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This is an exciting time for clinicians and scientists interested in platelet biology. Improved imaging
methods allow platelets to be observed in action in animal models in real time at ever greater resolution.
Expanding proteomic and genetic data sets lend themselves to better understanding platelet activation.
New gene editing methods make it easier, faster, and less expensive to test new ideas using transgenic
animal models. Combining systems biology approaches with computational methods encourages a
broader perspective on platelet activation and makes it possible to develop ideas in silico that can then
be tested in vivo. One result has been an opportunity to revisit prevailing wisdom about the hemostatic
response, extending and occasionally refuting what has come before.

Systems biology is the study of complex interactions, some of whose properties can be understood only
when multiple cells or multiple pathways are considered. Here we will consider 2 examples in which
improved methods and a systems-oriented approach have provided insights into the most basic of
platelet functions: participation in the hemostatic response to injury. The first example considers the
ways in which the simple act of piling up of platelets at a site of injury helps to calibrate the hemostatic
response by altering the environment in which platelet activation occurs. The second example considers
how individual signaling events within platelets form an integrated network whose properties emerge
from the individual pathways.

Achieving hemostasis: piling up platelets changes everything

Penetrating injuries trigger platelet activation by the local accumulation of platelet agonists. Some
agonists, such as collagen, are stationary; others, such as thrombin, adenosine diphosphate (ADP), and
thromboxane A2 (TxA2) are mobile. Platelet activation is commonly considered with an agonist-centric
perspective, but this perspective omits the impact of the local environment, which changes rapidly as
platelets and fibrin accumulate. Recent evidence suggests that formation of a hemostatic thrombus first
promotes and then limits platelet activation by providing a sheltered environment in which agonists can
accumulate. Thus, there is a reciprocal, rather than a unidirectional, relationship between platelet
activation and thrombus structure (Figure 1A). Because this relationship emerges as platelets pile up, it
is worth considering how it happens.

Although platelet behavior has been studied for over a century, recent advances in intravital imaging pioneered
by the Furie laboratory1-3 and others4-9 have made it possible to observe the hemostatic response in mice in
real time at high resolution. Those studies show that platelet activation in this setting is heterogeneous.
Although some platelets change shape, secrete their granule contents, and become procoagulant, others
display only minimal external signs of activation. The result is a gradient of platelet activation with a core of fully
activated platelets, a shell of less activated platelets, and a transition zone between them (Figure 1A).7

Among the properties that distinguish the core from the shell is packing density, which is greater in
the core.7 Tight packing slows the movement of soluble molecules in the gaps between platelets,
which shrink as the thrombus retracts.10,11 The core is where most of the fibrin is found and where
clot retraction would be expected to have the greatest impact (Figure 1B). As packing density
increases, transport becomes dominated by diffusion rather than convection, slowing movement to
an even greater extent (Figure 1C).10-12

Regional differences in packing density also affect the distribution of platelet agonists. The result is the
appearance of concentration gradients in which the distribution of each agonist is also affected by its
physical properties and binding to other molecules. Individual platelets are exposed to combinations of
agonists whose concentrations vary over time (Figure 1B). Submaximal concentrations of multiple
platelet agonists can have additive or even synergistic effects.13 Thrombin is the main driver of full
platelet activation in the thrombus core. TxA2 and ADP are primarily drivers for the thrombus shell.7,14
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The impact of packing density is demonstrated by studies showing
a mutation in aIIbb3 that impairs clot retraction decreases thrombin
activity and reduces platelet activation.11,15 Studies performed in
silico extend the observational studies and provide hypotheses that
can be tested in vivo and in vitro.10,16,17

Most of the studies summarized in Figure 1 were performed in the
mouse microvasculature using a laser or a sharpened probe to
make small holes in arterioles and venules. To what extent are the
results applicable to people? Human platelets cannot readily be
studied in vivo. However, when studied in a microfluidics device that
incorporates collagen, tissue factor, and the transmural pressure
drop that normally occurs following vascular injury, human platelets
form an inner core of fully activated platelets overlaid by a shell of
less activated platelets just as mouse platelets do in vivo.18

What about events in arteries and veins, rather than arterioles and
venules? Primarily for technical reasons, high-resolution imaging
studies have largely been limited to the microvasculature. However,
there has been progress.9,19-21 More work needs to be done, but
the initial message appears to be the same. In both settings, the
piling up of platelets changes everything by producing a local
environment in which agonists accumulate.

The platelet signaling network is an integrating engine

Most of what is known about the platelet signaling network was
worked out one pathway at a time. The first part of this essay shows
that platelets within a growing hemostatic mass are exposed to
combinations of agonists, any of which may be present below
optimal concentrations. Agonist receptors are not generic. Each
agonist has a unique receptor set that can couple to the platelet
signaling network in different ways (Figure 2).22 Thrombin, for
example, activates 2 members of the protease-activated receptor
family on human platelets, PAR1 and PAR4, allowing it to signal
through the heterotrimeric G proteins, Gq, G12, and, directly or
indirectly in platelets, Gi2. PAR1 produces a quick burst of signaling;
PAR4 a more sustained response. ADP activates P2Y1 and P2Y12,
the latter coupled to Gi2 and the former to Gq. Signals mediated by
Gq activate phospholipase Cb, leading to increased cytosolic Ca21,

activation of Rap1b, and, ultimately, to the activation of aIIbb3.
23,24 Gi2

inhibits cyclic adenosine monophosphate (cAMP) formation, acti-
vates Akt, and promotes integrin activation by inhibiting Rap1b
inactivation.25 Once aIIbb3 has been activated, integrin-dependent
signaling promotes clot retraction, increasing packing density and
slowing solute transport.

The platelet signaling network makes possible a measured re-
sponse to agonists in part because of feedback loops and nodes
within the network where signaling pathways converge. Examples
include Gq, Gi2, and Rap1b (Figure 2). The activity state of each of
these is determined by whether they are bound to guanosine
triphosphate (GTP) or guanosine diphosphate (GDP), the GDP-
bound state being inactive. In effect, these are on/off switches.
Replacement of GDP with GTP is promoted by a guanine
nucleotide exchange factor (GEF), which for Gq and Gi2 is an
agonist-occupied receptor and for Rap1b is CalDAG-GEF1.
Restoration of the inactive state is accelerated by a GTPase
activating proteins (GAP). For Gq and Gi2 the primary GAPs in
platelets are RGS10 and RGS18.26-28 For Rap1b, the primary GAP
is Rasa3.25,29

Network integration occurs in part by regulating the balance of
GEF and GAP activity. The availability of RGS10 and RGS18 is
regulated by spinophilin (SPL), which sequesters both in resting
platelets, and by 14-3-3g, which binds RGS proteins in activated
platelets.26,30 Dissociation of SPL/RGS complexes occurs after
a brief delay, creating a negative feedback loop when platelets
are activated by thrombin or TxA2.

26 As an example of pathway
convergence, dissociation of the SPL/RGS complex also occurs
when endothelium-derived PGI2 suppresses platelet activation
by raising platelet cAMP levels (Figure 2).31 For Rap1b, regulation
occurs at the level of Rasa3, whose ability to act as a GAP is inhibited
by signaling downstream of Gi2.

25,32 Rap1b33 and CalDAG-
GEF1,34,35 like spinophilin, are targets for cAMP-dependent
phosphorylation.

How can the relative contributions of these regulatory events be
assessed? One way is with transgenic mice (Figure 2). Deletion of
Gi2a

36,37 or Gqa
38 produces a loss of function phenotype, as does
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Figure 1. A systems view of the hemostatic response to
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deleting spinophilin or introducing a missense mutation in spinophilin
that mimics the effects of cAMP-dependent phosphorylation.26,31

In contrast, deleting either RGS1827,39 or RGS10 (Peisong Ma and
L.F.B., unpublished observations, 2015), or introducing a mutation
in Gi2a that makes it resistant to RGS proteins,7,40 produces a
gain of function. These effects are not of equivalent magnitude:
deleting Gq causes spontaneous bleeding, but deleting Gi2 does
not.36-38 Neither gain-of-function mutation appears to cause
spontaneous thrombosis. The RGS-insensitive Gi2 mutation causes
expansion of the thrombus shell without affecting the size of
the core.7

Mutations at the level of Rap1b are equally informative about
network integration. Deleting Rap1b causes a loss of function
phenotype with a prolonged tail bleeding time and increased
time to occlusion.41 Deleting CalDAG-GEF1 also causes a loss
of function42 as do CalDAG-GEF1 mutations in humans.43,44

Deleting Rasa3 causes severe thrombocytopenia, bleeding,
and increased embryonic and perinatal lethality.25,29 The
thrombocytopenia is believed to be due to spontaneous platelet
activation and shortened platelet survival.25 These observations
speak to the importance of Rasa3 at the Rap1b network
integration point.

In summary, recent studies show that platelets possess an
integrated signaling network rather than a collection of indepen-
dent pathways. Packing density and therefore transport rates
help determine agonist distribution and concentration. Activity at
network nodes determines how large the hemostatic mass will
grow.

Is any of this clinically relevant?

There are several ways that the 2 examples cited here can inform
decision making by hematologists, cardiologists, and pharmaceu-
tical companies. First, they provide a context to better understand
why platelets express receptors for so many different agonists.
Second, they suggest that the strengths and limitations of some
commonly used antiplatelet agents reflect not only their half-lives,
affinities, and off-rates, but also where they work on the platelet
signaling network and how well they penetrate thrombus structure.
For example, observational studies performed in vivo suggest that
widely prescribed P2Y12 antagonists impair hemostasis and reduce
recurrent thrombotic events by destabilizing the thrombus shell with
comparatively little impact on the thrombus core, at least in the
microcirculation where these studies were performed. Finally, the
data suggest that tests of on-treatment platelet function in
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Figure 2. Integrating the platelet signaling network to obtain an optimal response. Although platelet signaling pathways were originally described one at a time, they form
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flow through the nodes. The green and red boxes summarize transgenic mouse models associated with gain or loss of function, respectively. References are in the text.
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patient taking antiplatelet agents need to be designed to better
reproduce the complex conditions that the observational studies
show exists within a growing thrombus. Computational studies that
recapitulate platelet accumulation and transport may prove helpful
in this regard, especially as the simulations become even more
refined.10,17,45-50
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