S., Divangahi, M., Remold, H., Lambeau, G., Gelb, M.H., Arm, J.P. and Lee, D.M. (2010) A novel anti-inflammatory role for secretory phospholipase A_2 in immune complex-
mediated arthritis. EMBO Mol. Med. 2, 172–187. Ghomashchi, F., Fujioka, D., Gobezie, R., Calomashchi, F., Fujioka, D., Gobezie, R., Coblyn, J.S., Weinblatt, M.E., Massarotti, E.M., Thornhill, T.S., Divangahi, M., Remold, H., Lambeau, G., Gelb, M.H., Arm, J.P. and Lee,
- 127) Degousee, N., Kelvin, D.J., Geisslinger, G., Hwang, D.M., Stefanski, E., Wang, X.H., Danesh, A., Angioni, C., Schmidt, H., Lindsay, T.F., Gelb, M.H., Bollinger, J., Payre, C., Lambeau, G., Arm, J.P., Keating, A. and Rubin, B.B. (2011)

Group V phospholipase A_2 in bone marrowderived myeloid cells and bronchial epithelial cells promotes bacterial clearance after Escherichia coli M
Group V phospholipase A_2 in bone marred
erived myeloid cells and bronchial epithelial c
promotes bacterial clearance after *Escherichia*
pneumonia. J. Biol. Chem. **286**, 35650–35662.

- 128) Jemel, I., Ii, H., Oslund, R.C., Payre, C., Dabert-

Gay, A.S., Douguet, D., Chargui, K., Scarzello, S.,

Gelb, M.H. and Lambeau, G. (2011) Group X

secreted phospholipase A₂ proenzyme is matured

by a furin-like pr Gay, A.S., Douguet, D., Chargui, K., Scarzello, S., Gelb, M.H. and Lambeau, G. (2011) Group X secreted phospholipase A_2 proenzyme is matured by a furin-like proprotein convertase and releases arachidonic acid inside of human HEK293 cells.
- 129) Escoffier, J., Jemel, I., Tanemoto, A., Taketomi, Y., Payre, C., Coatrieux, C., Sato, H., Yamamoto, K., Masuda, S., Pernet-Gallay, K., Pierre, V., Hara, S., Murakami, M., De Waard, M., Lambeau, G. and Arnoult, C. (2010) Group X phospholipase A_2 is released during sperm acrosome reaction and controls fertility outcome in mice. J. Clin. Invest.
120, 1415–1428. Fayre, C., Coatri
Masuda, S., Per
S., Murakami, N
and Arnoult, C.
is released durin
controls fertility
120, 1415–1428.
- 130) Henderson, W.R. Jr., Chi, E.Y., Bollinger, J.G., Tien, Y.T., Ye, X., Castelli, L., Rubtsov, Y.P.,
Tien, Y.T., Ye, X., Castelli, L., Rubtsov, Y.P.,
Singer, A.G., Chiang, G.K., Nevalainen, T.,
Rudensky, A.Y. and Gelb, M.H. (2007) Impor-
tance of group X-secreted phospholip Singer, A.G., Chiang, G.K., Nevalainen, T., Rudensky, A.Y. and Gelb, M.H. (2007) Importance of group X-secreted phospholipase A_2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J. Exp. Med. 204,
- 131) Henderson, W.R. Jr., Ye, X., Lai, Y., Ni, Z., Bollinger, J.G., Tien, Y.T., Chi, E.Y. and Gelb, M.H. (2013) Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic celldriven airway hyperresponsiveness and remodeling. PLoS One 8, e56172.
- 132) Kelvin, A.A., Degousee, N., Banner, D., Stefanski, E., Leomicronn, A.J., Angoulvant, D., Paquette, S.G., Huang, S.S., Danesh, A., Robbins, C.S., Noyan, H., Husain, M., Lambeau, G., Gelb, M., Kelvin, D.J. and Rubin, B.B. (2014) Lack of group X secreted phospholipase A_2 increases survival following pandemic H1N1 influenza F., Leomicronn, A.J., Angoulvant, inc., F., Leomicronn, A.J., Angoulvant, i.
S.G., Huang, S.S., Danesh, A., R.
Noyan, H., Husain, M., Lambeau, (Kelvin, D.J. and Rubin, B.B. (20
group X secreted phospholipase
survival follo
- 133) Valentin, E., Ghomashchi, F., Gelb, M.H., Lazdunski, M. and Lambeau, G. (2000) Novel human secreted phospholipase A_2 with homology to the group III bee venom enzyme. J. Biol. Chem. Experiment Survival following
infection. Virolog
alentin, E., G
Lazdunski, M. a
human secreted
to the group III l
275, 7492–7496.
- 134) Murakami, M., Masuda, S., Shimbara, S., Bezzine, S., Lazdunski, M., Lambeau, G., Gelb, M.H., Matsukura, S., Kokubu, F., Adachi, M. and Kudo, I. (2003) Cellular arachidonate-releasing function of novel classes of secretory phospholipase A_2 s (groups III and XII). J. Biol. Chem. **278**, 10657– 275, 7492–7496.

urakami, M., Masuda, S., Shimbara, S., Bezzine, S., Lazdunski, M., Lambeau, G., Gelb, M.H.,

Matsukura, S., Kokubu, F., Adachi, M. and Kudo,

I. (2003) Cellular arachidonate-releasing function

of novel c 10667.
- 135) Sato, H., Taketomi, Y., Isogai, Y., Miki, Y., Yamamoto, K., Masuda, S., Hosono, T., Arata, S., Ishikawa, Y., Ishii, T., Kobayashi, T., Nakanishi, H., Ikeda, K., Taguchi, R., Hara, S., Kudo, I. and Murakami, M. (2010) Group III secreted phospholipase A₂ regulates epi S., Ishikawa, Y., Ishii, T., Kobayashi, T., Nakanishi, H., Ikeda, K., Taguchi, R., Hara, S., Kudo, I. and Murakami, M. (2010) Group III secreted phospholipase A_2 regulates epididymal sperm maturation and fertility in mice. J. Clin.
- 136) Taketomi, Y., Ueno, N., Kojima, T., Sato, H.,

Murase, R., Yamamoto, K., Tanaka, S., Sakanaka, M., Nakamura, M., Nishito, Kawana, M., Kambe, N., Ikeda, K., Taguchi, R., Nakamizo, S., Kabashima, K., Gelb, M.H., Arita, M., Yokomizo, T., Nakamura, M., Watanabe, K., Hirai, H., Nakamura, M., Okayama, Y., Ra, C., Aritake, K., Urade, Y., Morimoto, K., Sugimoto, Y., Shimizu, T., Narumiya, S., Hara, S. and Murakami, M. (2013) Mast cell maturation is driven via a group III phospholipase A2- Hirai, H., Nakamura, M., C
Hirai, H., Nakamura, M., C
Aritake, K., Urade, Y., Mor
Y., Shimizu, T., Narumiy,
Murakami, M. (2013) Mas
driven via a group III
prostaglandin D₂-DP1 rece
Nat. Immunol. **14**, 554–563.

- prostaglandin D₂-DP1 receptor paracrine axis.

Nat. Immunol. **14**, 554–563.

elb, M.H., Valentin, E., Ghomashchi, F., Lazdunski, M. and Lambeau, G. (2000) Cloning

and recombinant expression of a structurally

novel hum 137) Gelb, M.H., Valentin, E., Ghomashchi, F., Lazdunski, M. and Lambeau, G. (2000) Cloning and recombinant expression of a structurally novel human secreted phospholipase A_2 . J. Biol.
- 138) Rouault, M., Bollinger, J.G., Lazdunski, M., Gelb, M.H. and Lambeau, G. (2003) Novel mammalian group XII secreted phospholipase A2 lacking Example and recombinant expression of a structurally
novel human secreted phospholipase A_2 . J. Biol.
Chem. **275**, 39823–39826.
ouault, M., Bollinger, J.G., Lazdunski, M., Gelb,
M.H. and Lambeau, G. (2003) Novel mammali 11503.
- 139) Guan, M., Qu, L., Tan, W., Chen, L. and Wong, C.W. (2011) Hepatocyte nuclear factor- 4α regulates liver triglyceride metabolism in part through secreted phospholipase A_2 GXIIB. Hepatology 53, 458–466. $\frac{1503}{11503}$.

uan, M.,

C.W. (20

lates live

secreted

458–466.
- 140) Lambeau, G. and Gelb, M.H. (2008) Biochemistry and physiology of mammalian secreted phospholipases A2. Annu. Rev. Biochem. ⁷⁷, 495–520.
- 141) Tamaru, S., Mishina, H., Watanabe, Y., Watanabe, K., Fujioka, D., Takahashi, S., Suzuki, K., Nakamura, T., Obata, J.E., Kawabata, K., Yokota, Y., Murakami, M., Hanasaki, K. and Kugiyama, K. (2013) Deficiency of phospholipase A_2 receptor exacerbates ovalbumin-induced lung inflammation. J. Immunol. **191**, 1021–1028. mparau, S., Mishina, H., Watanabe, Y., Watanamaru, S., Mishina, H., Watanabe, Y., Wata
K., Fujioka, D., Takahashi, S., Suzuki
Nakamura, T., Obata, J.E., Kawabata
Yokota, Y., Murakami, M., Hanasaki, K
Kugiyama, K. (2013) De
- 142) Kugiyama, K., Ota, Y., Takazoe, K., Moriyama, Y., Kawano, H., Miyao, Y., Sakamoto, T., Soejima, H., Ogawa, H., Doi, H., Sugiyama, S. and Yasue, H. (1999) Circulating levels of secretory type II phospholipase A2 predict coronary events in patients with coronary artery disease. Circulation mainmaichean
1010, H., Michael
11, Ogawa, H., I
11, (1999) Circu
100, 1280–1284.
- 143) Tomas, N.M., Beck, L.H. Jr., Meyer-Schwesinger, C., Seitz-Polski, B., Ma, H., Zahner, G., Dolla, G., Hoxha, E., Helmchen, U., Dabert-Gay, A.S., Debayle, D., Merchant, M., Klein, J., Salant, D.J., Stahl, R.A. and Lambeau, G. (2014) Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371 , $2277-2287$. mana, Yuniv, Yuniv, B., Ma, I.
C., Seitz-Polski, B., Ma, I.
Hoxha, E., Helmchen, Debayle, D., Merchant,
D.J., Stahl, R.A. and
Thrombospondin type-1
in idiopathic membranou
J. Med. 371, 2277–2287.
- 144) Chandak, P.G., Radovic, B., Aflaki, E., Kolb, D., Buchebner, M., Frohlich, E., Magnes, C., Sinner, F., Haemmerle, G., Zechner, R., Tabas, I., Levak-Frank, S. and Kratky, D. (2010) Efficient phagocytosis requires triac Buchebner, M., Frohlich, E., Magnes, C., Sinner, F., Haemmerle, G., Zechner, R., Tabas, I., Levak-Frank, S. and Kratky, D. (2010) Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase. J. Biol. Chem. 285,
- 145) Tang, T., Abbott, M.J., Ahmadian, M., Lopes, A.B., Wang, Y. and Sul, H.S. (2013) Desnutrin/ ATGL activates PPAR δ to promote mitochon-

drial function for insulin secretion in islet β cells. drial function for insulin
Cell Metab. **18**, 883–895.

- 146) Ochi, T., Munekage, K., Ono, M., Higuchi, T., Tsuda, M., Hayashi, Y., Okamoto, N., Toda, K., Sakamoto, S., Oben, J.A. and Saibara, T. (2016)
Sakamoto, S., Oben, J.A. and Saibara, T. (2016)
Patatin-like phospholipase domain-containing
protein 3 is involved in hepatic f Sakamoto, S., Oben, J.A. and Saibara, T. (2016) Patatin-like phospholipase domain-containing protein 3 is involved in hepatic fatty acid and triglyceride metabolism through X-box binding protein 1 and modulation of endoplasmic retic-
ulum stress in mice. Hepatol. Res. **46**, 584–592.
- 147) Chen, W., Chang, B., Li, L. and Chan, L. (2010) Patatin-like phospholipase domain-containing 3/ adiponutrin deficiency in mice is not associated Frightyceride metabolism through X-box binding
protein 1 and modulation of endoplasmic retic-
ulum stress in mice. Hepatol. Res. $46, 584-592$.
hen, W., Chang, B., Li, L. and Chan, L. (2010)
Patatin-like phospholipase dom 1142.
- 148) Akassoglou, K., Malester, B., Xu, J., Tessarollo, L., Rosenbluth, J. and Chao, M.V. (2004) Brainspecific deletion of neuropathy target esterase/ swisscheese results in neurodegeneration. Proc. with fatty liver disease. Hepatology 5.
1142.
1142.
Rassoglou, K., Malester, B., Xu, J., Tessa
Rosenbluth, J. and Chao, M.V. (2004
specific deletion of neuropathy target
swisscheese results in neurodegeneratic
Natl. Acad.
- 149) Yoda, E., Rai, K., Ogawa, M., Takakura, Y., Kuwata, H., Suzuki, H., Nakatani, Y., Murakami, M. and Hara, S. (2014) Group VIB calcium-independent phospholipase A_2 (iPLA₂ γ) regulates platelet activation, hemostasis and thrombosis in mice. PLoS One 9, e109409.
- 150) Yoda, E., Hachisu, K., Taketomi, Y., Yoshida, K., Nakamura, M., Ikeda, K., Taguchi, R., Nakatani, Y., Kuwata, H., Murakami, M., Kudo, I. and Hara, S. (2010) Mitochondrial dysfunction and reduced prostaglandin synthes Nakamura, M., Ikeda, K., Taguchi, R., Nakatani, Y., Kuwata, H., Murakami, M., Kudo, I. and Hara, S. (2010) Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca^{2+} -independent phospholipase
- 151) Song, H., Wohltmann, M., Bao, S., Ladenson, J.H., Semenkovich, C.F. and Turk, J. (2010) Mice deficient in group VIB phospholipase A_2 (iPLA₂ γ) exhibit relative resistance to obesity and metabolic abnormalities induced by a Western diet. So under the diffused material Res. 51, 3003-3015.
A₂ γ -deficient mice. J. Lipid Res. 51, 3003-3015.
Semenkovich, C.F. and Turk, J. (2010) Mice
deficient in group VIB phospholipase A₂ (iPLA₂ γ)
exhibit relative r E1114.
- 152) Mancuso, D.J., Kotzbauer, P., Wozniak, D.F., Sims, H.F., Jenkins, C.M., Guan, S., Han, X., Yang, K., Sun, G., Malik, I., Conyers, S., Green, K.G., Schmidt, R.E. and Gross, R.W. (2009) Genetic ablation of calcium-independent phospholipase $A_2\gamma$ leads to alterations in hippocampal cardiolipin content and molecular species distribution, mitochondrial degeneration, autophagy, and cognitive dysfunction. J. Biol. Chem. ²⁸⁴, 35632– 35644.
- 153) Mancuso, D.J., Sims, H.F., Han, X., Jenkins, C.M., Guan, S.P., Yang, K., Moon, S.H., Pietka, T., Abumrad, N.A., Schlesinger, P.H. and Gross, R.W. (2007) Genetic ablation of calcium-independent phospholipase $A_2\gamma$ leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic
phenotype. J. Biol. Chem. **282**, 34611–34622. Guan, S.P., Yang, K., Moon, S.H., Pietka, Cham, S.P., Yang, K., Moon, S.H., Pietka, Abumrad, N.A., Schlesinger, P.H. and Gr.
R.W. (2007) Genetic ablation of calcium-in pendent phospholipase $A_2\gamma$ leads to alteration mit
- 154) Moon, S.H., Jenkins, C.M., Mancuso, D.J., Turk, J. and Gross, R.W. (2008) Smooth muscle cell arachidonic acid release, migration, and proliferation are markedly attenuated in mice null for

calcium-independent phospholipase $A_2\beta$. J. Biol. Example 283, 33975–33987.
Chem. 283, 33975–33987.

- 155) Ramanadham, S., Yarasheski, K.E., Silva, M.J., Wohltmann, M., Novack, D.V., Christiansen, B., Tu, X., Zhang, S., Lei, X. and Turk, J. (2008) Age-related changes in bone morphology are accelerated in group VIA phospholipase A_2
(iPLA₂ β)-null mice. Am. J. Pathol. **172**, 868–881. Chem. 283, 33975-33987.

amanadham, S., Yarasheski, K.E., Silva, M.J.,

Wohltmann, M., Novack, D.V., Christiansen, B.,

Tu, X., Zhang, S., Lei, X. and Turk, J. (2008)

Age-related changes in bone morphology are

accelerat
- 156) Shinzawa, K., Sumi, H., Ikawa, M., Matsuoka, Y., Okabe, M., Sakoda, S. and Tsujimoto, Y. (2008) Neuroaxonal dystrophy caused by group VIA phospholipase A_2 deficiency in mice: a model of human neurodegenerative disease. J. Neurosci.
28, 2212–2220. $(1PLA_2\beta)$ -null r
inizawa, K., Su
okabe, M., Sal
Neuroaxonal d
phospholipase
human neurod
28, 2212–2220.
- 157) Li, H., Zhao, Z., Wei, G., Yan, L., Wang, D., Zhang, H., Sandusky, G.E., Turk, J. and Xu, Y. (2010) Group VIA phospholipase A_2 in both host and tumor cells is involved in ovarian cancer development. FASEB J. 24, 4103-4116. mentralism is the property discreption
human neurodegenerative disease 28, 2212–2220.
, H., Zhao, Z., Wei, G., Yan, L., J. H., Sandusky, G.E., Turk, J. ar
Group VIA phospholipase A_2 is tumor cells is involved in ovaria
- 158) McHowat, J., Gullickson, G., Hoover, R.G., Sharma, J., Turk, J. and Kornbluth, J. (2011) Platelet-activating factor and metastasis: calciumindependent phospholipase $A_2\beta$ deficiency protects against breast cancer metastasis to the lung. ment. FASEB J. 24, 4103-4116.

cHowat, J., Gullickson, G., Hoover, R.C.

Sharma, J., Turk, J. and Kornbluth, J. (201

Platelet-activating factor and metastasis: calcius

independent phospholipase $A_2\beta$ deficiency pr

te
- 159) Page, R.M., Munch, A., Horn, T., Kuhn, P.H., Colombo, A., Reiner, O., Boutros, M., Steiner, H., Lichtenthaler, S.F. and Haass, C. (2012) Loss of PAFAH1B2 reduces amyloid- β generation by promoting the degradation of amyloid precursor protein C-terminal fragments. J. Neurosci. 32, rma of Hydroge, R.M., M.
Sage, R.M., M.
Lichtenthaler
of PAFAH1E
promoting th
protein C-ter
18204–18214.
- 160) Livnat, I., Finkelshtein, D., Ghosh, I., Arai, H. and Reiner, O. (2010) PAF-AH catalytic subunits modulate the Wnt pathway in developing GABAergic neurons. Front. Cell. Neurosci. 4, 19.
- 161) Miyata, K., Oike, Y., Hoshii, T., Maekawa, H., Ogawa, H., Suda, T., Araki, K. and Yamamura, K. (2005) Increase of smooth muscle cell migration and of intimal hyperplasia in mice lacking the α/β hydrolase domain containing 2 gene. Biochem. BAAAergic neurons. Front. Cell. Neurons. Front. Cell. Neurons. Exp. Theory is expected. The Ogawa, H., Suda, T., Araki, K. and Y. K. (2005) Increase of smooth muscle cell and of intimal hyperplasia in mice lacking hydrolas
- 162) Jin, S., Zhao, G., Li, Z., Nishimoto, Y., Isohama, Y., Shen, J., Ito, T., Takeya, M., Araki, K., He, P. and Yamamura, K. (2009) Age-related pulmonary emphysema in mice lacking α/β hydrolase domain containing 2 gene. Biochem. Biophys. Res. Hydrase domain Contains
Biophys. Res. Commun.
n, S., Zhao, G., Li, Z., Nis
Shen, J., Ito, T., Takey.
and Yamamura, K. (2009)
emphysema in mice lacking
containing 2 gene. B
Commun. 380, 419–424.
- 163) Grond, S., Radner, F.P., Eichmann, T.O., Kolb, D., Grabner, G.F., Wolinski, H., Gruber, R., Hofer, P., Heier, C., Schauer, S., Rulicke, T., Hoefler, G., Schmuth, M., Elias, P.M., Lass, A., Zechner, R. and Haemmerle, G. (2017) Skin barrier development depends on CGI-58 protein expression during late-stage keratinocyte differentiation. J. Sammer, G.F., Wolinski, H., G.
Grabner, G.F., Wolinski, H., G.
P., Heier, C., Schauer, S., Rulick
Schmuth, M., Elias, P.M., Lass
and Haemmerle, G. (2017) Skin
ment depends on CGI-58 pr
during late-stage keratinocyte (Inves
- 164) Radner, F.P., Streith, I.E., Schoiswohl, G., Schweiger, M., Kumari, M., Eichmann, T.O., Rechberger, G., Koefeler, H.C., Eder, S., Schauer, S., Theussl, H.C., Preiss-Landl, K., Lass, A., Zimmermann, R., Hoefler, G., Zechner, R. and Haemmerle, G. (2010) Growth retardation,

impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J. impaired triacylglycerol catal
tosis, and lethal skin barrier c
comparative gene identificat
Biol. Chem. **285**, 7300–7311.

- 165) Zhao, S., Mugabo, Y., Ballentine, G., Attane, C., Iglesias, J., Poursharifi, P., Zhang, D., Nguyen, T.A., Erb, H., Prentki, R., Peyot, M.L., Joly, E., Tobin, S., Fulton, S., Brown, J.M., Madiraju, S.R. and Prentki, M Iglesias, J., Poursharifi, P., Zhang, D., Nguyen, T.A., Erb, H., Prentki, R., Peyot, M.L., Joly, E., Tobin, S., Fulton, S., Brown, J.M., Madiraju, S.R. and Prentki, M. (2016) α/β -hydrolase domain 6 deletion induces adipose browning and prevents 2888.
- 166) Duchez, A.C., Boudreau, L.H., Naika, G.S., Bollinger, J., Belleannee, C., Cloutier, N., Laffont, B., Mendoza-Villarroel, R.E., Levesque, T., Rollet-Labelle, E., Rousseau, M., Allaeys, I., Tremblay, J.J., Poubelle, P.E., Lambeau, G., Pouliot, M., Provost, P., Soulet, D., Gelb, M.H. and Boilard, E. (2015) Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A_2 -IIA. Proc. Natl. Acad. Sci. U.S.A. 112 , Fremblay, J., $\overline{1}$. Tremblay, J., $\overline{1}$. Pouliot, M., F
and Boilard, are internalize activity of 12-lipase A_2 -IIA.
E3564–E3573.
- 167) Schewe, M., Franken, P.F., Sacchetti, A., Schmitt, M., Joosten, R., Bottcher, R., van Royen, M.E., Jeammet, L., Payre, C., Scott, P.M., Webb, N.R., Gelb, M., Cormier, R.T., Lambeau, G. and Fodde, R. (2016) Secreted phospholipases A₂ are intestinal stem cell niche factors with distinct roles in homeostasis, inflammation, and cancer. Cell M., Joosten, R., Bot
M., Joosten, R., Bot
Jeammet, L., Payre, Gelb, M., Cormier,
Fodde, R. (2016) See
intestinal stem cell nie
in homeostasis, infla
Stem Cell 19, 38–51.
- 168) Munoz, N.M., Meliton, A.Y., Meliton, L.N., Dudek, S.M. and Leff, A.R. (2009) Secretory group V phospholipase A_2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, m Coll 1
Stem Cell 1
unoz, N.M.,
S.M. and I
phospholipa
neutrophilic
Am. J. Phy
L879–L887.
- 169) Bostrom, M.A., Boyanovsky, B.B., Jordan, C.T., Wadsworth, M.P., Taatjes, D.J., de Beer, F.C. and Webb, N.R. (2007) Group v secretory phospholipase A2 promotes atherosclerosis: evidence from genetically altered mice. Arterioscler. L879–L887.
L879–L887.
Satrom, M.A., Boyanovsky, B.B., Wadsworth, M.P., Taatjes, D.J.,
and Webb, N.R. (2007) Grou
phospholipase A₂ promotes athe
dence from genetically altered mid
Thromb. Vasc. Biol. 27, 600–606.
- 170) Yano, T., Fujioka, D., Saito, Y., Kobayashi, T., Nakamura, T., Obata, J.E., Kawabata, K., Watanabe, K., Watanabe, Y., Mishina, H., Tamaru, S. and Kugiyama, K. (2011) Group V secretory phospholipase A_2 plays a pathogenic role in myocardial ischaemia-reperfusion injury.
Cardiovasc. Res. **90**, 335–343. From T., Fujioka, D., Saito,

Nakamura, T., Obata, J.E.

Watanabe, K., Watanabe,

Tamaru, S. and Kugiyama, F

secretory phospholipase A₂ role in myocardial ischaemia-

Cardiovasc. Res. **90**, 335–343.
- 171) Boyanovsky, B.B., Bailey, W., Dixon, L., Shridas, P. and Webb, N.R. (2012) Group V secretory phospholipase A_2 enhances the progression of angiotensin II-induced abdominal aortic aneurysms but confers protection aga P. and Webb, N.R. (2012) Group V secretory phospholipase A2 enhances the progression of angiotensin II-induced abdominal aortic aneurysms but confers protection against angiotensin II-induced cardiac fibrosis in apoE-deficient mice. Am. J. Pathol. 181, 1088-1098.
- 172) Shridas, P., Zahoor, L., Forrest, K.J., Layne, J.D. and Webb, N.R. (2014) Group X secretory phospholipase A_2 regulates insulin secretion through a cyclooxygenase-2-dependent mechanism. J. Biol.
- 173) Shridas, P., Bailey, W.M., Talbott, K.R., Oslund, R.C., Gelb, M.H. and Webb, N.R. (2011) Group X secretory phospholipase A_2 enhances TLR4 signal-[Vol. 9]
indias, P., Bailey, W.M., Talbott, K.R., Oslun-
R.C., Gelb, M.H. and Webb, N.R. (2011) Group
secretory phospholipase A₂ enhances TLR4 signa
ing in macrophages. J. Immunol. **187**, 482–489.
- 174) Ait-Oufella, H., Herbin, O., Lahoute, C., Coatrieux, C., Loyer, X., Joffre, J., Laurans, L., Ramkhelawon, B., Blanc-Brude, O., Karabina, S., Girard, C.A., Payre, C., Yamamoto, K., Binder, C.J., Murakami, M., Tedgui, A., Lambeau, G. and Mallat, Z. (2013) Group X secreted phospholipase A_2 limits the development of atherosclerosis in LDL receptor-null mice. Ramkhelawon, B., Blanc-Brude, O., Karabin
S., Girard, C.A., Payre, C., Yamamoto, I
Binder, C.J., Murakami, M., Tedgui,
Lambeau, G. and Mallat, Z. (2013) Group
secreted phospholipase A₂ limits the developme
of atheroscler
- 175) Zack, M., Boyanovsky, B.B., Shridas, P., Bailey, W., Forrest, K., Howatt, D.A., Gelb, M.H., de Beer, F.C., Daugherty, A. and Webb, N.R. (2011) Group X secretory phospholipase A_2 augments angiotensin II-induced infl W., Forrest, K., Howatt, D.A., Gelb, M.H., de Beer, F.C., Daugherty, A. and Webb, N.R. (2011) Group X secretory phospholipase A_2 augments angiotensin II-induced inflammatory responses and abdominal aortic aneurysm formation in
- 176) Watanabe, K., Fujioka, D., Saito, Y., Nakamura, T., Obata, J.E., Kawabata, K., Watanabe, Y., Mishina, H., Tamaru, S., Hanasaki, K. and Kugiyama, K. (2012) Group X secretory PLA2 in neutrophils plays a pathogenic role in abdominal aortic aneurysms in mice. Am. J. Physiol. Heart Circ. Physiol. **302**, H95–H104. Grounder, H., Fujioka, D., Saito, Y., T., Obata, J.E., Kawabata, K., W.
T., Obata, J.E., Kawabata, K., W.
Mishina, H., Tamaru, S., Hanasa
Kugiyama, K. (2012) Group X sect
in neutrophils plays a pathogenic role
nal aortic a
- 177) Grall, A., Guaguere, E., Planchais, S., Grond, S., Bourrat, E., Hausser, I., Hitte, C., Le Gallo, M., Derbois, C., Kim, G.J., Lagoutte, L., Degorce-Rubiales, F., Radner, F.P., Thomas, A., Kury, S., Bensignor, E., Fontaine, J., Pin, D., Zimmermann, R., Zechner, R., Lathrop, M., Galibert, F., Andre, C. and Fischer, J. (2012) *PNPLA1* mutations cause autosomal recessive S., Bensignor, E., Fontaine, J., Pin, D., Zimmermann, R., Zechner, R., Lathrop, M., Galibert, F., Andre, C. and Fischer, J. (2012) PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and
- 178) Fischer, J., Lefevre, C., Morava, E., Mussini, J.M., Laforet, P., Negre-Salvayre, A., Lathrop, M. and Salvayre, R. (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. humans. Nat. Genet. **44**, 140–147.
ischer, J., Lefevre, C., Morava, E.,
Laforet, P., Negre-Salvayre, A., La
Salvayre, R. (2007) The gene ene
triglyceride lipase (*PNPLA2*) is
neutral lipid storage disease wi
Nat. Genet. **3**
- 179) Rainier, S., Bui, M., Mark, E., Thomas, D., Tokarz, D., Ming, L., Delaney, C., Richardson, R.J., Albers, J.W., Matsunami, N., Stevens, J., Coon, H., Leppert, M. and Fink, J.K. (2008) Neuropathy target esterase gene mutations cause motor neural met. **39**, 28–30.

Nat. Genet. **39**, 28–30.

ainier, S., Bui, M., Mark, E., Thomas, D., Tokarz,

D., Ming, L., Delaney, C., Richardson, R.J.,

Albers, J.W., Matsunami, N., Stevens, J., Coon,

H., Leppert, M. and Fin
- 180) Vrieze, S.I., Malone, S.M., Pankratz, N., Vaidyanathan, U., Miller, M.B., Kang, H.M., McGue, M., Abecasis, G. and Iacono, W.G. (2014) Genetic associations of nonsynonymous exonic variants with psychophysiological endoengeo essence matricent and the neuron disease. Am. J. Hum. Genet. 82, 780–7
rieze, S.I., Malone, S.M., Pankratz,
Vaidyanathan, U., Miller, M.B., Kang, H.
McGue, M., Abecasis, G. and Iacono, W
(2014) Genetic associations o
- 181) Falchi, M., Bataille, V., Hayward, N.K., Duffy, D.L., Bishop, J.A., Pastinen, T., Cervino, A., Zhao, Z.Z., Deloukas, P., Soranzo, N., Elder, D.E., Barrett, J.H., Martin, N.G., Bishop, D.T., Montgomery, G.W. and Spector, T.D. (2009) Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of

cutaneous nevi. Nat. Genet. ⁴¹, 915–919.

- 182) Koenig, W., Khuseyinova, N., Lowel, H., Trischler, G. and Meisinger, C. (2004) Lipoprotein-associated phospholipase A_2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern G. and Meisinger, C. (2004) Lipport
ated phospholipase A_2 adds to risk princident coronary events by C-reactive
apparently healthy middle-aged men
general population: results from th
follow-up of a large cohort from
Ge
- 183) Wootton, P.T., Drenos, F., Cooper, J.A., Thompson, S.R., Stephens, J.W., Hurt-Camejo, E., Wiklund, O., Humphries, S.E. and Talmud, P.J. (2006) Tagging-SNP haplotype analysis of the secretory PLA_2IIa gene $PLA2G2A$ sh S.R., Stephens, J.W., Hurt-Camejo, E., Wiklund, O., Humphries, S.E. and Talmud, P.J. (2006) Tagging-SNP haplotype analysis of the secretory PLA2IIa gene PLA2G2A shows strong association with serum levels of sPLA_2IIa : results from the UDACS study. Hum. Mol. Genet. **15**, 355–361.
- 184) Leung, S.Y., Chen, X., Chu, K.M., Yuen, S.T., Mathy, J., Ji, J., Chan, A.S., Li, R., Law, S., Troyanskaya, O.G., Tu, I.P., Wong, J., So, S., Botstein, D. and Brown, P.O. (2002) Phospholipase A2 group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis. Proc. Natl. Acad. Sci. Mathy, J., Ji, J., Chan
Troyanskaya, O.G., Tu,
Troyanskaya, O.G., Tu,
Botstein, D. and Brown,
pase A₂ group IIA expres
cinoma is associated with
less frequent metastasis.
U.S.A. **99**, 16203–16208.
- 185) Takabatake, N., Sata, M., Inoue, S., Shibata, Y., Abe, S., Wada, T., Machiya, J., Ji, G., Matsuura, T., Takeishi, Y., Muramatsu, M. and Kubota, I. (2005) A novel polymorphism in secretory phospholipase A_2 -IID is associated with body weight loss in chronic obstructive pulmonary disease.
Am. J. Respir. Crit. Care Med. 172, 1097–1104. b. Sakabatake, N., Sata, M., Inoue, S., Shibata, Y. Abe, S., Wada, T., Machiya, J., Ji, G., Matsuura T., Takeishi, Y., Muramatsu, M. and Kubota, J. (2005) A novel polymorphism in secretory phos pholipase A₂-IID is associ
- 186) McGovern, D.P., Gardet, A., Torkvist, L., Goyette, P., Essers, J., Taylor, K.D., Neale, B.M., Ong, R.T., Lagace, C., Li, C., Green, T., Stevens, C.R., Beauchamp, C., Fleshner, P.R., Carlson, M., D'Amato, M., Halfvarson, J., Hibberd, M.L., Lordal, M., Padyukov, L., Andriulli, A., Colombo, E., Latiano, A., Palmieri, O., Bernard, E.J., Deslandres, C., Hommes, D.W., de Jong, D.J., Stokkers, P.C., Weersma, R.K., Consortium, N.I.G., Sharma, Y., Silverberg, M.S., Cho, J.H., Wu, J., Roeder, K., Brant, S.R., Schumm, L.P., Duerr, R.H., Dubinsky, M.C., Glazer, N.L., Haritunians, T., Ippoliti, A., Melmed, G.Y., Carlos, T., Siscovick, D.S., Vasiliauskas, E.A., Targan, S.R., Annese, V., Wijmenga, C., Pettersson, S., Rotter, J.I., Xavier, R.J., Daly, M.J., Rioux, J.D. and Seielstad, M. (2 Siscovick, D.S., Vasiliauskas, E.A., Targan, S.R., Annese, V., Wijmenga, C., Pettersson, S., Rotter, J.I., Xavier, R.J., Daly, M.J., Rioux, J.D. and Seielstad, M. (2010) Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42, 332–337.
- 187) Kazama, S., Kitayama, J., Hiyoshi, M., Taketomi, Y., Murakami, M., Nishikawa, T., Tanaka, T.,

Tanaka, J., Kiyomatsu, T., Kawai, K., Hata, K., Yamaguchi, H., Nozawa, H., Ishihara, S., Sunami, E. and Watanabe, T. (2015) Phospholipase A_2 group III and group X have opposing associations with prognosis in colorectal cancer. Anticancer Res. **35**, 2983–2990. Tanaka, J., Kiyoma
Yamaguchi, H., Noz
E. and Watanabe,
group III and group
with prognosis in (
Res. **35**, 2983–2990.

- 188) Hoeft, B., Linseisen, J., Beckmann, L., Muller-Decker, K., Canzian, F., Husing, A., Kaaks, R., Vogel, U., Jakobsen, M.U., Overvad, K., Hansen, R.D., Knuppel, S., Boeing, H., Trichopoulou, A., Koumantaki, Y., Trichopoulos, D., Berrino, F., Palli, D., Panico, S., Tumino, R., Bueno-de-Mesquita, H.B., van Duijnhoven, F.J., van Gils, C.H., Peeters, P.H., Dumeaux, V., Lund, E., Huerta Castano, J.M., Munoz, X., Rodriguez, L., Barricarte, A., Manjer, J., Jirstrom, K., Van Guelpen, B., Hallmans, G., Spencer, E.A., Var Guepen, E.L., Khaw, K.T., Wareham, N., Morois, S., Boutron-Ruault, M.C., Clavel-Chapelon, F., Chajes, V., Jenab, M., Boffetta, P., Vineis, P., Morov, T., Norat, T., Riboli, E. and Nieters, A. (2010) Polymorphisms in fa S., Boutron-Ruault, M.C., Clavel-Chapelon, F., Chajes, V., Jenab, M., Boffetta, P., Vineis, P., Mouw, T., Norat, T., Riboli, E. and Nieters, A. (2010) Polymorphisms in fatty-acid-metabolismrelated genes are associated with colorectal cancer
- 189) Martinez-Garcia, A., Sastre, I., Recuero, M., Aldudo, J., Vilella, E., Mateo, I., Sanchez-Juan, P., Vargas, T., Carro, E., Bermejo-Pareja, F., P., Vargas, T., Carro, E., Bermejo-Pareja, F., Rodriguez-Rodriguez, E., Combarros, O., Rosich-Estrago, M., Frank, A., Valdivieso, F. and Bullido, M.J. (2010) PLA2G3, a gene in Rodriguez-Rodriguez, E., Combarros, O., Rosich-Estrago, M., Frank, A., Valdivieso, F. and Bullido, M.J. (2010) PLA2G3, a gene involved in oxidative stress induced death, is associated with Alzheimer's disease. J. Alzheimers Dis. 22,
- 190) Wootton, P.T., Arora, N.L., Drenos, F., Thompson, S.R., Cooper, J.A., Stephens, J.W., Hurel, S.J., Hurt-Camejo, E., Wiklund, O., Humphries, S.E. and Talmud, P.J. (2007) Tagging SNP haplotype analysis of the secretory PLA_2-V gene, $PLA2G5$, shows strong association with LDL and oxLDL levels, suggesting functional distinction from $sPLA_2-IIA$: results from the UDACS study. Hurt-Camejo, E., Wiklund, O., F.
and Talmud, P.J. (2007) Tagging
analysis of the secretory PLA₂-V
shows strong association with Ll
levels, suggesting functional di
sPLA₂-IIA: results from the U
Hum. Mol. Genet. **16**,
- 191) Sergouniotis, P.I., Davidson, A.E., Mackay, D.S., Lenassi, E., Li, Z., Robson, A.G., Yang, X., Kam, J.H., Isaacs, T.W., Holder, G.E., Jeffery, G., Beck, J.A., Moore, A.T., Plagnol, V. and Webster, A.R. (2011) Biallelic mutations in PLA2G5, encoding group V phospholipase A_2 , cause benign fleck retina. Am. J. Hum. Genet. **89**, 782–791. Fram. Hotel, Davidson, A.E., Macka
Lenassi, E., Li, Z., Robson, A.G., Yang, Y.
J.H., Isaacs, T.W., Holder, G.E., Jeffery, G.
J.A., Moore, A.T., Plagnol, V. and Webst
(2011) Biallelic mutations in PLA2G5, egroup V phospholi

(Received May 9, 2017; accepted July 19, 2017)

Profile

Makoto Murakami was born in Nagano Prefecture in 1964 and graduated from Faculty of Pharmaceutical Sciences, the University of Tokyo, in 1986. He received a M.S. degree in 1988 and a Ph.D. degree in 1991 from the University of Tokyo. He worked as a postdoctoral fellow at the University of Tokyo under a support of the Japan Society for the Promotion of Science from 1991 to 1993 and then at Harvard Medical School under Professor K. Frank Austen from 1993 to 1995. He then worked as an associate professor at School of Pharmaceutical Sciences, Showa University, from 1995 to 2005 and as a project leader of the Lipid Metabolism project, Tokyo Metropolitan Institute of Medical Science, from 2005 to 2016. He is now working as a professor at Graduate School of Medicine, the University of Tokyo, since 2017. He has authored 180 original articles and

54 review articles (in English) and 100 review articles (in Japanese) on phospholipase A2s and lipid mediators. He is now a committee member of the Japanese Biochemical Society, Japanese Lipid Biochemistry Society, and Japanese Society of Inflammation and Regeneration. He received the Young Investigator Awards for the Pharmaceutical Society of Japan in 1999 and the Japanese Society of Inflammation and Regeneration in 2000, Investigator Awards for the Tokyo Metropolitan Institute of Medical Science in 2008, Award for the Terumo Science Foundation in 2014, and the Bureau of Social Welfare and Public Health at Tokyo Metropolitan Government in 2015.