
ESTRADIOL MEMBRANE-INITIATED SIGNALING IN THE BRAIN 
MEDIATES REPRODUCTION

Paul E Micevych1, Paul G. Mermelstein2, and Kevin Sinchak3

1Dept of Neurobiology, David Geffen School of Medicine at UCLA, Laboratory of 
Neuroendocrinology of the UCLA Brain Research Institute

2Dept of Neuroscience, University of Minnesota

3Dept of Biology, California State University, Long Beach

Abstract

Over the past few years, our understanding of estrogen signaling in the brain has expanded rapidly. 

Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate 

gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways 

often work in concert within the same cell, increasing the complexity of the system. In females, 

estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating 

estrogen receptor expression, activity and trafficking. These dynamic changes influence multiple 

behaviors, but are particularly important for reproduction. Using the female rodent model, we 

review our current understanding of estradiol signaling in the regulation of sexual receptivity.

Keywords

ERα; GPER; caveolin; lordosis behavior; estrogen feedback; mGluR

Estradiol actions in the brain: historical context

The actions of estradiol on brain function have been studied for decades. Principally 

synthesized in the gonads, estradiol was initially characterized as binding to a single 

intracellular estrogen receptor (ER), now termed ERα, and regulating gene expression 

through binding to estrogen response elements (EREs) located in the promoter regions of 

specific genes [1]. There is excellent accord regarding the distribution of ERα to specific 

subpopulations of neurons known to play critical roles in sexual maturation and sexual 

receptivity. For example, estradiol activation of ERα in regions such as the rodent 

ventromedial hypothalamus (VMH), medial preoptic area and central gray region of the 

midbrain are critical for the display of lordosis (see Glossary) [2]. Hence, it was once 
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believed that the story of estrogen action in brain was both simple and straightforward. We 

now know this is not the case.

Approximately ten years after the identification of ERα, a second estrogen receptor, ERβ 
was cloned. Through direct transcriptional regulation, ERα and ERβ can have either 

complementary or opposing actions, and can influence gene expression independent of 

EREs or estradiol [1, 3, 4]. Even with all this complexity, activation of intracellular ERs is 

only one of the major mechanisms of estradiol action. Estradiol mediates a variety of other 

responses, many of which are initiated at the membrane surface, across neuronal and non-

neuronal tissue [5]. Within the nervous system, rapid estradiol action was first demonstrated 

in preoptic/septal neurons, where changes in electrophysiological properties were observed 

within seconds of estradiol exposure [6]. For years, the identity of membrane-localized ERs 

was unclear, but these actions of estradiol appeared to require the activation of G protein-

coupled receptors (GPCRs) [7]. Due to the multiple amplification steps associated with 

activation GPCRs, the relative expression of membrane-localized estrogen receptors 

required for physiological impact is low, which made their identification difficult.

The first indication that classical ERs mediate membrane-initiated estrogen signaling was an 

experiment that found overexpressed ERα and ERβ trafficked to the membrane and 

activated cell signaling [8]. This was followed by ER knockout experiments indicating that 

rapid estrogen signaling was dependent on ERα and/or ERβ [9]. Within the nervous system, 

membrane-localized ERα and ERβ were then found to functionally couple to group I and II 

metabotropic glutamate receptors (mGluRs), initiating mGluR signaling upon estradiol 

stimulation, independent of glutamate [10]. This provided an explanation as to how estradiol 

was able to affect a wide array of signaling pathways, although the mechanism underlying 

the functional pairing of ERs with mGluRs remained a mystery. This review will outline the 

mechanisms by which membrane ERs (mERs) are able to signal at the neuronal and glial 

membrane surface through mGluRs, and how this and other estrogen-sensitive signaling 

pathways coordinate female receptivity.

Estrogen Receptor Signaling through metabotropic glutamate receptors 

(mGluRs)

Caveolin proteins mediate ER and mGluRs interactions

The initial finding that ERs can be separately coupled to different types of mGluRs [10] led 

to additional studies to determine the mechanisms by which discrete estrogen-responsive 

signaling pathways were coupled. Given the degree of fine spatial tuning, caveolin proteins 

(Cav1-3) were candidates for an intermediary protein that allowed ERs and mGluRs to 

interact functionally in a spatially localized manner. Caveolins (Cavs) are small integral 

membrane proteins that organize signaling molecules into functional microdomains [11–13]. 

In non-neural tissue, they form oligomers (i.e., caveolae) that produce invaginations in the 

plasma membrane. Caveolae had not been observed in the brain, which led to initial reports 

that Cav expression in the nervous system was limited to endothelial and glial cells [14].
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At the time when ERs were found to couple to mGluRs, a single report indicated that Cav1 

was, in fact, expressed in neurons [15]. This led to the discovery that all three Cavs are 

expressed in neurons [16]. Furthermore, it was determined that Cav1 and Cav3 were 

responsible for generating distinct signaling complexes within individual neurons, thereby 

isolating estrogen activation of group I from group II mGluR signaling [16] (Fig 1). In 

addition, Cavs facilitate trafficking of ERs to the plasma membrane, as has been shown for a 

number of surface signaling proteins [17–19]. The disruption of Cav1 expression decreases 

membrane-localized ERα [20].

Palmitoylation regulates ER trafficking to the plasma membrane and ER signaling

ERα and ERβ can mediate both direct nuclear- and membrane-initiated estradiol signaling. 

Post-translational modifications appear to determine whether ERα and ERβ are targeted to 

the plasma membrane or the nucleus. There are several forms of palmitoylation. ERs are 

regulated by S-Palmitoylation, which is a reversible lipid modification, shown to control 

transient membrane tethering of otherwise cytosolic proteins [21–23].

Proteins belonging to the palmitoyl acyltransferase (PAT) family of enzymes are responsible 

palmitoylation of target proteins, usually via a thiol-ester bond at cysteine residues [24]. 

Palmitate attachment increases the lipophilicity/hydrophobicity of the protein, facilitating 

association with lipid membranes and lipophilic proteins (Fig 1). In addition to serving as a 

lipophilic anchor, palmitate may also signal to cellular trafficking mechanisms [25]. To date, 

there are 23 PAT members of the DHHC family of enzymes [26].

Two DHHC enzymes, DHHC7 and DHHC21, palmitoylate and promote surface trafficking 

of ERα [27]. Interestingly, both ERα and ERβ (as well as other steroid hormone receptors) 

contain conserved palmitoylation sequences that appear regulated by the same two DHHC 

enzymes [28]. More recent studies verified, within neurons, that membrane-initiated 

signaling by ERα and ERβ are dependent on DHHC7 and DHHC21 [29]. Furthermore, 

mutation of the ER palmitoylation site eliminates membrane, but not nuclear function of the 

receptor [29–31].

With only one palmitoylation site on each ER, it is somewhat surprising that disruption of 

either DHHC7 or DHHC21 (as opposed to simultaneous knockdown) results in a loss of 

mER signaling. The cause for this result is currently unclear, but there are several possible 

explanations. First, DHHC7 and DHHC21 may palmitoylate steroid hormone receptors as a 

heterodimer [26]. Second, DHHC7 and DHHC21 may act independently, but sequentially. A 

third possibility is that either DHHC7 or DHHC21 directly palmitoylates the steroid 

hormone receptor, while the other DHHC enzyme palmitoylates a required accessory 

protein. Notably, Cav proteins are regulated through palmitoylation [9, 32, 33].

Membrane estrogen receptor signaling dynamics

Interestingly, trafficking of ERα to the surface membrane is itself highly regulated by 

estradiol (Fig 2). Estradiol first promotes ERα trafficking to the membrane, then reduces the 

levels through receptor internalization [34]. Mechanistically, activated ERα is removed from 

the cell membrane through a mechanism involving phosphorylation by G protein-coupled 
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receptor kinase 2 (GRK2) and recruitment of β-arrestin-1 (Arrb1), leading to internalization 

of the receptor complex [35]. Arrb1 links ERα to the AP-2 adaptor complex assisting 

clathrin-mediated endocytosis [36, 37]. Internalization is important for the immediate 

reduction of receptors on the cell surface that curtails signaling [34]. Internalized receptors 

release their ligands in early lysosomes, and the ligand-free ERα can be recycled back to the 

cell membrane and restimulated. In this manner, recycling restores cellular responsiveness to 

estradiol. Upon prolonged stimulation, internalized receptors can be sorted to lysosomes 

where they are proteolytically degraded leading to a down-regulation of receptors and an 

extended attenuation of cellular responsiveness to estradiol. In in vitro preparations, this 

decrease in membrane ERα signaling occurs within two hours of estradiol stimulation [34, 

38].

Experiments in immortalized hypothalamic neurons suggest that Arrb1 is also directly 

involved in membrane-initiated estradiol signaling [39], possibly as a scaffold protein to 

recruit and organize downstream signaling molecules (e.g., Ras/Raf/MEK) at the cell 

membrane [40, 41]. Moreover, Arrb1 has been implicated as a key player through which 

endosomal signaling extends cellular responsiveness (reviewed in [42, 43]). Our results 

suggest Arrb1 functions in this way mediating estradiol signaling in hypothalamic cells. 

Specifically, estradiol-induced ERK1/2 phosphorylation and internalization both depend on 

Arrb1, and membrane-initiated estradiol signaling persists as long as Arrb1 remains 

associated with the receptor including after sequestration into endosomes [39, 44].

In addition to estradiol and Cav1, PKC regulate ERα trafficking to the membrane, which is 

necessary for ERα-dependent lordosis behavior [45, 46]. Additionally, disruption of Arrb1 

expression in the arcuate nucleus of the hypothalamus (ARH) eliminates lordosis behavior. 

Furthermore, these results provide a mechanism that underlies activation of female sexual 

receptivity by estradiol-only treatment. A large dose of estradiol benzoate (EB) alone 

induces lordosis within 48 hours, while more physiological doses do not (e.g., [47]). This 

effect appears to be due to low doses of estradiol prolonging Arrb1-mediated activation of 

membrane-initiated estradiol signaling, which extends inhibition of lordosis. Progesterone 

relieves the opioid inhibition thereby facilitating lordosis [48].

When studying the dynamics of ERα in vitro using both primary cultures of neurons and 

astrocytes, we and others identified a splice variant of the ESR1 gene encoding ERα that is 

missing exon 4 (ERαΔ4) [34, 38, 46, 49]. Interestingly, ERαΔ4 is the more prevalent ERα 
variant in membranes obtained from cultured or immortalized neurons and astrocytes. In 

contrast, in membranes obtained directly from the brain, levels of full length ERα are 

greater than ERαΔ4 levels [20]. At this point, we do not understand the conditions that shift 

the ERαΔ4:ERα ratio in vitro compared with in vivo tissue. ERαΔ4 is missing exon 4, 

resulting in an in-frame deletion, giving rise to a truncated ERα protein [50–52]. This 

alternatively spliced ERα lacks the nuclear translocalization sequence, and after translation 

ERαΔ4 is not transported to the nucleus and builds-up in the cytoplasm, increasing 

trafficking to the cell membrane ([53]; but see [54]). Functionally, ERαΔ4 does not 

stimulate transcription ([55], but see [54]); it does inhibit though ERα-mediated 

transcription [56]. Some researchers posit that ERαΔ4 does not bind estradiol or interact 

with the ERE [57]. However, estradiol treatment induces internalization of membrane 
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ERαΔ4 in cultured astrocytes and neurons – actions associated with ligand bound receptors. 

In vivo knockdown of Cav1 did not prevent ERαΔ4 trafficking to the membrane [20], but 

recent experiments indicate that membrane levels of ERαΔ4 require Cav3, the Cav isoform 

implicated in functional coupling of ERα and ERβ with group II mGluRs [16]. Consistent 

with this hypothesis, ERαΔ4 co-immunoprecipitates with mGluR2, and thus, may mediate 

inhibitory estradiol actions.

Membrane estrogen receptors regulating sexual receptivity

Estrogen actions on the neural circuitry controlling sexual receptivity

A classic example of estrogen action in the female brain is the induction of lordosis. 

Sexually receptive female rodents, when mounted by a male, respond with the stereotypic 

arching of the back that allows copulation to occur. Over the years, studies have clarified 

much of the neurocircuitry required for this behavior [2]. Display of lordosis requires the 

precise timing of ERα activation within the circuit. We now know that both nuclear and 

membrane-initiated mechanisms are needed to induce sexual receptivity. For example, 

nuclear ER signaling that induces protein synthesis is necessary [58], as are rapid membrane 

signaling pathways [45, 59, 60]. In terms of nuclear receptor signaling, ERα, but not ERβ, is 

essential for facilitation of lordosis [61, 62]. Under certain conditions, the G protein-coupled 

estrogen receptor (GPER) also has an essential role in facilitation of lordosis by estradiol 

[60, 63]. To further complicate matters, there is an overlap in the actions of ERα and another 

ER, the Gq-mER, facilitating lordosis [64].

Models for understanding steroid activation of sexual receptivity

Studies of steroid treatments in ovariectomized (ovx) rodents demonstrate several principles 

required for the induction of lordosis: 1) if used alone, more estradiol is needed than if 

estradiol priming is followed by progesterone (reviewed in [47, 65]); 2) a single dose of 

estradiol produces a delayed onset of sexual receptivity, which lasts longer compared with 

lordosis induced by estradiol + progesterone (reviewed in [65, 66]); 3) maximal sexual 

receptivity can eventually be achieved by repeated lower doses of estradiol whereas, 

estradiol + progesterone treatments produce consistently high levels of sexual receptivity 

(reviewed in [67]); 4) treating an ovx rat with a priming dose of EB followed by a dose of a 

nonesterified estradiol facilitates lordosis without progesterone [60, 63, 68].

A commonality for all these paradigms is that for lordosis to occur, requires an extended 

estradiol exposure is needed (20 to 48 hours). During this time, estradiol activates inhibitory 

neuropathways to prevent copulation from occurring before ovulation. This interval allows 

for protein expression in the lordosis circuit neurons mediated by a combination of nuclear 

and extranuclear estrogen signaling pathways; and the functional coupling of receptors to 

intracellular signaling cascades. [69–71]. In ovx rats, estradiol exposure of about 20-24 

hours is needed for progesterone or other agents to induce moderate to high levels of sexual 

receptivity[48, 72, 73]. The quintessential protein upregulated by estradiol is the classical 

progesterone receptor (PGR) in the VMH, and medial preoptic nucleus (MPN) [74–79].
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Although estradiol priming through ERα is sufficient for upregulation of PGR and 

facilitation of lordosis [62], there is evidence that ERα and ERβ both have a role PGR 

induction [80]. However, simultaneous ERα and ERβ activation does not replicate estradiol 

treatment, pointing to the involvement of an additional ER, such as GPER, which induces 

enough PRG for progesterone for a moderate level lordosis [81]. Thus, multiple ERs appear 

to underlie progesterone’s facilitation of lordosis.

An interesting aspect of inducing lordosis in ovx rodents is that PGR is not needed for 

inducing sexual receptivity. Estradiol-only facilitation of lordosis is neither blocked by PGR 

antagonists nor dependent on classical PGR activity [82, 83]. Significantly, both estradiol-

only and estradiol + progesterone facilitation of lordosis modulate ARH β-endorphin (β-

end) neurons that project to the MPN [48, 84], but via different pathways [47].

In this light, attention has shifted from slow actions of estradiol (> 24 h) to actions occurring 

within minutes of estradiol administration [85]. Estradiol signaling rapidly induces 

neurotransmitter release [45, 86–88] and regulates neurotransmission [89]. Indeed, estradiol 

(and steroid hormones in general) signaling through membrane receptors resembles GPCR 

neurotransmitter signaling [90]. Such analyses revealed that the initial action of estradiol, in 

terms of lordosis, is to engage an inhibitory circuit that involved MPN-projecting β-end 

neurons [84, 86]. A transient opioid inhibition action is needed for maximal sexual 

receptivity, but sustained activation of MOR in the MPN inhibits sexual receptivity [59, 84, 

91, 92]. Subsequent steroid treatments and pharmacological treatments that reduce estradiol-

induced MOR activation facilitate lordosis [9, 47, 48, 60, 63, 93]. These lordosis-facilitating 

steroid priming paradigms converge on ARH β-end neurons that project to the MPN [84, 

94].

The lordosis lordosis-regulating ARH-MPN circuitry

Over the years, examination of the ARH-MPN circuit has provided an excellent opportunity 

to study steroid mechanisms regulating sexual receptivity (Fig 3; reviewed in [67, 85]). 

Initially demonstrated in maximally receptive rats, the MPN is an inhibitory node for female 

sexual receptivity, which is mediated by MOR activation. Stimulation of the MPN inhibits 

lordosis, whereas MPN lesions facilitate lordosis in rats treated with subthreshold doses of 

estradiol [95–99]. The MPN acts on downstream lordosis regulatory nodes, including the 

VMH and ventral tegmental area [99]. Thus, the ARH-MPN MOR system regulates the 

onset of sexual receptivity by preventing copulation from occurring until all reproductive 

organs are exposed to the necessary levels and duration of steroid hormones so that sexual 

activity is coordinated with ovulation, maximizing the chances of fertilization and zygote 

implantation.

In the forebrain, proopiomelanocortin (POMC) neurons are located in the ARH. Of the 

several post-translational products of POMC, the most important for reproduction is β-end, 

an endogenous MOR ligand. While β-end neurons project to a number of hypothalamic 

regions, a population of β-end neurons projects to the MPN activating MORs. In the MPN, 

MOR activation increases in estradiol-primed rodents, inhibiting sexual receptivity, whereas 

reducing estradiol-induced MPN MOR activation facilitates lordosis [48, 59, 60, 63, 84, 86, 
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100, 101]. MPN MOR neurons mediate hormonal regulation of sexual receptivity, through a 

population of ERα or ORL-1 neurons projecting to the VMH.

Thus far, all steroid paradigms studied regulate the output of ARH β-end neurons in a 

manner that is congruent with the rat’s sexual behavioral state [9, 47, 48, 59, 60, 84, 90, 93, 

101–105]. Importantly, the association of behavior and MPN MOR activity is observed in 

intact cycling rats [95].

Estradiol rapidly activates the ARH-MPN circuit through of mERα-mGluR1a [38]. 

Activation of mERα-mGluR1a induces of neuropeptide Y (NPY) release that activates ARH 

β-end neurons projecting to the MPN [59, 84, 94]. In ARH plasma membrane fractions, 

ERα co-immunoprecipitates with mGluR1a. This signaling complex is essential for 

activation of β-end and subsequent facilitation of lordosis [45, 59, 104]. Observations that 

support this idea include the rapidity of the estradiol-induced activation of MOR in the MPN 

[86, 106], and that MPN MOR activation by estradiol infusion into the ARH is blocked by 

pretreatment with an ER antagonist, fulvestrant (ICI 182,780) or an mGluR1a antagonist 

indicating that membrane-initiated estradiol signaling involving mERα and mGluR1a 

mediated the rapid actions [59]. Blocking ERα trafficking to the membrane by disrupting 

Cav-1 expression prevents lordosis [20]. Finally, preventing mERα-mGluR1a signaling in 

the ARH with a PKC antagonist also prevents MOR internalization and lordosis behavior 

[45]. Concurrent ARH infusion of mGluR1a agonists with estradiol priming that does not 

produce receptivity on its own (2 µg EB), facilitates lordosis and reduces MPN MOR 

activation in a manner similar to a single, high dose of estradiol [59]. In summary, in this 

behavioral circuit estradiol activates both mERα signaling and direct ERα transcriptional 

events that are important for facilitating lordosis. However, at this point, the proportion of 

membrane to nuclear signaling vs. direct (nuclear) signaling is not known.

Interestingly, various doses of estradiol regulate mERα signaling by regulating its levels on 

the membrane [107]. Rats given a low dose of EB continue to have mERα-mGluR1a in the 

ARH. In contrast, a high dose of EB, reduces mERα-mGluR1a levels. Thus, a priming dose, 

which does not induce lordosis, maintains the mERα-mGluR1a signaling complex that 

maintains opioid inhibition. Significantly, 48 hours after a 50 μg EB dose, when the female 

is sexually receptive, mERα-mGluR1a levels are reduced, and so is β-end 

neurotransmission. As in vitro, estradiol modulates membrane-initiated signaling by 

regulating levels of mERα [38].

In addition to modulation of ER signaling, waning estradiol levels induce OFQ/N release 

(Fig 4) that further reduces β-end neurotransmission, and MPN MOR activation, allowing 

lordosis behavior [47]. Deactivation of the ARH-MPN pathway and facilitation of lordosis 

by estradiol-only treatments require activation of ORL-1 on β-end neurons. The mechanism 

for this appears to be through GPER. Thus, multiple ERs appear to regulate lordosis-

facilitating pathways.

ER signaling-regulated synaptic responses—Steroid priming regulates the coupling 

of ORL-1 to the GIRK-1 channel in β-end neurons in a manner that is associated with the 

animal’s behavioral state (Fig 4). In ovx rats, OFQ/N-induced robust GIRK-1 currents [102], 
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but, a dose of estradiol that does not induce receptivity reduces OFQ/N-induced GIRK-1 

currents effectively increasing β-end neuron excitation. On the other hand, steroid treatments 

that induce sexual receptivity (estradiol, STX and PPT, an ERα agonist) have robust GIRK-1 

currents, inhibiting β-end neurotransmission [108]. The decoupling of ORL-1 from GIRK-1 

is mediated by activation of PLC/PKC/PKA and the phosphatidylinositol-3-kinase (PI3K)/

neuronal nitric oxide synthase (nNOS) pathways [89; Fig 4].

Morphological plasticity and sexual receptivity

There is an interesting discrepancy between mice that are missing MOR (MOR-KO) and the 

blockade of mGluR1a in the ARH. MOR-KO mice have a ~20% decrease in lordosis 

quotient compared with wild type controls. In contrast, pharmacological blockade of 

mGluR1a virtually abolishes sexually receptive behavior [59]. Thus, membrane-initiated 

estradiol signaling affects something in the ARH besides the β-end neuron. Estradiol-

induced morphological plasticity was an obvious choice based on demonstrated changes in 

the ARH, VMH and hippocampus [109–111]. Indeed, estradiol rapidly induces spinogenesis 

that is dependent on mERα-mGluR1a signaling [104]. Fulvestrant, or the mGluR1a 

antagonist LY 367,385 prevents spinogenesis. This estradiol membrane-initiated signaling 

rapidly induces phosphorylation of the actin severing protein, cofilin. Phosphorylated cofilin 

is inactive, which allows for the formation of new dendritic spines. Significantly, blocking 

spinogenesis in the ARH blocks estradiol induced lordosis [104]. The formation of new 

spines is rapid and spine numbers remain stable for 48 hours. During this time, there is a 

shift in spine morphology with numbers of mushroom-shaped spines significantly 

increasing. This suggests that a portion of the newly formed spines mature over these days 

and take on a morphology indicative of functional synapses. The time course of the increase 

in the number of mushroom-shaped spines coincides with the appearance of lordosis 

behavior.

While spines are rapidly formed, they are labile. An additional stimulus appears to be 

necessary to stabilize them. In the cortex, estradiol paired with a long-term potentiation 

(LTP) protocol results in a sustained increase in connectivity ([112]). Formation of a 

functional synapse would accomplish the same thing in vivo. Estradiol increased the 

expression of postsynaptic density protein-95 (PSD-95) in the ARH, but pretreatment with 

fulvestrant prevented the increase. Similarly, the axonal growth associated protein, GAP43, 

was upregulated by estradiol treatment and blocked by antagonism of ERα [90]. The 

estradiol induction of PSD-95 and GAP43 were blockade by antagonism of mGluR1a. Thus, 

acting in the ARH, estradiol increases behaviorally relevant synapses.

Concluding Remarks

Reproductive neuroendocrinologists have known for many years that in females, steroid 

actions exist in the context of a complex dance with time and concentration. Unexpectedly, it 

turned out that the same receptors that mediated direct nuclear action also mediated 

membrane-initiated cell signaling. ERα and ERβ are chaperoned to the membrane by Cav 

proteins that mediate the association of the ERs with specific mGluRs, whose transduction is 

the mechanism through which these nuclear receptors signal at the membrane. This places 
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estradiol membrane-initiated signaling in the realm of GPCRs. The mERs behave like 

typical membrane receptors: cycled into and out of the membrane in response to the 

presence of estradiol, their native ligand. The discovery of membrane estrogen receptors, 

forced a reevaluation of the traditional understanding of steroid actions both at the cellular 

and the circuit level. If membrane-initiated estradiol signaling occurs on a time scale of 

seconds to minutes rather than hours to days, it was necessary to examine activation of 

lordosis-regulating circuits in that same time frame. It was discovered that the initial action 

of estradiol induces an inhibition of lordosis that is centered in the MPN. While the source 

of that inhibition was not known, electrophysiological recordings revealed an estradiol-

induced inhibition of lordosis behavior [113]. Later, the inhibition was understood to be 

through the activation of β-end neurons acting on MPN MOR. Examination of the other time 

points between estradiol administration and lordosis demonstrated that other ERs also 

contributed to the regulation of behavior. The GPER activates lordosis, hours after the initial 

estradiol treatment [60]. This indicates that several sequential membrane-initiated actions 

underlie the estradiol-induction of lordosis behavior, in addition to direct nuclear actions. At 

this point, we do not know the proportion of estradiol membrane-initiated signaling 

compared with direct nuclear action that underlies circuit activation (see Outstanding 

Questions). It is likely that what has been assumed to be direct nuclear action may turn out 

to be the result of membrane to nucleus signaling and the activation of CREB. Indeed, there 

are hints that this may be the case. Lordosis behavior is dependent on the formation of new 

spines in the ARH [104] induced by initial estradiol actions through ERα-mGluR1a 

signaling. The later stabilization and spine maturation is associated with the expression of 

PSD-95 and GAP43, which themselves are regulated by the same mERα action [90].

While this review has focused mostly on ERα, both ERβ, and GPER have roles in sexual 

receptivity. Research into ERβ has to a large extent stalled in recent years due to a lack of 

workable antibodies. While questions remain about the cell surface or smooth endoplasmic 

reticulum localization of GPER, experiments continue to demonstrate a role of GPER in the 

brain. Despite this, the contribution of these more recently discovered ERs, their defined 

roles in reproductive neuroendocrinology are not well established. ERα knockdown 

experiments have been very clear – no ERα, no reproduction. A large question is how ERβ, 

GPER, and the STX-stimulated Gq-mER interact with ERα signaling. Preliminary 

experiments suggest that these interactions may not be simple, and will require attention to 

estradiol’s concentration and timing. The past few decades teach us that estrogen signaling 

in the brain requires a number of membrane, cytoplasmic and nuclear receptors, all of which 

play a role in reproduction.
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GLOSSARY

Caveolin proteins Family of integral membrane proteins that act as 

scaffolding protein that compartmentalize and concentrate 
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signaling proteins. There are 3 members: Cav1, Cav2 and 

Cav3. They appear to act as chaperons for nuclear steroid 

hormone receptors, especially ERα and ERβ

Estrous cycle In rodents, the ovarian cycle is composed of 4 stages, 

Diestrus I, Disestrus II, Proestrus, and Estrus. In Diestrus, 

developing ovarian follicles produce primarily estrogen 

which feeds back onto the hypothalamus to inhibit the 

release of GnRH, and onto the pituitary to inhibit FSH and 

LH release. On the afternoon of proestrus, the rising levels 

of estrogen stimulate synthesis of progesterone in the 

hypothalamus and together these steroids stimulate the 

surge release of GnRH leading to the release of LH and 

ovulation of an ovum from the ovary. On estrus, release of 

progesterone from the corpus luteum inhibits the 

hypothalamus, resulting in low levels of GnRH, as well as 

LH and FSH from the pituitary leading to low circulating 

levels of estrogen and progesterone

Lordosis reflex The naturally occurring body posture for sexual receptivity/

copulation present in most mammals including rodents. 

Primary characteristics include raising of the hips, ventral 

arching of the back, lateral deviation of the tail, which 

present the vagina to the male and allows for intromission

Palmitoylation The covalent attachment of fatty acids to proteins, which 

increases their hydrophobicity. Palmitoylation contributes 

to the trafficking of proteins between intracellular 

compartments and to the cell membrane. Finally, 

palmitoylation modulates protein-protein interactions, such 

as between estrogen receptors and metabotropic glutamate 

receptors
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TRENDS

* Membrane-initiated signaling is mediated by classic ERα and ERβ trafficked 

to the membrane and through novel extra-nuclear receptors such as GPER 

and Gq-mER

* ERα and ERβ trafficking to the membrane requires palmitoylation and 

caveolin proteins

* Caveolin proteins determine the mGluR associated with ERα establishing 

whether estradiol action are stimulatory (mGluR1a) or inhibitory (mGlur2/3)

* Estradiol control of sexual receptivity requires activation of several types of 

ERs, which are involved in cell signaling in transcriptional regulation

* Control of sexual receptivity requires estradiol actions at the membrane, and 

involve several different both ERα and GPER

* Spinogenesis in the ARH is critical for sexual receptivity and is mediated by 

ERα-mGluR1a signaling
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Outstanding Questions

* What is the role of GPER and/or Gq-mERs in reproduction given that 

ERαKO animals are reproductively incompetent?

* Does membrane initiated steroid signaling regulate sexual differentiation and 

development?

* How do membrane ER-initiated signaling pathways and nuclear ER signaling 

interact to regulate cellular activity within a given cell?

* How are dose and duration of estradiol exposure “measured” in the brain?

* In females, estrogen and progestin signaling are dynamically related and 

regulated; how does each modulate the other during various reproductive 

states?

* How do membrane-initiated estrogen, and membrane-initiated progesterone 

signaling interact to modify neurotransmitter actions?

* What is the physiological role of the ERα splice variant, ERαΔ4?
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Figure 1. Schema of classical nuclear receptor signaling from the plasma membrane
(A). Across the nervous system, ERα and ERβ have been found to functionally couple to 

group I and II mGluRs. Surface trafficking requires palmitoylation of the estrogen receptor. 

Activation of mGluR signaling by the ER also requires interaction with palmitoylated 

caveolin proteins. (B) Caveolins determine the association of ERs with mGluRs, which 

allow estradiol to be either excitatory, by interacting with mGluR1a/5, or inhibitory through 

mGluR2/3. The ERαΔ4 splice variant is associated with mGluR2 through their interaction 

with Cav3 produces inhibition. Figure modified from [16]; data from [114].
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Figure 2. Proposed mechanism of β-arrestin1 (Arrb1) in internalization and signaling of 
membrane ERα (mERα)
Membrane ERα is part of a G-protein coupled receptor complex, which includes mGluR1a 

and caveolin (Fig 1). Following estradiol (E2) activation of mERα, Arrb1 is recruited to this 

receptor complex where it organizes Raf/MEK/ERK signaling and the endocytic machinery 

needed to internalize mERα into endosomes. In the absence of Arrb1, mERα internalization 

and ERK1/2 (MAPK) signaling are blocked. Eventually, the internalized mERα-mGluR1a 

loses Arrb1 and signaling ceases. The receptor complex is either recycled and trafficked to 

the cell surface, or sorted to lysosomes for degradation. Modified from [39] and [115].
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Figure 3. Estradiol induction of sexual receptivity (lordosis behavior) in the female rat
A widespread circuit that extends from the limbic system to the spinal cord underlies the 

CNS regulation of this global response to hormonal and sensory input. Within this lordosis 

regulating circuit, E2 acts rapidly through estradiol membrane signaling to release 

neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH) activating β-

endorphin (β-END) projection neurons that terminate in the medial preoptic nucleus (MPN). 

The MPN is an important integrative node receiving accessory olfactory and limbic input. β-

END activates MOR, producing a transient inhibition and a “non-receptive” female. This 

opioid inhibition is overcome by progesterone in the cycling female leading to disinhibition 

of medial preoptic nucleus (MPN) MOR neurons projecting to the ventromedial nucleus of 

the hypothalamus (VMH) and activation of hypothalamic outflow producing a sexually 

“receptive” female. The estradiol membrane signaling requires ERα transactivation of 

mGluR1a and subsequent phosphorylation of the protein kinase C, PKCθ. Both the transient 

inhibition and activation of VMH are necessary for the full expression of lordosis behavior 

in the rodent. Modified from [115].
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Figure 4. Model of early and late actions of estradiol (E2) regulating arcuate (ARH) to medial 
preoptic nucleus (MPN) lordosis circuit
E2 rapidly initiates signaling through membrane associated ERα that complexes with and 

signals through metabotropic glutamate receptor 1a (mGluR1a). This activates a PKC 

pathway that stimulates the release of neuropeptide Y (NPY), which binds to the NPY-Y1 

receptor (Y1R) on β-END neurons that project to the medial preoptic nucleus (MPN). NPY 

increases β-END transmission to inhibit lordosis through MOR activation. Simultaneously, 

E2 acts on membrane associated ERα and STX responsive Gq-mER signaling through 

PLC/PKC/PKA and PI3K/nNOS/NO pathways to decouple the opioid receptor-like 

receptor-1 (ORL-1). This reduces inhibitory K+ currents and increase β-END transmission 

to the MPN MOR to inhibiting lordosis. Later actions of E2 that rapidly facilitate lordosis 

activate of G protein-coupled ER (GPER) located in orphanin FQ (OFQ/N) neurons. OFQ/N 

binds to its receptor, ORL-1, on MPN projecting β-END neurons. Activation of ORL-1 

increases potassium (K+) currents through G protein-coupled inwardly-rectifying potassium 

(GIRK) channels that inhibit β-END transmission, allowing lordosis to proceed. Modified 

from [67, 89, 94].
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