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ABSTRACT Accurate and rapid diagnosis is crucial in combating parasitic dis-
eases that cause millions of deaths worldwide. However, the scarcity of special-
ized diagnostic equipment in low- and middle-income countries is one of the
barriers to effective management of parasitic diseases and warrants the need for
alternative, inexpensive, point-of-care diagnostic tools. Due to their multiple built-in sen-
sors, smartphones offer cost-effective alternative to expensive diagnostic devices. How-
ever, the use of smartphones in parasitic diagnoses remains in its infancy. This minire-
view describes various smartphone-based devices applied specifically for the diagnosis
of parasitic diseases and discusses challenges and potential implications for their use in
future.
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Parasitic diseases cause millions of morbidities and mortalities per annum and
impose serious health and socioeconomic consequences, mainly in developing

countries of the world (1). According to the Centers for Disease Control and Prevention,
malaria alone causes approximately 660,000 causalities per annum, and neglected
tropical diseases (NTDs), including Chagas disease, echinococcosis, schistosomiasis,
soil-transmitted helminthiases, African trypanosomiasis, cysticercosis, lymphatic filaria-
sis, scabies, etc. affect millions of people worldwide (https://www.cdc.gov/parasites/
about.html). Accurate and rapid diagnosis is of paramount importance in the effective
clinical management of such parasitic diseases. However, the diagnosis of parasitic
diseases is severely compromised due to the scarcity of trained personnel and lack of
specialized diagnostic equipment in developing countries. For instance, the utility of
many commonly used diagnostic methods for parasitic diseases, such as microscopy
and nucleic acid amplification, is hindered by the unavailability of a skilled workforce
and expensive instruments, reagents, and electricity costs in developing countries (1, 2).
This situation results in the inadequacy of these diagnostic tools for the neediest
communities, leading to a compromise in the management of parasitic diseases.

Mobile phones and smartphones have brought enormous convenience and sizable
impact to modern society, as depicted by a wide range of smartphone users worldwide.
Smartphones are a more advanced form of mobile phones, with fully functional
computing capabilities and user-friendly features such as personal information man-
agement applications, compact digital cameras, Global Positioning System (GPS) nav-
igation, internet access etc. Most smartphones are designed to have multiple sensors
such as an imaging camera, vibration sensor, GPS sensor, light level sensor, etc. (3). Due
to these powerful built-in sensors, smartphones are setting their roots into the medical
field as an alternative to expensive laboratory instruments for various diagnostic
purposes (3), and they are of particular interest in regions with limited resources (4).
However, the use of smartphones and mobile devices in the diagnosis of parasitic
diseases remains in its infancy and limited information is available on the topic. This
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article aims to review all available studies (as of 16 June 2017) on hardware or software
components of smartphones as applied specifically to address the diagnosis of para-
sites of medical or veterinary importance. Furthermore, the review discusses future
implications and challenges with reference to parasitic diseases.

LITERATURE SEARCH

Using ISI Web of Knowledge, all databases were searched from 1900 to 2017
(accessed on June 16, 2017) with multiple search terms and filters (see Table S1 in the
supplemental material). The same terms were used to search for articles on PubMed
and Google Scholar. Additional relevant articles were identified from the references
cited in the articles found in the primary search. Twenty-four studies (Table 1) related
to the smartphone-based diagnosis of parasites were finally included in this review.

PARASITE DIAGNOSIS USING SMARTPHONES

This section provides the designs and applications of various smartphone-based
diagnostic methods and devices used for the diagnosis of parasites. For the conve-
nience of readers, we have created various categories for different devices; however,
some of them may fall under more than one category (see Tables 1 and 2).

Standalone smartphone technology. Owing to high-magnification lenses and
powerful image processors, a standalone smartphone (i.e., without use of any external
enhancement such as a lens or a microscope) presents a useful tool for the diagnosis
of parasitic diseases. For example, Meena and Bhatia used a smartphone for the first
time to diagnose a cestode parasite in tomographic images (see Table 1) and they used
the smartphone to examine images of a small cysticercus (a larval stage of a cestode)
that was otherwise invisible to the clinicians on visual examination (5).

Smartphone applications (apps) and algorithms present another use of smartphones
as a standalone tool in the diagnosis of parasitic diseases, such as the interpretation of
the rapid diagnostic test (RDT) results for malaria (6, 7). Although RDTs present an
inexpensive point-of-care (POC) tool, their effective application in the diagnosis of
malarial parasites could be impeded by an incorrect analysis of the results by a poorly
trained end user (6). To avoid visual interpretation, a smartphone was used to image
and transfer the results of the RDTs of malaria to a globally accessible Research
Electronic Data Capture (REDCap) database for analysis using a specialized algorithm.
Despite its slightly lower sensitivity (see Table 1), this method significantly reduced
reporting errors and false-negative diagnoses compared to a method of visual inter-
pretation (6). In another study, the control line on an RDT for malaria was converted
into a smartphone-readable quick response (QR) code (7). A smartphone was deployed
to capture RDT images and an associated app was used to perform image processing
and recognition of QR codes to determine the concentration of histidine-rich protein 2
(a Plasmodium falciparum-specific protein). The detection limit of the assay was 0.966
nM (�543 parasites per �l) compared to that of the World Health Organization (WHO)
benchmark testing for an RDT (500 parasites per �l) for low parasitemia, suggesting
that this method needs modification to increase its sensitivity. Overall, these
smartphone-based diagnostic techniques allow automated identification, secured re-
cord keeping, and quality assurance that could be highly useful in malaria surveillance
programs.

Although thousands of smartphone apps are currently being used in the health care
industry, there is limited information available on apps for the diagnosis of parasites.
TickID (NC State University) is an example of one such a freely downloadable app for
smartphones (8). This app provides basic information on identification (pictures of
male, female, and juvenile ticks) and management (disease biology, personal protec-
tion, tick removal, etc.) of selected ticks and tick-borne diseases for a common user.
Similar smartphone apps could be developed regionally as well as globally for socio-
economically important parasites and could present great assistance for the diagnosis
and management of parasitic diseases.
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Lens-mounted smartphone “microscopy”. Mounting a simple, portable lens on a
smartphone camera can provide a powerful handheld microscope for the identification
of parasites. The lens size determines the spatial resolution and field of view (FOV), as
smaller lenses have a smaller FOV but greater spatial resolution and vice versa (28).
Bogoch et al. constructed a handheld microscope by mounting a 3-mm ball lens to a
smartphone camera, and used it for the identification of soil-transmitted helminths
(STH) and Schistosoma eggs in urine and stool samples of school-aged children (9, 10).
Although this device showed low to moderate sensitivities and specificities (see Table
1) and had a small FOV that produced inferior quality images (see Table 2), this is an
inexpensive and portable microscope. With improved sensitivity, this could be invalu-
able in the field diagnosis of STH infection in developing countries.

In order to increase the resolution of lens-mounted smartphone microscopy, Switz
et al. applied a reversed camera lens to a smartphone to produce a large FOV (�10
mm2) with a resolution of �5 �m for better quality images of STH eggs in stool samples
(11). A major issue in imaging parasitic eggs is their scattering at different focal depths
in a three dimensional (3D) plane. Sowerby et al. addressed this issue by mounting a
12-mm double convex objective lens on a smartphone camera to image Ascaris
lumbricoides eggs and create composite images using a software program, ImageJ (12).
Overall, external lens-mounted smartphone microscopes are portable, inexpensive, and
operate without constant electricity needs, which make them a field-deployable tool in
parasitic diagnosis in resource-constrained regions of the world.

Smartphone-assisted manual microscopy. Smartphones have recently been ap-
plied in conjunction with various microscopic assemblies for the diagnosis of parasites.
Ephraim et al. used smartphone-assisted Foldscope and reversed-lens CellScope for the
diagnosis of Schistosoma haematobium eggs in urine samples of school-aged children
(13). The handheld Foldscope was made of paper, consisting of a 2.38-mm ball lens and
a light-emitting diode (LED) secured to a smartphone camera. The reversed-lens
CellScope was constructed with a lens embedded in a 3D-printed plastic and secured
to a smartphone camera. Despite their low to moderate sensitivities (see Table 1), both
“microscopes” showed high specificities. In another field study, the CellScope consis-
tently demonstrated high specificity, despite low sensitivity, for the diagnosis of
Schistosoma eggs in urine and stool samples (14), indicating that with enhanced
sensitivity, these devices could be deployed in the field for large-scale screening of
schistosomes.

In an attempt to design a compact microscope, Tseng et al. introduced a lens-free
microscope for the identification of Giardia lamblia cysts (15). The sample of interest
was illuminated using an incoherent LED light (shone vertically). The scattered light
interfered with unscattered LED light to create a hologram of each cell, which was
detected by a smartphone camera. Depending on the power of the smartphone,
extremely rich information in the hologram allowed rapid reconstruction of the micro-
scopic images. In another study, G. lamblia cysts were identified using a smartphone-
based fluorescence microscope (16), where an LED light was used to excite the sample
and the emitted fluorescent light was detected with an external lens placed in front of
a smartphone camera. For fluorescent imaging in this study, a dark-field background
was created using an inexpensive color filter (16).

Smartphone-assisted microscopes have also been applied for the diagnosis of
Plasmodium spp. For instance, a bright-field microscope was constructed using objec-
tive and wide-field eyepiece lenses to produce 28� magnification onto a smartphone
camera sensor for the identification of P. falciparum in blood smears (17). In another
field study, P. falciparum was identified in Giemsa-stained blood films using a handheld
Newton Nm1 light microscope attached to a smartphone (18). The system achieved a
moderate sensitivity and a high specificity (see Table 1), suggesting that this could be
invaluable in large-scale malaria screening programs. Other malarial biomarkers, such
as hemozoin, have also been detected in blood smears, using a low-cost and high-
fidelity smartphone-assisted polarized microscope (19). However, this system requires
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adequate lens resolution to differentiate the presence of hemozoin within an infected
blood smear.

Smartphone-assisted automated microscopy. Manual microscopic examination
of parasitic eggs is considered laborious and time-consuming, as it requires a micro-
scope as well as a trained person, which limits its use in the field in developing
countries. A possible solution to this problem could be the use of a dedicated smartphone
app or algorithm for automated detection of parasites. For instance, Linder et al.
introduced two pattern-recognition algorithms for the identification of S. haematobium
eggs in images acquired by a smartphone or a webcam (20). This method achieved a
high specificity and a moderate sensitivity, compared to a visual identification method
(see Table 1). In another study, Slusarewicz et al. introduced a smartphone-based fecal
egg-counting technique for animal parasites (21). The eggs were stained with a
fluorescent chitin-binding protein and photographed using a smartphone, followed by
automated egg-counting with ImageJ. For strongyle eggs, a significant linear correla-
tion (R2 � 0.98) and coefficient of variation were found between the automated counts
and manual McMaster counts, indicating that the automated system performed better
than the most commonly used traditional method in veterinary parasitology.

Smartphone-assisted automated microscopy is not confined only to egg identifica-
tion, as a smartphone-based fluorescence microscopy technique has recently been
applied to quantify DNA from Trypanosoma cruzi (24). PCR was performed inside a
central processing unit (CPU) by controlling the heating/cooling cycles with computer
software. PCR products were exposed to UV light and imaged by a smartphone, using
a low-cost filter. A histogram of the pixel intensities of the patient sample was
compared to that of a control sample for detecting target pathogenic DNA (24).
Similarly, Koydemir et al. designed a smartphone-based fluorescence microscope with
a large FOV (�0.8 cm2) to detect G. lamblia cysts (22). In this method, a smartphone was
used to image fluorescently labeled cysts captured on a membrane, and the images
were transferred to a remote processing system for automatic detection and counting
of cysts in large volumes of water (e.g., 10 to 20 ml) with an algorithm in a short time
(22). Rosado et al. have recently introduced a smartphone-based image processing
and analysis methodology for identification of P. falciparum trophozoites in Giemsa-
stained blood smears (23). The system automatically identified the parasite based
on preannotated characters and achieved a moderate sensitivity and a high spec-
ificity (see Table 1).

Smartphone-assisted microscopy is not confined to still imaging only, as the use of
smartphone video microscopy has been demonstrated recently for the quantification of
Loa loa microfilariae (a larval stage of the parasite that has a serpentine movement)
(25). The device (CellScope Loa) used a smartphone to perform video imaging of an
unprocessed blood sample, which was analyzed using an algorithm for automatic
quantification of microfilariae. The final result was displayed through an app in less than
2 min. The device showed high sensitivity and specificity (see Table 1) compared to
manual counts in thick blood smears from 33 potentially Loa-infected patients, sug-
gesting the potential implications of this device in the field screening of the parasite
(25). Such smartphone-assisted video imaging could be applicable for the diagnosis of
other blood parasites and motile parasitic stages in body fluids or excreta.

Smartphone-assisted microfluidic technology. Due to their high throughput, easy
handling, parallelism, and sensitivity, the use of microfluidic lab-on-a-chip devices
(LOCDs) has greatly increased in medical diagnostics (26). Smartphones offer tremen-
dous potential for in vitro measurements of biochemical reactions in LOCDs. For
instance, Stemple et al. recently introduced a handheld smartphone-assisted LOCD for
the detection of a P. falciparum-specific protein, HRP-2 (26). Anti-HRP-2-conjugated
submicrobeads were mixed with 10% whole blood sample in a microfluidic LOCD. A
smartphone was deployed for illumination of the sample followed by the detection of
the scattered light. Using scattering/absorption characteristics of the sample, the
system was able to measure as low as 1 pg/ml of HRP-2 from blood in 10 min (26).
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In another study, Liu et al. described an integrated microfluidic chip with a smart-
phone recorder for the identification of Anopheles spp. (27). The microfluidic device
allowed DNA extraction followed by target DNA amplification using loop-mediated
isothermal amplification (LAMP). The amplified products were excited with a DNA-
intercalating dye and the fluorescence signal was detected with a smartphone camera.
This multiplex system could be used for parallel identification of several mosquito
species. Such a sophisticated smartphone-based LOCD could be highly useful not only
in the onsite diagnosis of parasites but also in the quick recording of test results and
geographic location for quality control.

CONCLUSIONS AND FUTURE IMPLICATIONS

Smartphone microscopy is one of the most common applications of smartphones
for the diagnosis of parasitic diseases. A smartphone allows the direct transfer of
images (by Multimedia Messaging Service [MMS], Bluetooth, etc.) to a reference labo-
ratory for quick assessment, feedback, and quality assurance by an expert parasitologist
(4, 28). Traditionally, the Kato-Katz is the commonly used method for the diagnosis of
intestinal helminths. However, it involves laborious manual microscopy and the hook-
worm ova are rapidly cleared in this method, resulting in false-negative diagnoses. As
an alternative, an inexpensive and portable ball-lens-mounted smartphone microscope
presents a simple POC tool for the identification of STHs in community surveys (9, 10).
However, the use of this device is limited due to various issues such as specimen
orientation, hygiene, manual slide navigation, low sensitivity, and small FOV (see Table
2). Some of these issues have been addressed by applying other lens settings, such as
a reversed lens (11) and a double convex lens (12), although these devices require field
validation.

The smartphone-assisted Foldscope and CellScope tools present attractive POC
tools for the diagnosis of schistosomes, as they have been tested in the field, are
lightweight, and cost less than $1 and $6, respectively (13). Despite their high speci-
ficity, a major limitation of these devices is their low sensitivity. This could be explained
by their small FOV (2) or by irregular distribution of Schistosoma eggs in the excreta. To
detect Schistosoma eggs in large field surveys with improved sensitivity, these devices
could be trialed in conjunction with a specialized algorithm for automated identifica-
tion (20). The Newton NM1 microscope had higher sensitivity than the Foldscope or
CellScope for the diagnosis of Schistosoma (14). A combination of the NM1 with the
smartphone algorithm method (20) could further enhance the sensitivity of this device
for field diagnosis of schistosomes. However, the NM1 can be much more expensive
than the Foldscope or CellScope microscopes. Another way to enhance the sensitivity
of smartphone-assisted microscopic devices could be the use of fluorescently labeled
egg-binding dyes, which produces superior results to the commonly used McMaster
method for the identification of strongyle eggs (21). A similar system could be trialed
for the diagnosis of human helminths. The recent application of smartphone micros-
copy for the detection of pathogenic DNA (24, 27) presents a multiplex potential for
parallel identification of several parasitic species in a high-throughput and short-time
format.

Smartphone-assisted video microscopy is a recent advancement in parasite diag-
nostics. For instance, the CellScope Loa allowed the quantification of L. loa microfilariae
in less than 2 min with a high sensitivity (100%) (25). Such a device could potentially
be applied for rapid field diagnosis of other blood-borne parasites, such as Leishmania
and Trypanosoma. Furthermore, video microscopes have the ability to characterize
motility patterns of parasites, which could be applied for the diagnosis of flagellate
parasites and parasitic larval stages (29).

One of the advantages for using smartphone-based diagnostic tools is the use of
dedicated algorithms and softwares for automated identification of parasites. For
instance, the utilization of a specialized algorithm facilitated smartphone-assisted
automatic detection of G. lamblia in large volumes of water in only 1 h compared to the
conventional methods which may take 1 to 2 days (22). Since waterborne parasitic

Minireview Journal of Clinical Microbiology

January 2018 Volume 56 Issue 1 e01469-17 jcm.asm.org 7

http://jcm.asm.org


diseases remain the second leading cause of death in children under age five in
developing countries, this technology could be applicable for large-scale water testing
in these regions. Similar to pattern-recognition algorithms used for human face recog-
nition in biometric analysis, algorithms could be developed for the identification of
parasites and parasitic eggs. The introduction of pattern-recognition algorithms for the
identification of Schistosoma eggs and P. falciparum is a recent advancement in this
context (20, 23). Smartphone apps are also finding use in parasite diagnostics, for
instance, TickID (8). Similar apps are required for diagnosis and self-management of
other parasitic infections, especially in resource-constrained regions where people may
own a smartphone despite the inadequacy of basic health care facilities (2, 17). An ideal
diagnostic app should work both for iOS and Android systems. Developing dedicated
algorithms and freely downloadable apps for automated diagnosis of parasites offers
great potential for future parasitology research.

Smartphone-assisted microfluidic LOCDs have the potential for high-throughput
diagnosis of parasites. For instance, a smartphone-assisted LOCD enabled the detection
of P. falciparum from whole blood in �10 min compared to the conventional blood
smear method, which may take 1 to 3 h (26). Such devices require testing in large-scale
field trials for the diagnosis of important blood-borne parasites. Despite the high
robustness of microfluidic LOCDs, they could be more expensive than conventional
diagnostic tools, which warrants the need for studies exploring ways to reduce the cost
of such devices for rapid processing of a large number of samples.

Most smartphone-based diagnostic devices have been tested in well-controlled
laboratory conditions and only for tropical parasitic diseases. Further studies are
required to explore the usefulness of such devices for the diagnosis of other important
parasitic diseases in field conditions and on clinical specimens. Despite the portability
of smartphone-based diagnostic tools, issues such as need for manual processing of
samples and preparation of microscopic slides remain to be addressed. Limited battery
capacity of smartphones is a major bottleneck for their field deployability in remote
health care facilities, which can be solved by applying mobile charging devices with a
car battery or solar power (28). Internet prices can be high in low-income regions, which
may hinder transfer of the diagnostic data to a reference laboratory. Lack of awareness
and a tangible commercial market are the other major challenges for smartphone-
based diagnostic devices, which could be addressed through integrated training and
practical business plans. Sustained research and strong collaboration among research-
ers, clinicians, and the public sector are required in this context. Currently, there are no
set standards and regulatory approval methods in place for commercialization of
smartphone-based diagnostic devices, which warrants the urgent need for developing
standard guidelines by professional associations/societies such as the World Federation
of Parasitology, the World Association for the Advancement of Veterinary Parasitology,
and the American Society for Microbiology. Moreover, these technologies require
rigorous quality control and adequate field validation before deploying them in clinics.
A consortium of experts could be of great help for quality assurance and enhanced
usability of such technologies. Despite all these challenges, these devices have the
technical capacity to meet the enormous diagnostic needs of developing countries
with high prevalences of parasitic diseases.

The combined use of smartphones with inexpensive handheld microscopes and
microfluidic devices offers a great opportunity for the advancement of portable diag-
nostic technologies to overcome the burden of many parasitic diseases in resource-
constrained regions and offers researchers opportunities to develop similar technolo-
gies at affordable prices. Despite lower sensitivity than an established laboratory test,
a smartphone-assisted onsite diagnostic test could be more useful to provide onsite
“sample-to-answer” treatment to a patient infected with a parasitic disease, as this
patient may not return to the clinic for the results of a laboratory test (1, 2). The future
of smartphone-assisted diagnostic technologies is very promising and the widespread
adoption of such technologies is anticipated in the near future for the accurate and
rapid diagnosis of parasitic diseases in an easy-to-use format.
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SUMMARY

In this minireview, we have described various smartphone-based devices, applied
specifically for the diagnosis of parasitic diseases of medical and veterinary importance,
and discussed challenges, potential implications, and needs for future development.
Smartphones have been used as a standalone tool or in combination with other
microscopic and microfluidic devices for the identification of various stages of parasites,
such as eggs, cysts, and microfilariae. When used with a dedicated algorithm, app, or
software, smartphones allow automated and rapid diagnosis of parasites that make
them a powerful tool in large field surveys for disease surveillance and outbreak
containment. Major strengths of smartphone-based microscopic devices is their low
cost, widespread availability, and onsite diagnostic potential, which can be highly
applicable in resource-constrained regions for effective management of a parasitic
disease. As an emerging technology, smartphone-based diagnostic devices face chal-
lenges such as a lack of set standards and guidelines, awareness, and a tangible
commercial market. Despite these challenges, these devices hold the potential to fulfill
the enormous diagnostic needs of developing countries with high prevalences of
parasitic diseases. Further studies are warranted to explore the usefulness of such
devices, especially in field conditions and in clinical settings, not only for parasitic but
also for other microbial diseases. The widespread adoption of smartphone-based
diagnostic devices is anticipated in the near future for rapid diagnosis of parasitic
diseases.
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