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Abstract: Background: Protein tyrosine phosphatase non-receptor type 1 is a therapeutic target for 
the type 2 diabetes mellitus. According to the International Diabetes Federation 2015 report, one out of 
11 adults suffers from diabetes mellitus globally.  

Objective: Current anti-diabetic drugs can cause life-threatening side-effects. The present study pro-
poses a pipeline for the development of effective and plant-derived anti-diabetic drugs that may be 
safer and better tolerated. 

Methods: Plant-derived protein tyrosine phosphatase non-receptor type 1 inhibitors possessing an-
tidiabetic activity less than 10μM were used as a training set. A common feature pharmacophore 
model was generated. Pharmacophore-based screening of plant-derived compounds of the ZINC data-
base was conducted using ZINCpharmer. Screened hits were assessed to evaluate their drug-likeness, 
pharmacokinetics, detailed binding behavior, and aggregator possibility based on their physiochemical 
properties and chemical similarity with reported aggregators. 

Results: Through virtual screening and in silico pharmacology protocol isosilybin (ZINC30731533) 
was identified as a lead compound with optimal properties. This compound can be recommended for 
laboratory tests and further analyses to confirm its activity as protein tyrosine phosphatase non-
receptor type 1 inhibitor. 

Conclusion: The present study has identified plant-derived anti-diabetic virtual lead compound with 
the potential to inhibit protein tyrosine phosphatase non-receptor type 1, which may be helpful to en-
hance insulin production. This computer-aided study could facilitate the development of novel phar-
macological inhibitors for diabetes treatment. 

Keywords: Computer-aided drug design, diabetes mellitus, flavonoids, isosilybin, protein tyrosine phosphatase non-receptor 
type 1, common feature pharmacophore modeling, molecular docking, pharmacokinetics. 

1. INTRODUCTION 

Plant-based medicine is a way to treat diabetes mellitus 
(DM). Traditional medicine has employed huge collection of 
plant-derived treatments effective in treatment of blood glu-
cose imbalance and diabetes mellitus [1, 2]. Experimental 
studies have shown that the insulin-like growth factor do-
mains of human insulin are common to the insulin sequence 
found in Canavalia ensiformis, Vigna unguiculata and Bau-
hinia purpurea [3]. Computer-aided molecular docking 
methods were applied to human insulin protein [4] and plant 
insulin present in Canavalia ensiformis to identify anti-
diabetic compounds [5]. 
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and Life Engineering, Graduate School of Engineering, Maebashi Institute 
of Technology, Maebashi, Gunma 371-0816, Japan; Tel: +81-27-265-0111; 
Fax: +81-27-265-3837. E-mail: ksakata@maebashi-it.ac.jp 

In our previous study, we discussed U.S. Food and Drug 
Administration (FDA) approved anti-DM medicines; insulin, 
biguanides, second generation sulfonylureas, alpha- glucosi-
dase inhibitors, glinides, glucagon-like peptide-1 receptor 
agonists, thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) 
inhibitors, bile acid sequestrants, dopamine agonists, amylin 
analogs, and sodium-dependent glucose cotransporter-2 in-
hibitors in detail [6]. However, currently available anti-DM 
drugs possess side effects such as headache, stomach upset, 
peripheral edema, increase in weight, and hypotension [7]. 
Therefore, compounds with ideal properties to stimulate in-
sulin signaling pathway are required [8]. 

Molecular targets for pharmacological treatments of DM 
have been studied to develop unique anti-DM agents, includ-
ing protein tyrosine phosphatase non-receptor type 1 
(PTPN1) also known as protein tyrosine phosphatase 1B 
(PTP1B), peroxisome proliferator-activated receptor gamma, 
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pyruvate dehydrogenase kinase, beta 3 adrenoceptors, glyco-
gen synthase kinase 3, DPP-4, cannabinoid receptors, and 
fructose bisphosphatases enzymes [9, 10]. The protein tyro-
sine phosphatases are enzymes that catalyze protein tyrosine 
dephosphorylation in regulation of insulin action by dephos-
phorylation of activated auto phosphorylated insulin receptor 
and downstream substrate proteins [11]. The PTPN1 has 
been a target for treatment of diabetes and obesity [12], and 
PTPN1 knockout mice had insulin sensitivity and tolerance 
to diet-induced obesity [13, 14]. Recent technical advances 
in chemical synthesis have resulted in the design of potent 
synthetic PTPN1 inhibitors, but difficulties such as high po-
larity and low enzyme selectivity remain to be overcome 
[15]. The use of natural products has appreciated as an alter-
native source for discovery of PTPN1 inhibitors [16]. In vi-
tro and in vivo methods confirmed that natural products are 
beneficial for discovery of new and potential PTPN1 inhibi-
tors [11].  

In the present study, we have discussed structural, bio-
logical and molecular activities of diverse plant-derived 
PTPN1 compounds reported in the last decades. We used 
computer-aided drug design (CADD) strategies for identifi-
cation of novel compounds having PTPN1 inhibitory activity 
from the ZINC dataset of plant-derived compounds, which 
will be beneficial for medicinal chemist and pharmacologists 
to develop new PTPN1 inhibitors with anti-DM activity.  

2. MATERIALS AND METHOD 

2.1. Pharmacophore Modeling and Computer-based 

Screening of ZINC Database 

In recent years, various experimental approaches have 
been developed to investigate flavonoids with PTPN1 inhibi-
tory activity by incorporating novel approaches to previously 
tested models to improve their anti-DM activity. Botanical 
information, chemical structure and physicochemical proper-
ties of natural flavonoids with PTPN1 inhibitory activity 
were selected from reported data (Table 1) [17-22]. Eleven 
compounds were used as a training set based on their 
physiochemical properties, Lipinski’s filter, and IC50 values 
less than 10μM. These 11 compounds were used for pharma-
cophore modeling using LigandScout 4.1 [23]. ChemDraw 
Ultra 8.0 software [24] is used for sketching chemical struc-
ture of training dataset and saved in Protein Data Bank 
(PDB) format. Consequently, these files were used as input 
to LigandScout 4.1. A pharmacophore fit model was gener-
ated using the 11 compounds of training set and used for 
screening of plant-derived set of ZINC database. Table 2 
shows pharmacophore features of the training set and com-
mon feature of a selected pharmacophore model. Pharma-
cophore features of the most appropriate model were also 
generated for each compound displayed in Table 3.  

Table 1. Selected compounds that possess Protein tyrosine phosphatase non receptor type 1 inhibitory activity used as a training 

set. 

Compounds 2D Structure 
Potency 

(IC50) 

Physiochemical 

Properties 
Source 

Place of 

Origin 
Ref. 

F1 

OH

OH

O

OHO

HO

HO

 

4.3 μM 

MW: 424.491 

cLogP: 5.5969 

HBA: 6 

HBD: 3 

PSA: 96.22 

RB: 3 

Broussonetia Papyrifera 

(Extract of roots) 
China [17]  

F2 
O

OOH
OH

O
OH

 

2.6 μM 

MW: 424.491 

cLogP: 5.5969 

HBA: 6 

HBD: 3 

PSA: 96.22 

RB: 3 

Erythrina addisoniae 

(EtOAc extract of the 

stem bark) 

West tropical 

Africa 
[18]  

F3 

O

OOH
OH

OH
O

 

4.1 μM 

MW: 422.475 

cLogP: 5.4331 

HBA: 6 

HBD: 3 

PSA: 96.22 

RB: 3 

Erythrina addisoniae 

(EtOAc extract of the 

stem bark) 

West tropical 

Africa 
[18]  

(Table 1) Contd… 
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Compounds 2D Structure 
Potency 

(IC50) 

Physiochemical 

Properties 
Source 

Place of 

Origin 
Ref. 

F4 

O

O

H

H

OH

O

 

7.6 μM 

MW: 324.375 

cLogP: 4.4262 

HBA: 4 

HBD: 1 

PSA: 47.92 

RB: 0 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nige-

ria) 

 

[19]  

F5 

O

O

HO

OH

H

O

HH

H

H3C

CH3

H

 

8.8 μM 

MW: 406.476 

cLogP: 5.2725 

HBA: 5 

HBD: 2 

PSA: 68.15 

RB: 2 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nige-

ria) 

 

[19]  

 

F6 

O

O

H

H

O

OH

 

6.0 μM 

MW: 350.413 

cLogP: 5.6154 

HBA: 4 

HBD: 2 

PSA: 58.92 

RB: 3 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nige-

ria) 

 

[19]  

F7 

O

O

H

H

HO

O

HO  

9.7 μM 

MW: 408.492 

cLogP: 5.5966 

HBA: 5 

HBD: 2 

PSA: 68.15 

RB: 2 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nige-

ria) 

 

[20, 

21]  

 

F8 

OHO

O

OCH3

 

4.1 μM 

MW: 336.386 

cLogP: 4.9685 

HBA: 4 

HBD: 1 

PSA: 51.83 

RB: 3 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nige-

ria) 

 

[20]  

F9 

O

O

H

H

OH

HO

H

H

HH

H

H3C

CH3

H  

7.6 μM 

MW: 324.375 

cLogP: 4.9125 

HBA: 4 

HBD: 2 

PSA: 58.92 

RB: 2 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nige-

ria) 

 

[20]  

(Table 1) Contd… 
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Compounds 2D Structure 
Potency 

(IC50) 

Physiochemical 

Properties 
Source 

Place of 

Origin 
Ref. 

F10 

O

OCH3

O

HO

OH

 

4.6 μM 

MW: 354.401 

cLogP: 4.6821 

HBA: 5 

HBD: 2 

PSA: 75.99 

RB: 4 

Erythrina addisoniae 

(EtOAc extract of roots) 

West tropical 

Africa, Nige-

ria, Congo. 

[21]  

F11 O

OOH

HO

OH

OH

 

6.70 μM 

MW: 288.254 

cLogP: 1.81 

HBA: 6 

HBD: 4 

PSA: 107.22 

RB: 1 

Abundantly 

present in various fruits 

and vegetables, 

e.g. Salvia tomentosa, 

Aiphanesaculeata. 

Various 

regions in the 

world 

[22]  

MW=molecular weight, cLogP= Partition coefficient, HBA=Hydrogen bond acceptor, HBD=hydrogen bond donor, PSA=polar surface area, and RB= rotatable bonds. 

 

Table 2. Pharmacophore features of the training set and common pharmacophore feature of a selected pharmacophore model. 

Compounds HR AR HBA HBD Number of Confirmations Common Pharmacophoric Feature Pharmacophoric Fit 

F1 5 2 7 5 54 5 56.30 

F2 5 2 6 3 65 6 64.01 

F3 6 2 6 2 28 6 65.02 

F4 3 2 4 1 4 6 65.37 

F5 6 2 5 2 21 6 65.34 

F6 5 2 4 2 23 6 64.62 

F7 5 2 5 2 49 6 65.34 

F8 4 3 2 1 5 5 48.49 

F9 3 2 4 2 19 6 65.34 

F10 3 2 4 2 106 6 65.07 

F11 1 2 6 4 6 5 56.62 

 

Table 3. Overlay of training set compounds upon the pharmacophore generated using LigandScout 4.1. 

Sr # 2D Pharmacophore  3D Pharmacophore Sr # 2D Pharmacophore 3D Pharmacophore 

F1 

  

F7 

  

F2 

  

F8 

  

(Table 3) Contd… 
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Sr # 2D Pharmacophore  3D Pharmacophore Sr # 2D Pharmacophore 3D Pharmacophore 

F3 

  

F9 

 

 

F4 

 
 

F10 

  

F5 

  

F11 

 
 

F6 

 
 

   

*Red spheres represent hydrogen bond acceptors, yellow spheres represent hydrophobic regions, and purple spheres represent aromatic rings. 
 

Screening procedures were performed using a shared fea-
ture pharmacophore modeling approach for best flexible 
conformation exploration using ZINCpharmer [25]. The 
identified hits as outcome of the database search were sub-
jected to drug-like filtration. Data Warrior [26] was used to 
calculate the physiochemical properties and toxicity estima-
tion. Lipinski’s filter was applied to the screened dataset 
[27]. Partition coefficient logP values should be less than 5 
or clogP values should be less than 6, molecular weight 
should be less than 500, hydrogen bond acceptors should be 
less 10, and hydrogen bond donors should be less than 5. 
Veber’s rule (rotatable bonds must be less than 10 while 
value of polar surface area must be less than 120 Å) was also 
considered because molecular flexibility of selected com-
pounds is dependent on the number of rotatable bonds, an 
important property which influences bioavailability of drugs 
[28, 29]. Compounds were short-listed based on drug-
likeness and were subsequently checked for toxicity using 
four criteria (mutagenicity, tumorigenicity, irritant and re-
productive effects). 

2.2. Molecular Docking and Interaction Analyses 

The prerequisite of docking for the PTPN1 dataset is 
knowledge of the target protein structure. The target protein 

(ID: 3EAX) was downloaded from the PDB; its X-ray crys-
tallographic structure demonstrated a high resolution of 1.9 
Å [30]. The existing active site for ligand binding used in the 
nuclear magnetic resonance (NMR) study of 3EAX structure 
was used for the molecular docking study of screened hits. 
Plant-derived compounds from the ZINC database, after 
passing through drug-like filters, were docked into the bind-
ing pocket of the PTPN1 protein using the CLC drug discov-
ery workbench tool [31]. A detail investigation of active site 
of target protein was performed to check if the significant 
residues which are responsible for activity were included in 
the binding site or not. The compound which holds the se-
lected binding site was specified. After compound selection, 
docking was performed. The docking results summary was 
displayed in the project with dock scores. A 3D view was 
selected for manual inspection of the structural features of 
the docked complex involved in binding.  

The docked complex in a mol format file was imported to 
chimera [32] and was saved in PDB format for interaction 
analysis in Ligplot. The ligand-protein interactions were pre-
dicted using Ligplot [33]. It generates 2D schematic dia-
grams of a docked complex to explain interactions with hy-
drophobic moieties and hydrogen bonds having a distance 
within 4 Å.  
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2.3. ADME Calculation and Aggregator Advisor Predic-
tion 

In silico ADME (absorption, distribution, metabolism 
and excretion) calculations are steadily gaining interest in 
computer aided drug discovery [34]. These methods are used 
here to shortlist data with suitable pharmacokinetic (ADME) 
and toxicity profiles in early phase of PTPN1 drug discov-
ery. SwissADME [35] is used to calculate the pharmacologi-
cal profile (drug action/effects within an organism) of se-
lected 15 hits from the perspective of drug discovery. This 
online tool is also used to determine toxic structural moieties 
and synthetic accessibility of selected hits.  

Aggregator possibility evaluation for selected 15 hits was 
conducted by Aggregator advisor [36]. This online tool 
compares chemical similarity of known aggregator com-
pounds based on Tanimoto coefficient calculation and 
physiochemical properties. Input was provided using a 
SMILES file extension to obtain a reliable ADME prediction 
and information on already reported aggregates for each 
compound. 

2.4. Lead Identification 

After the systematic analyses of all compounds, lead 
compound was identified as a chemical compound that has 
the best pharmacological or biological activity against the 
PTPN1 therapeutic target. In detail, the lead compound was 
identified based on the best drug-likeness, pharmacokinetic 
properties, molecular docking and best binding interactions 
with the significant residues involved in binding the NMR 
structure of the target protein. The aggregator properties 
were used along with the other parameters to shortlist hits as 
lead compound. 

3. RESULTS 

3.1. Training Set Selection 

Flavonoids have extensive variety of biological activities, 
including anti-diabetic, anti-inflammatory, anti-oxidative, 

anti-allergic, anti-proliferative, anti-viral, anti-cancer activi-
ties, stomach and liver protection [37]. Initially, we selected 
30 compounds reported in the literature in the last decade 
whose PTPN1 inhibitory activity is less than 10 µM. Drug-
likeness filters were applied and 11 compounds fulfilled the 
criteria of drug-likeness. These are flavonoid compounds 
with PTPN1 inhibitory activity. Inhibitory activities against 
PTPN1 evaluated using experimental analyses, 2D struc-
tures, and physiochemical properties confirming drug-like 
properties, origin and botanical information concerning 
source plant species are listed in Table 1. This information is 
useful to understand the importance of these plants for anti-
DM medicines.  

3.2. Pharmacophore Generation 

To achieve the goal of the ligand-based pharmacophore 
modeling using LigandScout 4.1, eleven compounds were 
used as input. Possible lowest energy conformations for each 
compound were generated (Table 2) and all conformations of 
least flexible compounds were then aligned. For a configur-
able number of best alignment solutions; common pharma-
cophoric features were interpolated and ten hypothetical 
pharmacophore models were created. The score generated 
for these models is shown in Fig. (1). Pharmacophore mod-
els were ranked using several adjustable scoring functions 
taking into account chemical feature overlap, steric overlap, 
or both. Pharmacophore models are set of common feature 
pharmacophores created by processing all compounds of the 
dataset. If minimum three common functional features can 
be identified by alignment and interpolation process, com-
mon feature pharmacophore generation is considered to be 
successful [23].  

The model 1 with the highest score is selected for a data-
base search to retrieve similar hits from the plant-derived set 
of the ZINC database. Common features are important for 
the activity of compounds. The pharmacophore generated 
using 11 compounds contained four types of pharmacophore 
features: hydrogen bond acceptors (HBAs), hydrogen bond 

Fig. (1). Ten pharmacophore hypothetical models (lower panel) were generated for eleven compounds using LigandScout 4.1. Six features 
are the best fit to generate the best pharmacophore model. The proposed pharmacophore model (model 1 shown in upper panel) used in this 
study contains three HBAs (red spheres), two ARs (purple spheres) and one HR (yellow spheres). (The color version of the figure is avail-
able in the electronic copy of the article). 

Name� Score Name� Score Name� Score Name� Score Name� Score

Model�1 0.8565 Model�3 0.8489 Model�5 0.8484 Model�7 0.8057 Model�9 0.7792

Model�2 0.8492 Model�4 0.8486 Model�6 0.8371 Model�8 0.7845 Model�10 0.7639
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donors (HBDs), hydrophobic regions (HRs), and aromatic 
rings (ARs). Table 2 shows the total features present in each 
compound and the number of features which are common 
and the best fit to build the best model. Six features are the 
best fit to generate the best pharmacophore model. The best 
pharmacophore model (model 1) in this study contains three 
HBAs, two ARs and one HR, as shown in Fig. (1). Red 
spheres represent HBAs, purple spheres represent ARs and 
yellow spheres represent HRs for overlay of each compound 
of dataset upon the pharmacophore generated as shown in 
Table 3. 

3.3. Computer-based Screening of the Plant-derived Set 
of the ZINC Database 

To identify new plant-derived PTPN1 hits, pharma-
cophore based screening was conducted against 22,723,923 
plant-derived compounds from the ZINC database and 6061 
compounds fit with the pharmacophore query. Several filters 
were selected before screening by ZINCpharmer. These cri-
teria dictated that the molecular mass of the compound 
should be less than 500 Daltons, the number of rotatable 
bonds should be less than 10 [38], the maximum hits per 
configuration should be one, the maximum hits per molecule 
should be one and the maximum root-mean-square deviation 
(RMSD) value for screened hits should be 1.5. The identified 
pharmacophore fit compounds from the databases were re-
quired to be drug-like. Therefore, Data Warrior was used for 

screening to calculate the physiochemical properties and 
toxicity estimation. Lipinski’s and Veber’s rules were ap-
plied to the screened dataset and reduced it to 4349 com-
pounds. The dataset was subjected to a toxicity estimation 
using four criteria (mutagenicity, tumorigenicity, irritant and 
reproductive effects) and 2636 compounds with no risk of 
toxicity were retrieved. These compounds were used for mo-
lecular docking using the CLC drug discovery workbench 
and the 15 top scoring compounds were considered for inter-
action analyses using Ligplot. Then ADME calculations 
were performed for the selected 15 top scored hits to confirm 
their pharmacokinetic profile and medicinal parameters. 
Summary of drug-likeness and pharmacokinetic properties of 
the selected 15 selected hits are shown in Table 4. Many of 
the selected hits were shown to interact with the cytochrome 
P450 isoforms. Tyr46, Asp48, Ser216, Ala217 and Arg221 
residues of target proteins are mostly involved in the binding 
of 15 hits as shown in Table 5. Summary of ligand-protein 
binding analyses of selected 15 hits is shown in Table 6. 
Synthetic accessibility score (SAS) based on the fragmental 
analyses of the structures of virtual hits is acceptable for easy 
synthesis in laboratories. The 11 hits demonstrated no drug 
safety alerts. The aggregator potential through comparison 
with previously reported aggregators is shown only for the 
four hits demonstrated in Table 7. A lead compound was 
identified after a series of filters based on a CADD scheme 
(Fig. 2). 

 
Table 4. Summary of drug-likeness and pharmacokinetic properties of the 15 selected virtual hits. 

Oral Bioavailability 

Virtual Hits 

MW cLogP HBA HBD RB PSA 
B-

Score 

Pharmacokinetic 

Properties 

Log Kp 

(Skin 

Permea-

tion) 

Water Solu-

bility 

Toxicity 

Estimation 

ZINC06137783 450.581 3.2659 7 2 5 73.91 0.55 

GI absorption 

BBB permeant 

P-gp substrate 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

�6.19 
Moderately 

soluble 

 

No risk 

 

 

ZINC04259062 464.545 2.8826 8 2 4 119.22 0.55 

GI absorption 

P-gp substrate 

CYP1A2 inhibitor 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

�7.34 
Moderately 

soluble 
No risk 

ZINC03841413 460.553 2.4036 9 2 5 116.43 0.55 

GI absorption 

P-gp substrate 

CYP3A4 inhibitor 

�8.02 Soluble No risk 

ZINC04277683 458.516 3.016 8 2 4 90.98 0.55 

GI absorption 

P-gp substrate 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

�7.31 
Moderately 

soluble 
No risk 

(Table 4) Contd... 
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Oral Bioavailability 

Virtual Hits 

MW cLogP HBA HBD RB PSA 
B-

Score 

Pharmacokinetic 

Properties 

Log Kp 

(Skin 

Permea-

tion) 

Water Solu-

bility 

Toxicity 

Estimation 

ZINC04259056 476.507 3.1168 8 2 4 90.98 0.55 

GI absorption 

P-gp substrate 
CYP1A2 inhibitor 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

�7.35 
Moderately 

soluble 
No risk 

ZINC04259064 458.497 2.0691 9 2 4 103.87 0.55 

GI absorption 

P-gp substrate 
CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

�7.84 Soluble No risk 

ZINC05535232 415.448 3.7749 7 2 1 89.95 0.55 

GI absorption 
CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP3A4 inhibitor 

�6.90 
Moderately 

soluble 
No risk 

ZINC04237088 445.521 4.4229 5 0 2 64.41 0.55 

GI absorption 
BBB permeant 

CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP3A4 inhibitor 

�5.91 
Moderately 

soluble 
No risk 

ZINC13733603 421.448 3.5857 7 0 5 74.3 0.55 

GI absorption 
CYP1A2 inhibitor 

CYP2C19 inhibitor 

CYP2C9 inhibitor 
CYP2D6 inhibitor 

CYP3A4 inhibitor 

�5.97 
Moderately 

soluble 
No risk 

ZINC41585804 472.539 3.3751 7 1 6 71.47 0.55 

GI absorption 

BBB permeant 
P-gp substrate 

CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

�6.20 
Moderately 

soluble 
No risk 

ZINC00004749 316.308 2.4978 6 4 1 107.22 0.55 

GI absorption 
BBB permeant 

P-gp substrate 

CYP2C19 inhibitor 
CYP2C9 inhibitor 

CYP2D6 inhibitor 

�6.20 
Moderately 

soluble 
No risk 

ZINC02093367 424.451 4.2868 5 0 4 61.83 0.55 

GI absorption 
CYP2C19 inhibitor 

CYP2C9 inhibitor 
CYP3A4 inhibitor 

�5.40 
Moderately 

soluble 
No risk 

ZINC30731533 482.44 2.1266 10 5 4 155.14 0.55 
GI absorption 

CYP3A4 inhibitor 
�7.89 

Moderately 
soluble 

No risk 

ZINC00968072 274.271 2.3608 5 4 1 90.15 0.55 
GI absorption 
P-gp substrate 

�7.02 Soluble No risk 

ZINC13722309 485.512 2.4048 9 0 5 116.82 0.55 

GI absorption 
CYP2C19 inhibitor 

CYP2C9 inhibitor 
CYP3A4 inhibitor 

�7.30 
Moderately 

soluble 
No risk 

* The toxicity estimation used four major criteria (mutagenicity, tumorigenicity, reproductive effects and irritant effects), Cytochrome p4501A2=CYP1A2, Cytochrome 
p4502C19=CYP2C19, Cytochrome p4502C9=CTP2C9, BBB permeant =blood brain barrier permeability, GI absorption= Gastrointestinal drug absorption and P-gp substrate= P-
glycoprotein substrate. 
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Table 5. Conserved interacting residues within the binding site of the target protein of the top scored 15 virtual hits. 

Virtual Hits Tyr46 Asp48 Val49 Ser216 Ala217 Gly220 Arg221 Gln262 Gln266 

ZINC06137783 + + � + + + + � + 

ZINC04259062 + + � + + + + + � 

ZINC03841413 + � � + + + + + + 

ZINC04277683 + + � + + + + � + 

ZINC04259056 + + � + + + + + + 

ZINC04259064 + + � + + + + + � 

ZINC05535232 + + + + + + + � � 

ZINC04237088 � � � + + � + + + 

ZINC13733603 + + � + + + + � � 

ZINC41585804 � + � + + + + + + 

ZINC00004749 + + � + � � + + + 

ZINC02093367 + + � � + + + + � 

ZINC30731533 + + � + + � + � � 

ZINC00968072 + + + � + + + + + 

ZINC13722309 + + � + + � + + � 

* If key residues are present in the binding interaction within 4Å of the binding site of the target protein, then this is represented by “+”. If the residues are not present this is repre-
sented by “�”. 

 

Table 6. Summary of molecular docking analyses of selected 15 virtual hits. 

Virtual Hits RMSD Score 

Ligand 

Conforma-

tion Pen-

alty 

Interacting Residues in the 

Active Binding Site 

No. of Hydrogen 

Bonds 

No. of Hydro-

phobic Bonds 

Total Number 

of Bonds 

ZINC06137783 0.95 �55.125 1.76 

Tyr46, Asp48, Phe182, Gly183, 

Cys215, Ser216, Ala217, Ile219, 

Gly220, Arg221, Gln266. 

0 29 29 

ZINC04259062 0.95 �55.133 4.07 
Asp48, Lys116, Ala217, Ser216, 

Ile219, Gly220, Arg221, Gln262. 
0 28 28 

ZINC03841413 0.95 �53.418 2.25 

Tyr48, Phe182, Gly183, Asp184, 

Cys215, Ser216, Ala217, Ile219, 

Gly220,Arg221,Gln262, Gln266. 

0 29 29 

ZINC04277683 0.95 �52.773 4.26 

Tyr46, Asp48, Lys116, Phe182, 

Gly183, Cys215, Ser216, Ile219, 

Ala217,Gly220,Arg221, Gln266. 

0 29 29 

ZINC04259056 0.95 �52.545 4.26 

Tyr46, Asp48, Lys116, Phe182, 

Ser216, Ala217, Ile219, Gly220, 

Arg221, Gln262, Gln266. 

0 28 28 

ZINC04259064 0.95 �51.956 4.70 

Tyr46, Asp48, Lys116, Phe182, 

Ser216, Ala217, Ile219, Gly220, 

Arg221, Gln262. 

1 

[Lys116: (2.88Å)] 
29 30 

(Table 6) Contd… 
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Virtual Hits RMSD Score 

Ligand 

Conforma-

tion Pen-

alty 

Interacting Residues in the 

Active Binding Site 

No. of Hydrogen 

Bonds 

No. of Hydro-

phobic Bonds 

Total Number 

of Bonds 

ZINC05535232 1.03 �51.241 0.35 

Tyr46, Asp48, Val49, Lys116, 

Lys120, Cys215,Ser216, Ala217, 

Gly220, Arg221. 

2 

[Lys116: (3.00Å)] 

[Ser216: (3.24Å)] 

33 35 

ZINC04237088 1.11 �51.215 6.53 

Phe182, Gly183,Cys215, Ser216, 

Ala217, Ile219, Gly220, Arg221, 

Gln262, Thr263, Gln266. 

0 29 29 

ZINC13733603 0.68 �51.169 3.00 

Phe182, Gly183,Cys215, Ser216, 

Ala217, Ile219, Gly220, Arg221, 

Gln262, Thr263, Glu266. 

0 29 29 

ZINC41585804 0.57 �50.542 5.69 

Tyr46, Asp48, Phe182, Gly183, 

Ser216, Ala217,Gly220, Arg221, 

Gln262, Thr263, Gln266. 

3 

[Gln266: (3.01Å)] 

[Arg221: (3.12Å)] 

[Tyr46: (2.82Å)] 

28 31 

ZINC00004749 0.84 �50.387 0.36 
Asp48, Tyr46, Trp179, Ser216, 

Arg221,Gln262,Thr263, Gln266. 

4 

[Asp48: (2.63Å)] 

[Ser216: (2.99Å)] 

[Arg221: (2.73Å)] 

[Arg221: (2.64Å)] 

21 25 

ZINC02093367 0.94 �50.372 3.44 
Tyr46, Asp48, Cys215, Ala217, 

Ile219, Gln262, Arg221, Gly220. 

3 

[Arg47: (2.80Å)] 

[Arg47: (3.01Å)] 

[Arg47: (2.89Å)] 

20 23 

ZINC30731533 0.79 �50.331 2.61 

Tyr46, Arg47, Asp48, Glu115, 

Lys120, Asp181,Ser216, Ala217, 

Arg221. 

7 

[Asp48: (3.26Å)] 

[Arg47: (2.63Å)] 

[Arg47: (3.17Å)] 

[Asp181: (3.01Å)] 

[Ala217: (3.18Å)] 

[Glu115: (3.29Å)] 

[Arg221: (2.59Å)] 

30 37 

ZINC00968072 0.82 �50.315 0.36 
Tyr46,Val49,Asp48,Cys215, 

Ala217,Arg221,Gly220, Gln266. 

5 

[Gln266: (2.73Å)] 

[Arg221: (3.17Å)] 

[Arg221: (2.91Å)] 

[Cys215: (2.59Å)] 

[Asp48: (2.60Å)] 

20 25 

ZINC13722309 0.54 �50.239 3.01 
Tyr46,Arg47,Asp48,Gln262, 

Ala217, Ile219, Cys215. 

3 

[Arg221: (3.12Å)] 

[Ser216: (3.23Å)] 

[Ser216: (3.10Å)] 

37 40 

�
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Fig. (2). Schematic workflow summarizing the screening of Protein tyrosine phosphatase non receptor type 1 inhibitors using computer aided 
drug design. 

3.4. Molecular Docking 

Molecular docking study was conducted to evaluate the 
most favorable geometry of protein-ligand complex. We 
considered 2636 compounds for the molecular docking 
study. PTPN1 was used as a molecular target (PDB ID: 
3EAX) [30].  

We used the CLC drug discovery workbench for analyses 
of molecular binding of our screened dataset within the pro-
tein binding site. Comprehensive study of active site of 
PTPN1 X-rays crystal structure was conducted. We found 
that most of the protein binding site is hydrophobic. Fig. (3) 
shows the molecular surface recognition of 3EAX generated 
by using chimera software. Fig. (4) shows results of a de-
tailed 2D interactions analysis of the target protein complex 
and three potential hits. Fig. (4) (A) shows that Tyr46, 
Asp48, Val49, Ser216, Ala217, Gly220, Arg221, Gln262,  

and Gln266 are interacting residues within 4 Å of the protein 
binding site of 3EAX. Molecular docking simulations identi-
fied hydrogen and hydrophobic bindings with significant 
residues of PTPN1 target protein as shown in Table 5. 

On the basis of the best docking score, 15 hits were se-
lected to identify a potent lead compound. The interactions 
of the active conformation of the best scoring 15 hits with 
the target protein were identified using Ligplot. The saved 
conformation for the docked complex was subjected to de-
tailed interactions analyses. The docked files were up-
loaded to Ligplot to obtain its schematic representation of 
the hydrogen bonding and hydrophobic interactions. De-
tailed interactions of all docked complexes are shown in 
Table 6. These hits resulted from the hydrogen bonding and 
hydrophobic interactions with the significant residues 
within 4 Å, and the distance has been mentioned for hydro-
gen bonds. 

 

 
Fig. (3). Hydrophobic surface and the active binding site of the 3EAX protein showing LZP ligands, that is co-crystallized and overlaid at the 
active site, as generated using chimera. 
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Fig. (4). Schematic representation of the binding mode of ligands with Protein tyrosine phosphatase non receptor type 1 protein (PDB ID: 
3EAX). The protein site is hydrophobic and the NMR structure of the 3EAX protein complex bonded with LZP is shown in (A). Conserved 
interacting residues of the binding site of the target protein bonded with the virtual hits (B). ZINC04259056 shows only hydrophobic bonding 
(C). ZINC30731533 shows large network of hydrophobic and hydrogen bonding (D). ZINC00968072 also shows large network of hydropho-
bic and hydrogen bonding. Conserved interacting residues are displayed in red circles. (The color version of the figure is available in the elec-
tronic copy of the article). 
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The optimal binding mode of the three hits 
ZINC04259056, ZINC30731533 and ZINC00968072 having 
dock scores of �52.545, �50.331 and �50.315, is shown in 
Fig. (4B, C, D), respectively. The 2D analyses of these 
docked complexes revealed the significant residues involved 
in the binding interactions of the selected hits. Common 
binding residues are marked with red circles to highlight 
them (Fig. 4). The diagram provides a schematic representa-
tion of the docked complex. There are many hydrophobic 
interactions, so only residues are shown for clarity. Nine 
residues for the binding of the NMR protein (3EAX) to its 
ligand (LZP) are shown in Fig. (4) (A). While (B) 
ZINC04259056 and (D) ZINC00968072 show that eight 
interacting residues are common and (C) ZINC30731533 
shows that five interacting residues are common to the 
3EAX docked complex. Red circles are demonstrating simi-
lar binding residues (Fig. 4). 

Seven compounds show prominent hydrophobic binding 
interactions and eight compounds also show hydrogen 
bonds. Hydrogens bonds are also of great importance in 
PTPN1 inhibitor design. In general, for most effective inhibi-
tion; inhibitory compounds should interact with the most 
possible surface residues of protein binding pocket. There-
fore, the inhibitory compounds must have polar amino acid 
and be charged anionically at functional pH [39]. In addition, 
the inhibitory compound must be firmly anchored by the 
establishment of hydrogen bonds with particular amino acid 
residues and inhibitory functional groups in the protein bind-
ing pocket [39, 40]. However, interactions with polar amino 
acids will reduce the ability of PTPN1 inhibitors to cross cell 
membrane and to access cytosolic PTPN1 [39]. Hydrogen 

and hydrophobic interaction together contribute in PTPN1 
inhibition. It contributes in strong bonding of selected hits 
with active binding site of respective protein. 
ZINC13722309 shows 40 binding interactions with the tar-
get protein, while ZINC30731533 shows 37 binding interac-
tions and ZINC05535232 shows 35 binding interactions. 
ZINC30731533 shows the best binding mode with the hy-
drophobic moiety and the polar surface residues of the pro-
tein pocket. The dock scores of the top 15 hits are � �50. 
The RMSD values are in the range of 0.5 to 1.1, which are 
considered to be acceptable values. The ligand conformation 
penalty is the conformational restriction energies that in-
volve binding of flexible ligands in the protein pocket. 

3.5. Aggregator Advisor Screening 

Aggregator advisor was used for 15 selected hits to check 
their aggregator possibility (Table 7). While using this online 
tool, default affinity range (0.1 to 10 μM) was selected. On 
the basis of lipophilicity, LogP and chemical similarity 
thresholds (Tanimoto coefficient), three hits 
(ZINC03841413, ZINC04259064 and ZINC00968072) were 
not previously reported as aggregator and have not shown 
any similarity with known aggregator in the database. How-
ever, some hits were not similar to any known aggregators in 
the database and would require appropriate controls for pos-
sible aggregation if analyzed in vitro. Four hits 
(ZINC41585804, ZINC00004749, ZINC02093367, and 
ZINC30731533) with similarly threshold, LogP, and chemi-
cal structure of known aggregators are shown in Table 7 
[41]. 

 

Table 7. Summary of aggregator advisor results and medicinal alerts for selected 15 virtual hits. 

Aggregator Likelihood Medicinal Chemistry 
Virtual Hits 

LogP TC Structure of Similar Compound Comments SAS PAINS Brenk 

ZINC06137783 4.4 - - 

Not similar to any 

known aggregator in in-

house database. 

5.13 No alerts No alerts 

ZINC04259062 3.0 - - 

Not similar to any 

known aggregator in in-

house database. 

4.82 No alerts No alerts 

ZINC03841413 2.3 - - 

Has not been previously 

reported as an aggrega-

tor, or to be similar to an 

aggregator. 

5.00 No alerts No alerts 

ZINC04277683 3.1 - - 

Not similar to any 

known aggregator in in-

house database. 

4.80 No alerts No alerts 

ZINC04259056 3.3 - - 

Not similar to any 

known aggregator in in-

house database. 

4.82 No alerts No alerts 

(Table 7) Contd… 
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Aggregator Likelihood Medicinal Chemistry 
Virtual Hits 

LogP TC Structure of Similar Compound Comments SAS PAINS Brenk 

ZINC04259064 1.9 - - 

Has not been previously 

reported as an aggrega-

tor, or to be similar to an 

aggregator. 

4.83 No alerts No alerts 

ZINC05535232 3.5 - - 

Not similar to any 

known aggregator in in-

house database. 

4.51 No alerts No alerts 

ZINC04237088 4.1 - - 

Not similar to any 

known aggregator in in-

house database. 

4.68 No alerts No alerts 

ZINC13733603 4.7 - - 

Not similar to any 

known aggregator in in-

house database. 

4.28 No alerts No alerts 

ZINC41585804 4.9 

 

72% 

 
N N

HO

O

O  

Reported as a colloidal 

aggregator. 
3.82 

Undesir-

able alerts 
No alerts 

ZINC00004749 2.4 78% OHO

OH O

OH

O

O

OH

O

OH

 

Reported as a colloidal 

aggregator. 
3.82 

Undesir-

able alerts 
No alerts 

ZINC02093367 6.0 71% 
O

O

O

 

Reported as a colloidal 

aggregator. 
3.94 No alerts 

Undesir-

able alerts 

ZINC30731533 1.5 100% 
OHO

OH O

OH

O

O

OH

O

OH

 

Reported as a colloidal 

aggregator. 
4.92 No alerts No alerts 

ZINC00968072 2.5 - - 

Has not been previously 

reported as an aggrega-

tor, or to be similar to an 

aggregator. 

3.07 
Undesir-

able alerts 

Undesir-

able alerts 

ZINC13722309 3.0 - - 

Not similar to any 

known aggregator in in-

house database. 

4.87 No alerts No alerts 

 

3.6. Lead Identification 

Eleven compounds with acceptable physiochemical 
properties and without any expected toxicity or medicinal 
chemistry alerts were identified. The ZINC30731533 hit 
showed the best results in all the in silico protocols applied 
in the current study. It showed binding interactions, with a 

large network of hydrophobic interactions along with seven 
hydrogen bonds with the most important polar residues of 
the 3EAX NMR target protein structure. This compound did 
not show any toxicity risks like mutagenicity, tumorigenic-
ity, reproductive effects and irritant effects. The pharma-
cokinetic calculations were also favorable. The aggregator 
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likelihood with previous reported active compound was 
100%, and it suggested ZINC30731533 as a potent lead 
compound through computational methods. 

ZINC30731533 is known as isosilybin (major active con-
stituent of silymarin), an abundant flavonolignans identified 
in milk thistle. Silymarin is famous as Chinese traditional 
medicine for over-indulgence of food or indigestion treat-
ments. When an adjunct to oral diabetes therapy is used, it 
shows that level of fasting blood glucose reduces and HbA1c 
is maintained in animal models and in diabetic patients. It 
seems to increase insulin sensitivity. But more research is 
required to confirm its efficacy in management of diabetes 
mellitus [42]. Hence ZINC30731533 is suitable for in vivo 
studies to validate its PTPN1 inhibitory activity, with the 
potential for development of an antidiabetic drug. 

4. DISCUSSION 

To find potential plant-derived PTPN1 inhibitors and to 
deliver an idea for drug design, we have used both ligand 
and structure based methods. In our study, an integrated 
computational approach has been applied for ligand-based 
pharmacophore modeling of reported PTPN1 inhibitors and 
database screening to retrieve diverse plant-derived chemical 
scaffolds. Molecular docking has been applied in order to 
clarify the behavior of PTPN1 enzyme by binding plant-
derived compounds with different binding affinities. It helps 
to identify significant residues involved in PTPN1 inhibition. 
We used integrated strategies for structural insights along 
with medicinal chemistry prospective, which will lead to 
robust bio-assay method for enabling the design of potential 
and selective PTPN1 inhibitors. The significance of physio-
chemical properties and ADME/toxicity filters for inhibitor 
design is also emphasized in the search of active plant-
derived PTPN1 inhibitors. Completely similar reported ag-
gregator compound is a useful reference point in designing 
inhibitor with better physiochemical properties and possibil-
ity of inhibition of PTPN1 enzyme for in vivo testing with a 
plant-derived lead compound. 

We have discussed in our previous research that most of 
FDA approved anti-DM medicines now available cannot 
achieve a satisfactory level of glycemic control in DM pa-
tients, and have many side effects; therefore, new classes of 
anti-DM medicines are urgently needed. CADD techniques 
could be exploited to filter a large number of databases to 
produce efficient hits and to minimize the time and financial 
investments needed to discover novel anti-DM medications 
[6].  

The merits of plant-based medicine have been demon-
strated for various diseases. Metformin is mostly used 
medication for T2DM, derivative of guanidine which is 
obtained from Galegine Officinalis [43]. The potential 
advantages of plant-based medicines over synthetic 
medicines include less side-effects, increased efficacy, 
increased availability, and lower cost. Some of these plant-
based medicines are better extracted and used in a crude 
form as it is the common practice in traditional anti-diabetic 
medicine [44]. It is mostly used as an adjunct to oral 
antidiabetic therapy to reach appropriate glycemic control. 

PTPN1 is an acceptable therapeutic target that can be ef-
fectively targeted for the management of T2DM. Regardless 
of the accessibility of numerous synthetic PTPN1 inhibitors, 
their use often entails side-effects, some of which are life-
threatening. However, to date, PTPN1 inhibitors are far from 
achieving regulatory approval from the FDA. Therefore, it is 
necessary to identify novel hits that have potential to evolve 
into effective inhibitors of PTPN1. The present study focuses 
on a pipeline for the development of effective plant-derived 
anti-DM drugs that are safer and better tolerated when com-
pared with synthetic alternatives. To attain this target, com-
pounds need to be designed with respect to the protein target. 
Discovering the substrate or inhibitors that successfully bind 
to the protein target has paved a path for numerous molecu-
lar docking strategies. 

Significant research has been conducted on achieving 
PTPN1 inhibition and many developed compounds have 
reached stage I or II clinical trials only to be discarded be-
cause of bioavailability and toxicity issues. The development 
of PTPN1 inhibitors is challenging because of po-
tency/affinity, selectivity, and cell permeability issues. We 
applied approximate filters and safety protocols to find a 
potent lead compound with sufficient oral bioavailability, 
highest docking score with favorable binding interactions, 
acceptable toxicity estimations, favorable pharmacokinetics, 
aggregation information and medicinal chemistry safety pa-
rameters.  

In the present study, we selected 11 flavonoid com-
pounds which have acceptable drug-like properties and have 
PTPN1 inhibitory activities, as a training set to use for 
pharmacophore modeling and generate a query to search 
similar compounds from the natural compounds listed in the 
ZINC database. Pharmacophore-based screening is applied 
to obtain and prioritize plant-derived compounds from ZINC 
databases for structure-based study. With correspondence to 
experimental drug discovery methods like high-throughput 
screening (HTS), computational methods [45, 46] like com-
puter-based screening facilitate the selection of potential lead 
candidates in a cost-efficient manner by utilizing the avail-
able structural information on a protein. Here, we used 
PTPN1 target protein (PDB id: 3EAX) for molecular dock-
ing analyses. Based on the best dock score, 15 compounds 
were considered as virtual hits and satisfactory results. Op-
timal binding pose and interacting residues of selected hits 
analyses seem stable and have resulted in specific PTPN1 
inhibition. 

The selected hits showed acceptable bioavailability and 
pharmacokinetic profile. These virtual hits follow the rule of 
five and Veber’s rule of drug-likeness. A toxicity estimation 
based on four criteria was also acceptable for the 15 hits. 
There was no predicted mutagenic, tumorigenic, irritant and 
reproductive risk to a patient. The Log Kp (skin permeation) 
values were in an acceptable range, demonstrating that the 
cell permeability power of the selected candidates is suffi-
cient. Water solubility was assessed because poor aqueous 
solubility of drug-like compounds limits their in vivo 
bioavailability because of less dissolution in the gastrointes-
tinal fluids following oral administration [47]. The predicted 
solubility values for the selected hits were within a suitable 
range. In silico pharmacokinetic principles (rules that explain 
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how a body affects/deals a drug with absorption, distribution, 
metabolism, and elimination) are used to assess if a drug-like 
compound is likely to be safe and effective for therapeutic 
management in patients. In addition, an estimation of cyto-
chrome P450 (e.g. cytochrome p4501A2, cytochrome 
p4502C19 and cytochrome p4502C9) was performed for its 
most critical isoforms by SwissADME predictor shown in 
Table 4. The cytochrome P450 is a superfamily which per-
forms important functions such as absorption, metabolism, 
and elimination of drug from liver [48]. If a drug does not 
metabolize and accumulate for long time in the body, it can 
cause toxicity. Many hits were shown to interact with the 
cytochrome P450 isoforms. In silico estimation for gastroin-
testinal (GI) drug absorption is acceptable; all selected hits 
have shown positive response towards oral administration. 
Selected 15 hits were also checked from a medicinal chemis-
try perspective, in terms of the presence of any toxic moie-
ties, PAINS also known as pan assay interference com-
pounds and Brenk filters, to determine an oral bioavailability 
and drug safety profile [35]. ZINC41585804, 
ZINC00004749, ZINC02093367, and ZINC00968072 
showed high-risk structural alerts. Consequently, these four 
compounds should be discarded during the initial phase of 
drug development to avoid possible toxic effects. The re-
maining 11 compounds demonstrated no drug safety alerts 
and potential starting points for further studies. While 
ZINC30731533 showed complete similarity (100%) to the 
compound and it has been reported as an aggregator (Table 
7). The aggregator likelihood assessment suggested a refer-
ence point for identified lead compound suitable for future 
study.  

In this study, we focused on the identification of new 
candidates as anti-DM agents. By using structural informa-
tion of already modeled PTPN1 structure (PDB id: 3EAX), 
detail binding behavior of PTPN1 was studied. Computa-
tional techniques were systematically used in this study to 
produce the results. It is worthy to note that we identified a 
lead compound (isosilybin; an active constituent of sily-
marin) as a PTPN1 inhibitor. Our recommendation is to test 
isosilybin in laboratories to confirm its activity as PTPN1 
inhibitor. We highlighted the importance of PTPN1 enzyme 
in this study which is involved in many biological processes, 
however design and development of PTPN1 inhibitor is a hot 
research topic for treatment of obesity and cancer, as well as 
for T2DM [30]. The proposed virtual lead, isosilybin, is a 
flavonoid compound which shows extensive variety of bio-
logical activities, because flavonoids are beneficial for 
treatment of various diseases [37]. Furthermore, DM is a 
complicated disease, and DM patients usually have other 
complications along with the disease. In this regard, the pro-
posed lead compound is expected to show multiple treat-
ments for diabetic patients who have other complications.  

CONCLUSION 

By using computer-aided drug design methodologies, we 
successfully identified plant-derived therapeutic hits with the 
potential to inhibit the PTPN1 target, which may be helpful 
to enhance insulin production. The newly identified lead 
isosilybin (ZINC30731533) in this systematic study was 
without any predicted toxic effects and showed the best 
binding mode with the PTPN1 therapeutic target. Therefore, 

the lead compound is expected to function as an anti-diabetic 
drug after subsequent testing and validation. The present 
study could aid in the development of PTPN1 inhibitors for 
diabetes treatment. 
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