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Lipoquality control by phospholipase A2 enzymes

By Makoto MURAKAMI*1,*2,*3,†

(Communicated by Kunihiko SUZUKI, M.J.A.)

Abstract: The phospholipase A2 (PLA2) family comprises a group of lipolytic enzymes that
typically hydrolyze the sn-2 position of glycerophospholipids to give rise to fatty acids and
lysophospholipids. The mammalian genome encodes more than 50 PLA2s or related enzymes, which
are classified into several subfamilies on the basis of their structures and functions. From a general
viewpoint, the PLA2 family has mainly been implicated in signal transduction, producing bioactive
lipid mediators derived from fatty acids and lysophospholipids. Recent evidence indicates that
PLA2s also contribute to phospholipid remodeling for membrane homeostasis or energy production
for fatty acid O-oxidation. Accordingly, PLA2 enzymes can be regarded as one of the key regulators
of the quality of lipids, which I herein refer to as lipoquality. Disturbance of PLA2-regulated
lipoquality hampers tissue and cellular homeostasis and can be linked to various diseases. Here
I overview the current state of understanding of the classification, enzymatic properties, and
physiological functions of the PLA2 family.
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1. Introduction

In terms of signal transduction, the phospholi-
pase A2 (PLA2) reaction, which hydrolyzes the sn-2
position of phospholipids to yield fatty acids and
lysophospholipids, has been considered to be of
particular importance, since arachidonic acid (AA,
C20:4), one of the polyunsaturated fatty acids
(PUFAs) released from membrane phospholipids by
PLA2, is metabolized by cyclooxygenases (COXs)
and lipoxygenases (LOXs) to lipid mediators includ-
ing prostaglandins (PGs) and leukotrienes (LTs),
which are often referred to as eicosanoids (Fig. 1).

Lysophospholipids or their metabolites, such as
lysophosphatidic acid (LPA) and platelet-activating
factor (PAF), are categorized into another class of
PLA2-driven lipid mediators (Fig. 2A, B). More
recently, a novel class of anti-inflammatory lipid
mediators derived from B3 PUFAs, such as eicosa-
pentaenoic acid (EPA, C20:5) and docosahexaenoic
acid (DHA, C22:6), has also been attracting much
attention (Fig. 2C). These lipid mediators exert
numerous biological actions on target cells mainly
by acting on their cognate G protein-coupled
receptors. The pathophysiological roles of individual
lipid mediators have been summarized in recent
reviews.1)–4)

However, this principal concept appears to be
insufficient to fully explain the biological aspects and
physiological roles of the PLA2 family. Phospholipids
comprise numerous molecular species that contain
various combinations of fatty acids esterified at the
sn-1 and sn-2 positions and several polar head groups
at the sn-3 position. Many, if not all, PLA2 enzymes
recognize such differences in the fatty acyl and/or
head group moieties in their substrate phospholipids.
Moreover, several enzymes in the PLA2 family also
catalyze the phospholipase A1 (PLA1), lysophospho-
lipase, neutral lipid lipase, or even transacylase/
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acyltransferase reaction rather than or in addition to
the genuine PLA2 reaction. Therefore, the fatty acids
and lysophospholipids released by different PLA2s
are not always identical; rather, in many situations,
specific fatty acids and lysophosholipids can be
released by a particular PLA2 in the presence of a
given microenvironmental cue. In this context, PLA2

enzymes act as one of the critical regulators of
spatiotemporal lipid profiles, namely the quality of
lipids (lipoquality). To comprehensively understand
the lipoquality regulation by individual PLA2s in
various pathophysiological contexts, their precise
enzymatic, biochemical and cell biological properties,
tissue and cellular distributions, and availability of
phospholipid substrates in various pathophysiolog-
ical settings should be taken into consideration.

Herein, I overview current understanding of the
biological aspects of various PLA2 enzymes in the
context of lipoquality.

2. Substrate specificity of PLA2s; a general view

Obviously, the substrate specificity of individual
PLA2s is the critical determinant of lipoquality. The
in vitro enzymatic activity of PLA2s may be influ-
enced by the assay conditions employed, such as
the composition of the substrate phospholipids,
concentrations of PLA2s and substrates, presence of
detergents, and pH. Hence, the enzymatic properties
of individual PLA2s determined in different studies
may not be entirely identical. Since natural mem-
branes contain numerous phospholipid molecular
species, the results obtained using artificial phospho-
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lipid vesicles comprising only one or a few phospho-
lipid species may not always reflect the true
enzymatic properties of a given PLA2. Addition of
an excess amount of recombinant or purified PLA2 to
an enzyme assay often results in hydrolysis of bulk
phospholipids, which makes precise evaluation of its
substrate specificity difficult. The results obtained
using a commercially available PLA2 assay kit, in
which a synthetic, chromophoric phospholipid is used
as a substrate, should be interpreted carefully, since
some PLA2s are unable to hydrolyze it efficiently. In
this regard, mass spectrometric examination of the
in vitro hydrolysis of natural membrane phospholi-
pids extracted from the affected tissues or cells by
PLA2, particularly at a low (physiologically relevant)
concentration of the enzyme, could provide a
valuable clue to the in vivo substrates and products
of this enzyme.5)–7) The overall tendency in this
in vitro assay using natural membranes is recapitu-
lated in several in vivo systems, often with even more

selective patterns of hydrolysis that are relevant to
the results of studies using PLA2 knockout and/or
transgenic mice (see below). Importantly, the mobi-
lization of distinct lipids by PLA2s in vivo relies not
only on their intrinsic enzymatic properties, but also
on tissue- or disease-specific contexts such as the lipid
composition of target membranes, the spatiotempo-
ral availability of downstream lipid-metabolizing
enzymes, or the presence of cofactor(s) that can
modulate the enzymatic function, which may ac-
count for why distinct PLA2 enzymes even in the
same subfamily exert specific functions with different
lipid profiles in distinct settings.

Hereafter, I describe the current understanding
of various PLA2s in the context of lipoquality.
The classification, distributions, properties and
functions of individual PLA2s, whose pathophysio-
logical functions have currently been studied using
their gene-manipulated mice, are summarized in
Table 1.
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3. Lipoquality control by intracellular PLA2s

The cPLA2 family. The cytosolic PLA2

(cPLA2) family comprises 6 isoforms (,–1), among
which cPLA2O, /, C and 1 map to the same
chromosomal locus (Fig. 3A).8) cPLA2, (also known
as group IVA PLA2) is undoubtedly the best known
PLA2 and its biological roles in association with
lipoquality have been well documented.9) cPLA2, is
the only PLA2 that shows a striking substrate
specificity for AA-containing phospholipids. Strictly
speaking, cPLA2, can also hydrolyze phospholipids
containing EPA, yet the low abundance of this B3
PUFA relative to other fatty acids including B6 AA
in cell membranes allows cPLA2, to release AA
rather specifically in most situations. Upon cell
activation, cPLA2, translocates from the cytosol
to the phosphatidylcholine (PC)-rich perinuclear,

endoplasmic reticulum (ER) and Golgi membranes
(particularly Golgi) in response to an increase in the
µM range of cytosolic Ca2D concentration, and is
maximally activated by phosphorylation through
mitogen-activated protein kinases (MAPKs) and
other kinases.10),11) In addition, the phosphoinositide
PIP2 and ceramide-1-phosphate modulate the sub-
cellular localization and activation of cPLA2,.12),13)

The AA released by cPLA2, is converted by the
sequential action of constitutive COX-1 or inducible
COX-2 and terminal PG synthases to PGs or by
the sequential action of 5-LOX and terminal LT
synthases to LTs (Fig. 3B).

Mice deficient in cPLA2, display a number of
phenotypes that can be explained by reductions of
PGs and/or LTs. Under physiological conditions,
cPLA2,-deficient mice display a hemorrhagic ten-
dency, impaired female reproduction, gastrointestinal
ulcer, and renal malfunction, among others.14)–18)

Under pathological conditions, cPLA2,-deficient
mice are protected against bronchial asthma, pulmo-
nary fibrosis, cerebral infarction, Alzheimer’s disease,
experimental autoimmune encephalomyelitis, colla-
gen-induced arthritis, metabolic diseases, intestinal
cancer and so on, whereas they suffer from more
severe colitis and spinal cord injury.15),19)–24) Most of
these phenotypes are recapitulated in mice lacking
one or more of the biosynthetic enzymes or receptors
for PGs and LTs, lending strong support to the
notion that cPLA2, lies upstream of eicosanoid
biosynthesis in many situations. For instance, as is
the case for cPLA2,-deficient mice, mice lacking
LTC4 synthase (LTC4S), LTD4 receptor (CysLT1),
LTB4 receptor (BLT1), or PGD2 receptor (DP1) are
protected from asthma,25)–27) revealing the critical
role of the cPLA2,-LTB4/LTC4/PGD2 axis in this
allergic disease. Likewise, the decrease of PGE2 in
cPLA2,-deficient mice can account largely, even if
not solely, for the mitigation of arthritis, autoimmune
encephalomyelitis, cancer and neurodegeneration as
well as the exacerbation of colitis, since these
phenotypes are mimicked by mice lacking PGE2

synthase (mPGES-1) or either of the four PGE2

receptors (EP194).28)–32) Furthermore, cPLA2,-trig-
gered release of AA by platelets is coupled not only
with biosynthesis of the pro-thrombotic eicosanoid
thromboxane A2 (TXA2), but also with O-oxidation-
mediated bioenergetics for blood clotting.33) Impor-
tantly, inherited human cPLA2, mutations are
associated with reduced eicosanoid biosynthesis,
platelet dysfunction, and intestinal ulceration,34),35)

thus mimicking cPLA2, deletion in mice.
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Fig. 3. The cPLA2 family. (A) Structures of cPLA2 enzymes (,-
1). The C2 domain, which is essential for Ca2D-dependent
membrane translocation, is conserved in cPLA2 enzymes except
for cPLA2., whose C-terminal region is farnesylated. (B) A
schematic diagram of stimulus-induced cPLA2, activation. For
details, see the text.
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On the other hand, the enzymatic activities and
biological functions of cPLA2 isoforms other than
cPLA2, have remained largely unknown. Report-
edly, cPLA2O (group IVB PLA2), which has a unique
JimC domain in the N-terminal region, display PLA1,
PLA2 and lysophospholipase activities.36) cPLA2.

(group IVC PLA2), which uniquely lacks the C2
domain characteristic of the cPLA2 family, is C-
terminally farnesylated and possesses lysophospholi-
pase and transacylase activities in addition to PLA2

activity.37) cPLA2/ (group IVD PLA2), whose ex-
pression is elevated in human psoriatic skin,38) shows
PLA1 activity in preference to PLA2 activity.36)

cPLA2C (group IVE PLA2) exhibits a unique trans-
acylase activity that transfers sn-1 fatty acid of PC to
an amino residue of phosphatidylethanolamine (PE)
to form N-acyl-PE, a precursor of the endocannabi-
noid lipid mediator N-acylethanolamine.39) cPLA21

(group IVF PLA2) displays both PLA1 and PLA2

activities without fatty acid selectivity.40) However,
these enzymatic properties of cPLA2O–1 vary accord-
ing to the in vitro assays employed, implying that
analyses using gene-manipulated mice for these

enzymes will be necessary for clarifying their bio-
logical roles in the context of lipoquality.

The iPLA2/PNPLA family. The human
genome encodes 9 Ca2D-independent PLA2 (iPLA2)
enzymes (Fig. 4). These enzymes are now more
generally referred to as patatin-like phospholipase
domain-containing lipases (PNPLA199), as all
members in this family share a patatin domain,
which was initially discovered in patatin (iPLA2,),
a potato protein.41),42) Mammalian iPLA2/PNPLA
isoforms include lipid hydrolases or transacylases
with specificities for diverse lipids such as phospho-
lipids, neutral lipids, sphingolipids, and retinol esters.
Generally speaking, enzymes bearing a large and
unique N-terminal region (PNPLA699) act mainly
on phospholipids (phospholipase type), whereas
those lacking the N-terminal domain (PNPLA195)
act on neutral lipids (lipase type). Analysis of mutant
mouse models and clinical symptoms of patients with
mutations for these enzymes have provided valuable
insights into the physiological roles of the iPLA2/
PNPLA family in various forms of homeostatic lipid
metabolism that are fundamental for life.
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Fig. 4. The iPLA2/PNPLA family. Structures of iPLA2/PNPLA enzymes (PNPLA199), which are subdivided into lipase and
phospholipase types, are shown. The patatin domain, which is characteristic of this family, is conserved in all of these enzymes. The
biological functions and enzymatic properties of the individual enzymes are indicated on the right. For details, see the text.
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Among the iPLA2/PNPLA family, PNPLA9
(iPLA2O, also known as group VIA PLA2) is the only
isoform that acts primarily as a PLA2 with poor fatty
acid selectivity.43),44) Although PNPLA8 (iPLA2. or
group VIB PLA2) displays PLA2 activity, it acts as a
PLA1 toward phospholipids bearing sn-2 PUFA.45),46)

Accordingly, hydrolysis of PUFA-bearing phospho-
lipids by PNPLA8/iPLA2. typically gives rise to
2-lysophospholipids (having a PUFA at the sn-2
position) rather than 1-lysophospholipids (having a
saturated or monounsaturated fatty acid at the sn-1
position). PNPLA6 (iPLA2/) and its closest paralog
PNPLA7 (iPLA23) have lysophospholipase activity
that cleaves lysophosphatidylcholine to yield fatty
acid and glycerophosphocholine.47),48) Genetic muta-
tions or deletions of these phospholipid-targeting
PNPLAs cause various forms of metabolic dysfunc-
tion and neurodegeneration.49)–53) In particular,
PNPLA9/iPLA2O is also referred to as the parkinson-
ism-associated protein PARK14, whose mutations
impair Ca2D signaling in dopaminergic neurons.54)

Apart from the metabolic and neurodegenerative
phenotypes, the lack of PNPLA9/iPLA2O leads to
male infertility through an unknown mechanism.55)

PNPLA2 (iPLA21), more generally known as
adipose triglyceride lipase (ATGL), is a major lipase
that hydrolyzes triglycerides in lipid droplets to
release fatty acids as a fuel for O-oxidation-coupled
energy production, a process known as lipolysis.56)

Genetic deletion or mutation of PNPLA2 leads to
massive accumulation of triglycerides in multiple
tissues leading to multi-organ failures,57) while pro-
tecting from cancer-associated cachexia by prevent-
ing fat loss.58) The activity of PNPLA2 is regulated
positively by ABHD5 (see below) and negatively by
perilipin and G0S2, which modulate the accessibility
of PNPLA2 to lipid droplets.59) The fatty acids
released from lipid droplets by PNPLA2 act as en-
dogenous ligands for the nuclear receptor PPAR, or
PPAR/, which accelerates energy consumption.59),60)

The regulatory mechanisms and metabolic roles
of PNPLA2 have been detailed in other elegant
reviews.61),62) Mutations of PNPLA3 (iPLA2C) are
highly associated with non-alcoholic fatty liver
disease.63) Although the catalytic activity of PNPLA3
is controversial, it may serve as a triglyceride lipase,
since its loss-of function mutation increases cellular
triglyceride levels.64) Furthermore, recent evidence
suggests that PNPLA3 acts as a retinyl-palmitate
lipase in hepatic stellate cells to fine-tune the plasma
levels of retinoids. The expressions of PNPLA2 and
PNPLA3 are nutritionally regulated in a reciprocal

way; PNPLA2 is upregulated, while PNPLA3 is
downregulated, upon starvation, and vice versa upon
feeding.65) Biochemical and cell biological studies
have suggested that PNPLA4 (iPLA22, which is
absent in mice) might be involved in retinol ester
metabolism66) and that PNPLA5 might participate
in triglyceride lipolysis coupled with autophagosome
formation,67) although the in vivo relevance of these
in vitro observations is unclear.

Unlike most PNPLA isoforms that are ubiqui-
tously expressed in many tissues, PNPLA1 is
localized predominantly in the upper layer of the
epidermis. PNPLA1 acts as a unique transacylase,
catalyzing the transfer of linoleic acid (LA; C18:2) in
triglyceride to the B-hydroxy residue of ultra-long-
chain fatty acid in ceramide to form B-O-acylcer-
amide, a lipid component essential for skin barrier
function.68),69) Accordingly, genetic deletion or muta-
tion of PNPLA1 hampers epidermal B-O-acyl-
ceramide formation, thereby severely impairing skin
barrier function and causing ichthyosis. The unique
role of PNPLA1 in the acylceramide-metabolic
pathway in the epidermis is depicted in Fig. 5.

The PAFAH family. The PAF-acetylhydro-
lase (PAFAH) family comprises one extracellular and
three intracellular PLA2s that were originally found
to have the capacity to deacetylate and thereby
inactivate the lysophospholipid-derived lipid media-
tor PAF.70),71) Type-I PAFAH is a heterotrimer
composed of two catalytic subunits, group XIIIA and
XIIIB PLA2s, and a regulatory subunit LIS-1, the
causative gene for a type of Miller Diecker syn-
drome.72) Deficiency of type-I PAFAH leads to male
infertility through an unknown mechanism.73) Type-
II PAFAH (group VIIB PLA2) preferentially hydro-
lyzes oxidized phospholipids (i.e., phospholipids
having an oxygenated fatty acid at the sn-2 position)
in cellular membranes, thereby protecting cells from
oxidative damage.74) Although plasma-type PAFAH
(group VIIA PLA2) is a secreted protein, it is
described here as its structure is close to type-II
PAFAH. Plasma-type PAFAH is now more generally
called lipoprotein-associated PLA2 (Lp-PLA2), exist-
ing as a low-density lipoprotein (LDL)-bound form in
human plasma.75) A series of studies have revealed
the correlation of Lp-PLA2 with atherosclerosis,
likely because this enzyme liberates toxic oxidized
fatty acids from modified LDL with pro-atherogenic
potential.76),77) Furthermore, deficiency of Lp-PLA2

decreases intestinal polyposis and colon tumorigene-
sis in ApcMin/D mice,78) suggesting an anti-tumori-
genic role for PAF in this setting.
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Lysosomal PLA2. Lysosomal PLA2 (LPLA2),
also known as group XV PLA2, is homologous with
lecithin cholesterol acyltransferase (LCAT) and
catalytically active under mildly acidic conditions.79)

LPLA2 hydrolyzes both sn-1 and sn-2 fatty acids in
phospholipids and contributes to phospholipid deg-
radation in lysosomes. Genetic deletion of LPLA2

results in unusual accumulation of non-degraded lung
surfactant phospholipids in lysosomes of alveolar
macrophages, leading to phospholipidosis,80) per-
turbed presentation of endogenous lysophospholipid
antigens to CD1d by invariant natural killer T
(iNKT) cells,81) and impairment of adaptive T cell
immunity against mycobacterium.82)

The PLAAT family. The PLA-acyltransferase
(PLAAT) family (3 enzymes in humans and 5
enzymes in mice) is structurally similar to lecithin
retinol acyltransferase (LRAT). Members of this
family, including group XVI PLA2 (PLA2G16),

display PLA1 and PLA2 activities, as well as
acyltransferase activity that synthesizes N-acyl-PE,
to various degrees.83) PLA2G16 is highly expressed in
adipocytes, and PLA2G16-deficient mice are resist-
ant to diet-induced obesity.84) PLA2G16 and its
paralogs in this family have also been implicated in
tumor invasion and metastasis,85) vitamin A metab-
olism,86) peroxisome biogenesis,87) and cellular entry
and clearance of Picornaviruses.88)

The ABHD family. The ,/O hydrolase
(ABHD) family is a newly recognized group of
lipolytic enzymes, comprising at least 19 enzymes in
humans.89) Enzymes in this family typically possess
both hydrolase and acyltransferase motifs. Although
the functions of many of the ABHD isoforms still
remain uncertain, some of them have been demon-
strated to act on neutral lipids or phospholipids as
lipid hydrolases. ABHD3 selectively hydrolyzes
phospholipids with medium-chain fatty acids.90)
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ABHD4 releases fatty acids from multiple classes of
N-acyl-phospholipids to produce N-acyl-lysophos-
pholipids.91) ABHD6 acts as lysophospholipase or
monoacylglycerol lipase, the latter being possibly
related to the regulation of 2-arachidonoyl glycerol
(2-AG) signaling.92),93) 2-AG is an endocannabinoid
lipid mediator that plays a role in the retrograde
neurotransmission and is considered to be produced
mainly by diacylglycerol lipase ,.94) Interestingly, in
the brain, the AA released from 2-AG by mono-
acylglycerol lipase, rather than that released from
phospholipids by cPLA2, (see above), is linked to
the production of a pool of PGE2 that promotes
fever.2),95) ABHD12 hydrolyzes lysophosphatidyl-
serine (LysoPS), and is therefore referred to as
LysoPS lipase.96) Mutations in the human ABHD12
gene result in accumulation of LysoPS in the brain
and cause a disease called PHARC, which is char-
acterized by polyneuropathy, hearing loss, ataxia,
retinitis pigmentosa, and cataract.97) ABHD16A acts
as a phosphatidylserine (PS)-selective PLA2 (referred
to as PS lipase), being located upstream of ABHD12
in the PS-catabolic pathway.96) Although ABHD5

(also called CGI-58) does not have a catalytic
activity because of the absence of a serine residue in
the catalytic center, it greatly enhances PNPLA2-
directed hydrolysis of triglycerides in lipid droplets
by acting as an essential lipolytic cofactor.98)

4. Lipoquality control by secreted PLA2s

General aspects. The secreted PLA2 (sPLA2)
family contains 10 catalytically active isoforms and
one inactive isoform in mammals.42),99) Based on the
structural and evolutional relationships, these en-
zymes are categorized into classical (IB, IIA, IIC, IID,
IIE, IIF, V and X) and atypical (III and XII) classes
(Fig. 6). The sPLA2 family strictly hydrolyzes the
sn-2 position of phospholipids, a feature that differs
from intracellular PLA2s that often display PLA1,
lysophospholipase, lipase, or transacylase/acyltrans-
ferase activity (see above). Individual sPLA2s exhibit
unique tissue and cellular distributions, suggesting
their distinct biological roles. As sPLA2s are secreted
and require Ca2D in the mM range for their catalytic
action, their principal targets are phospholipids
in the extracellular space, such as microparticles,
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surfactant, lipoproteins, and foreign phospholipids
in microbe membranes or dietary components. The
biochemical properties and pathophysiological func-
tions of sPLA2s have been detailed in several recent
reviews.5),100) Here, I describe several key features of
lipoquality regulation by the sPLA2 family.

In terms of the lipoquality, sPLA2s have long
been considered to display no apparent selectivity for
sn-2 fatty acid species in the substrate phospholipids.
This view was based on the fact that sPLA2-IB
and -IIA, two prototypic sPLA2s that were initially
identified through classical protein purification
from the pancreas and sites of inflammation,
respectively,101),102) as well as a number of snake
venom PLA2s that belong to group I and II sPLA2s,
are capable of releasing fatty acids non-selectively.
However, recent lipidomics-based evaluation of the
substrate specificity of sPLA2s toward natural mem-
branes (see above) has revealed that several sPLA2s
can distinguish sn-2 fatty acyl moieties in phospho-
lipids under physiologically relevant conditions. In
general terms, sPLA2-IB, -IIA and -IIE do not
discriminate fatty acid species, sPLA2-V tends to
prefer those with a lower degree of unsaturation such
as oleic acid (OA; C18:1), and sPLA2-IID, -IIF, -III
and -X tend to prefer PUFAs including AA and
DHA. Several sPLA2s can also distinguish differences
in the polar head groups of phospholipids. For
instance, sPLA2-X is very active on PC, while
sPLA2-IIA has much higher affinity for PE than for
PC, and this substrate selectivity has been partly
ascribed to their crystal structures.103),104) Therefore,
in order to comprehensively understand the specific
biological roles of this enzyme family, it is important
to consider when and where different sPLA2s are
expressed, which isoforms are involved in what types
of pathophysiology, why they are needed, and how
they exhibit their unique functions by driving specific
types of lipid metabolism.

Classical sPLA2s. sPLA2-IB, also known as
“pancreatic sPLA2”, is synthesized as an inactive
zymogen in the pancreas, and its N-terminal propep-
tide is cleaved by trypsin to yield an active enzyme
in the duodenum.101) The main role of sPLA2-IB is
to digest dietary and biliary phospholipids in the
intestinal lumen. Perturbation of this process by gene
disruption or pharmacological inhibition of sPLA2-IB
leads to resistance to diet-induced obesity, insulin
resistance, and atherosclerosis due to decreased
phospholipid digestion and absorption in the gastro-
intestinal tract.105)–108) The human PLA2G1B gene
maps to an obesity-susceptible locus.109)

sPLA2-IIA is often referred to as “inflammatory
sPLA2”, since its expression is induced by pro-
inflammatory cytokines such as TNF, and IL-1O or
by bacterial products such as lipopolysaccharide.110)

In mice, however, sPLA2-IIA in mice is distributed
only in intestinal Paneth cells (in BALB/c, C3H,
NZB and DBA, etc.) or not expressed at all due to a
natural frameshift mutation (in C57BL/6, A/J, C58/
J, P/J, 129/Sv and B10.RIII, etc.).111),112) The best-
known physiological function of sPLA2-IIA is the
degradation of bacterial membranes, thereby provid-
ing the first line of antimicrobial defense in the
host.113),114) Consistent with this, sPLA2-IIA prefer-
entially hydrolyzes PE and phosphatidylglycerol,
which are enriched in bacterial membranes. Under
sterile conditions, sPLA2-IIA attacks phospholipids
in microparticles, particularly those in extracellular
mitochondria (an organelle that evolutionally origi-
nated from bacteria), which are released from
activated platelets or leukocytes at inflamed sites.115)

Hydrolysis of microparticular phospholipids by
sPLA2-IIA results in production of pro-inflammatory
eicosanoids and lysophospholipids as well as in
release of mitochondrial DNA as a danger-associated
molecular pattern (DAMP). Thus, sPLA2-IIA is
primarily involved in host defense by killing bacteria
and triggering innate immunity, while over-amplifi-
cation of the response leads to exacerbation of
inflammation.

sPLA2-IIA, -IIC, -IID, -IIE and -IIF are often
classified into the group II subfamily (sPLA2-IIC is
a pseudogene in human), since they share structural
characteristics and map to the same chromosome
locus. sPLA2-IID is constitutively expressed in
dendritic cells (DCs) in lymphoid organs. sPLA2-
IID is an “immunosuppressive sPLA2” that attenu-
ates DC-mediated adaptive immunity by hydrolyzing
PE probably in microparticles to mobilize anti-
inflammatory B3 PUFAs and their metabolites such
as resolvin D1 (RvD1).7) As such, sPLA2-IID-null
mice exhibit more severe contact hypersensitivity
and psoriasis, whereas they are protected against
infection and cancer because of enhanced anti-viral
and anti-tumor immunity.7),116),117) Unlike sPLA2-
IIA, which is stimulus-inducible (see above), sPLA2-
IID is downregulated by pro-inflammatory stimuli,
consistent with its anti-inflammatory role.

In mice, sPLA2-IIE instead of sPLA2-IIA is
upregulated in several tissues under inflammatory
or other conditions. sPLA2-IIE is expressed in hair
follicles in association with the growth phase of
the hair cycle118) and induced in adipose tissue in
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association with obesity in mice.119) sPLA2-IIE
hydrolyzes PE without apparent fatty acid selectiv-
ity in hair follicles and lipoproteins, and accordingly,
sPLA2-IIE-deficient mice display subtle abnormal-
ities in hair follicles118) and are modestly protected
from diet-induced obesity and hyperlipidemia.119)

sPLA2-IIF has a long C-terminal extension
containing a free cysteine, which might contribute
to formation of a homodimer, and is more hydro-
phobic than other sPLA2s.120) Physiologically,

sPLA2-IIF is an “epidermal sPLA2” that is expressed
predominantly in the upper epidermis and induced
by IL-22, a Th17 cytokine, in psoriatic skin.6) sPLA2-
IIF preferentially hydrolyzes PUFA-containing plas-
malogen-type PE in keratinocyte-secreted phospho-
lipids to produce plasmalogen-type lysophosphatidyl-
ethanolamine (P-LPE; lysoplasmalogen), which in
turn promotes epidermal hyperplasia (Fig. 7A–C).
Accordingly, sPLA2-IIF-null mice are protected
against epidermal-hyperplasic diseases such as psor-
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iasis and skin cancer, while sPLA2-IIF-transgenic
mice spontaneously develop psoriasis-like skin.6)

Although sPLA2-V was previously thought to be
a regulator of AA metabolism,121),122) it is now
becoming obvious that this sPLA2 has a preference
for phospholipids having fatty acids with a lower
degree of unsaturation. sPLA2-V is markedly induced
in adipocytes during obesity as a “metabolic sPLA2”

and hydrolyzes PC in hyperlipidemic LDL to release
OA and to a lesser extent LA, which counteract
adipose tissue inflammation and thereby ameliorates
obesity-associated metabolic disorders.119) Transgen-
ic overexpression of sPLA2-V, but not other sPLA2s,
results in neonatal death due to a respiratory defect,

which is attributable to the ability of sPLA2-V to
potently hydrolyze PC with palmitic acid (PA,
C16:0), a major component of lung surfactant.123)

This unique substrate preference of sPLA2-V has also
been supported by a recent lipidomics analysis of
the spleen (a tissue where sPLA2-V is abundantly
expressed), in which the levels of fatty acids with a
lower degree of unsaturation (e.g. PA, OA and LA),
rather than PUFAs (AA, EPA and DHA), are
significantly reduced in sPLA2-V-deficient mice
relative to wild-type mice (Fig. 8). This is in contrast
to the spleen of sPLA2-IID-deficient mice, in which
B3 PUFAs and their metabolites are selectively
diminished,7) revealing distinct lipoquality regulation
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by different sPLA2s. Another intriguing feature of
sPLA2-V is that it is the only “Th2-prone sPLA2”

induced in M2 macrophages by the Th2 cytokines
IL-4 and IL-13 and promotes Th2-driven pathology
such as asthma. Gene ablation of sPLA2-V perturbs
proper polarization and function of M2 macrophages
in association with decreased Th2 immunity,124)

although the underlying lipid metabolism responsible
for this event remains obscure. Probably because
of this alteration in the macrophage phenotype,
sPLA2-V-null macrophages have a reduced ability to
phagocytose extracellular materials. Accordingly,
sPLA2-V-null mice are more susceptible to fungal
infection and arthritis due to defective clearance of
hazardous fungi and immune complexes, respec-
tively.125),126) Likewise, sPLA2-V-null mice suffer
from more severe lung inflammation caused by
bacterial or viral infection,127) which could also be
explained by poor clearance of these microbes by
alveolar macrophages.

Among the mammalian sPLA2s, sPLA2-X has
the highest affinity for PC leading to release of fatty
acids, with an apparent tendency for PUFA prefer-
ence. sPLA2-X is activated by cleavage of the N-
terminal propeptide by furin-type convertases.128)

sPLA2-X is expressed abundantly in colorectal epi-
thelial and goblet cells and has a protective role in
colitis by mobilizing anti-inflammatory B3 PUFAs.24)

Consistently, sPLA2-X-transgenic mice exhibit global
anti-inflammatory phenotypes in association with
elevation of systemic B3 PUFA levels.24) In the
process of reproduction, sPLA2-X secreted from the
acrosomes of activated spermatozoa hydrolyzes
sperm membrane phospholipids to release DHA and
docosapentaenioc acid (DPA, C22:5), the latter
facilitating fertilization.24),129) Additionally, sPLA2-
X-null mice are protected from asthma, accompanied
by decreased levels of pulmonary B6 AA-derived
eicosanoids.130) Unlike the situation in sPLA2-V-null
mice (see above), however, the Th2 response per se is
not affected in the asthma model131) and the lung
damage is milder following influenza infection132) in
sPLA2-X-null mice, illustrating the distinct actions of
different sPLA2s in the same tissue.

Atypical sPLA2s. sPLA2-III is unusual in that
it consists of three domains, in which the central
sPLA2 domain similar to bee venom group III
sPLA2 is flanked by large and unique N- and C-
terminal domains.133) The enzyme is processed to the
sPLA2 domain-only form that retains full enzymatic
activity.134) Although sPLA2-III does not discrimi-
nate the polar head groups, it tends to prefer sn-2

PUFAs in the substrate phospholipids. sPLA2-III is
expressed in the epididymal epithelium and acts on
immature sperm cells passing through the epididymal
duct in a paracrine manner to allow sperm membrane
phospholipid remodeling, a process that is prereq-
uisite for sperm motility.135) sPLA2-III is also secreted
from mast cells and acts on microenvironmental
fibroblasts to produce PGD2, which in turn promotes
proper maturation of mast cells.136) Accordingly,
mice lacking sPLA2-III exhibit male hypofertility and
reduced anaphylactic responses.

sPLA2-XIIA is evolutionally far distant from
other sPLA2s.137) sPLA2-XIIA is expressed in many
tissues at relatively high levels, yet its enzymatic
activity is weaker than that of other sPLA2s. The
properties and physiological roles of sPLA2-XIIA are
currently unclear and await future studies using
sPLA2-XIIA-deficient mice. Apart from lipoquality
regulation, sPLA2-XIIB is a catalytically inactive
protein due to substitution of the catalytic center
histidine by leucine.138) sPLA2-XIIB deficiency im-
pairs hepatic lipoprotein secretion,139) although the
mechanism is unclear.

sPLA2 receptor. Beyond the lipoquality
control by sPLA2s, several sPLA2s binds to sPLA2

receptor (PLA2R1, also known as the C-type
lectin Clec13c) with different affinities.140) In mice,
PLA2R1 binds to sPLA2-IB, -IIA, -IIE, -IIF and -X
with high affinity, sPLA2-V with moderate affinity,
and sPLA2-IID, -III and -XIIA with low or no
affinity.138) PLA2R1 is homologous to sPLA2-inhib-
itory proteins present in snake plasma and exists as
an integral membrane protein or as a soluble protein
resulting from shedding or alternative splicing.
PLA2R1 may act as a clearance receptor or
endogenous inhibitor that inactivates sPLA2s, as a
signaling receptor that transduces sPLA2-dependent
signals in a catalytic activity-independent manner,
or as a pleiotropic receptor that binds to non-sPLA2

ligands. In support of its clearance role, Pla2r1!/!

mice show more severe asthma, likely due to defective
clearance of pro-asthmatic sPLA2-X.141) In support of
its signaling role, PLA2R1, probably through binding
to myocardial sPLA2s or other ways, promotes the
migration and growth of myofibroblasts and thereby
protects against cardiac rupture in a model of myo-
cardial infarction.142) PLA2R1 has recently attracted
attention as a major autoantigen in membranous
nephropathy, a severe autoimmune disease leading
to podocyte injury and proteinuria,143) although it is
not clear whether this role of PLA2R1 is sPLA2-
dependent or -independent.
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5. Concluding remarks

By applying lipidomics approaches to knockout
or transgenic mice for various PLA2s, it has become
evident that individual enzymes regulate specific
forms of lipid metabolism, perturbation of which can
be eventually linked to distinct pathophysiological
outcomes. Knowledge of lipoquality control by in-
dividual PLA2s acquired from studies using animal
models should be translated to humans. Current
knowledges on the relationship between PLA2 gene
mutations and human diseases are summarized in
Table 2. Nonetheless, future development of more
comprehensive and highly sensitive lipidomics tech-
niques will contribute to the discovery of novel PLA2-
driven lipid pathways that could be biomarkers or
druggable targets for particular diseases.
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