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Abstract

Pseudogenes are fossil relatives of genes. Pseudogenes have long been thought of as “junk 

DNAs”, since they do not code proteins in normal tissues. Although most of the human 

pseudogenes do not have noticeable functions, ~20% of them exhibit transcriptional activity. There 

has been evidence showing that some pseudogenes adopted functions as lncRNAs and work as 

regulators of gene expression. Furthermore, pseudogenes can even be “reactivated” in some 

conditions, such as cancer initiation. Some pseudogenes are transcribed in specific cancer types, 

and some are even translated into proteins as observed in several cancer cell lines. All the above 

have shown that pseudogenes could have functional roles or potentials in the genome. Evaluating 

the relationships between pseudogenes and their gene counterparts could help us reveal the 

evolutionary path of pseudogenes and associate pseudogenes with functional potentials. It also 

provides an insight into the regulatory networks involving pseudogenes with transcriptional and 

even translational activities.

In this study, we develop a novel approach integrating graph analysis, sequence alignment and 

functional analysis to evaluate pseudogene-gene relationships, and apply it to human gene 

homologs and pseudogenes. We generated a comprehensive set of 445 pseudogene-gene (PGG) 
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families from the original 3,281 gene families (13.56%). Of these 438 (98.4% PGG, 13.3% total) 

were non-trivial (containing more than one pseudogene). Each PGG family contains multiple 

genes and pseudogenes with high sequence similarity. For each family, we generate a sequence 

alignment network and phylogenetic trees recapitulating the evolutionary paths. We find evidence 

supporting the evolution history of olfactory family (both genes and pseudogenes) in human, 

which also supports the validity of our analysis method. Next, we evaluate these networks in 

respect to the gene ontology from which we identify functions enriched in these pseudogene-gene 

families and infer functional impact of pseudogenes involved in the networks. This demonstrates 

the application of our PGG network database in the study of pseudogene function in disease 

context.
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1 Introduction

Pseudogenes have long been deemed “relics of evolution”, because they are homologous to 

protein-coding genes but lack protein products1. Recently this nonfunctional label has 

started to be revised. Although most of the human pseudogenes do not have noticeable 

functions, ~20% of them exhibit transcriptional activity2. Recent studies have shown that 

pseudogenes can modulate gene expression and thus may influence signaling pathways in 

cancer3. Acquired somatic mutations can create pseudogenes in cancer development4. 

Evidence of pseudogene transcription and translation have been observed in cancer cell 

lines5. Besides, transcriptomics analysis has shown that transcribed pseudogenes are 

differentially expressed in specific cancer subtypes and could potentially be used as both 

prognostic and diagnostic biomarkers6. Another area of interest is the role of pseudogene 

transcripts in regulating gene expression. Some pseudogenes generate RNA products that 

can competitively bind to microRNAs thus regulating the expression of their homologous 

gene counterparts (i.e. ceRNAs)7–9. They can also be oncomodulatory, such as pseudogene 

PTENP1 regulating the PTEN tumor suppressor gene. PTENP1 locus lost in the genome 

could lead to tumorigenesis10,11. Pseudogenes might also represent a genetic diversity 

reservoir12 and play a role in new gene generation3. Because of all this, understanding the 

relationships of pseudogenes and gene counterparts on a systems biology level is important 

in not only understanding evolution but also understanding diseases like cancer. However, 

the role(s) of pseudogenes are still not fully understood.

Efforts have been made to explore the roles of pseudogenes. A prominent example was 

Pseudogene.org, which compiled information on pseudogenes of various species. This 

database annotated pseudogenes and compared pseudogenes with their parent genes13. We 

attempt to complement this knowledge by focusing only on human and by comparing all 

pseudogenes to all gene families.

Processed pseudogenes and duplicated pseudogenes are two major types of pseudogenes. 

They are derived from functional genes through (retro-)duplication followed by 
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accumulation of loss-of-function mutations5,14. Conventionally, a pseudogene is often paired 

with a homologous gene counterpart referred to as a “parent gene”14,15. This understanding 

of pseudogenes, though informative, does not encompass the entirety of genome-wide 

relationships, where multiple genes and pseudogenes can be homologous. Thus we instead 

compare pseudogenes with homologous gene families, such that pseudogenes are not only 

considered as a descendent of a single gene, but rather a relative of a group of homologous 

genes and pseudogenes. In this study, we develop a novel approach to generate the 

comprehensive set of pseudogene-gene families in human, and further characterize the 

networks and study the potential functions of pseudogenes and their associated networks in 

more detail using sequence alignment, network analysis, and functional annotation.

2 Materials and Methods

The simplified workflow is shown in Figure 1.

2.1 Generating gene homolog families

We constructed the gene homolog families in which all the members are homologous genes. 

Specifically, all gene homolog pairs in human genome GRCh38 were downloaded from 

Ensembl BioMart. These gene homolog pairs were combined to generate a network of all 

homology relationships in the genome. In this network, each node represents a gene, and 

each edge indicates the existence of homology between a pair of genes. This basic structure 

of genes/pseudogenes as nodes and homology as edges was used throughout this project. 

Because not all genes share a common homolog, the full GRCh38 gene homology network 

is not a connected graph. Thus we performed an initial separation of the gene homolog 

network into connected subgraphs, denoted as gene families throughout this paper (Figure 

1). In total we generated 3,281 gene families.

The human genome GRCh38 annotation was downloaded from Human GENCODE release 

2416. Full length gene sequences were extracted using the gff2sequence tool17.

2.2 Mapping pseudogenes to gene homolog families

We extracted pseudogene sequences annotated in Human GENCODE release 24 using 

cufflinks gffread18. In total we obtained 14,548 pseudogenes. We assigned these 

pseudogenes to homologous gene families, by aligning every pseudogene sequence to a 

consensus sequence from each gene family. Consensus sequences were used to reduce the 

computational complexity and reduce bias associated to gene family size. The consensus 

sequence representing a gene family was selected from the set of all sequences within a gene 

family, by performing a multiple sequence alignment and selecting the gene with the highest 

sum of all pairwise alignment scores. To limit errors associated with long runtime, only 

sequences with less than 10,000 bp were retained for this alignment step. After a consensus 

gene was selected from each gene family, all pseudogenes were aligned to that consensus 

sequence using pairwise ClustalW19, which was installed on the high-performance 

computing cluster and has the ability to perform pairwise and multi-sequence alignment. 

The DataCutter framework20 was used to parallelize the alignments producing a 14,548 by 

3,281 matrix of alignment scores between each pseudogene and every consensus sequence 
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for the gene families. Each pseudogene was then subsequently assigned to the gene family 

with the highest alignment score. Not all gene families have pseudogenes assigned to them. 

Those gene families with assigned pseudogenes, i.e. pseudogene-gene (PGG) families, were 

examined further (Figure 1).

2.3 Network analysis of individual PGG families

The resulting PGG families were used to generate PGG networks based on the pairwise local 

alignment scores between all members of the family. Local alignment was used so that 

shorter sequences could still have high alignment scores when they match to a short segment 

of a larger sequence. The pairwise alignments were performed with a GPU parallelized local 

alignment tool CUDA-align21 in order to boost alignment performance for this large-scale 

computing. Using the resultant within-PGG family alignment matrix, a minimum spanning 

tree (MST) was generated for each PGG family. The alignment matrix for each PGG family 

consists of a complete network where all pseudogenes/genes within that family were nodes 

and the pairwise alignment scores edges. The MST was calculated from the alignment 

matrix producing a network in which bottlenecks had high sequence similarity to other 

nodes.

One facet of interest was identifying bottleneck nodes (gene or pseudogene) in the PGG 

family networks. As a measure of importance, betweenness centrality (BC) was calculated 

for all genes and pseudogenes contained within each network. A node with high non-zero 

BC is more likely to be a bottleneck in the network. (The smaller the proportion of zero-BC 

nodes is in a network, the more bottlenecks there are in the network.) Thus we record the 

proportion of zero-BC nodes in pseudogenes and genes respectively, and compare the 

number of bottlenecks in pseudogenes and genes. The distribution of BC for pseudogenes 

and genes were also plotted to evaluate the importance of pseudogene and gene bottlenecks.

2.4 Functional annotation of PGG families

Next we evaluated the functional enrichment of genes contained within pseudogene-gene 

(PGG) families (i.e. gene families that were assigned at least one pseudogene). A list of all 

genes (excluding the assigned pseudogenes) contained within PGG families were extracted 

and submitted to the DAVID Functional Annotation Tool22,23. DAVID functional annotation 

clusters (at High stringency) were evaluated for overrepresented annotations.

2.5 Identifying phylogenetic relationships and conserved regions

For each PGG family multiple sequence alignment (MSA) was performed with MUSCLE 

aligner24. Phylogenetic trees were created based on these alignments using FastTree25. The 

resulting MSAs and trees were used as input for the PhastCons26 program to identify 

conserved regions within each PGG family. We used the two-step approach outlined in their 

user manual in which the first step trains the Hidden Markov Model (HMM) transition 

model and the second identifies conserved regions (CRs). We then evaluated gene families 

(with no aligned pseudogenes) and PGG families (with at least one aligned pseudogene) for 

differences in their likelihood of containing conserved regions using a Fisher’s exact test. 

The test was conducted such that the two rows in the contingency table consisted of whether 

a gene family contained a pseudogene (row 1) or not (row 2). The columns consisted of 
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whether a conserved region was identified in a gene family by PhastCons (column 1) or not 

(column 2).

2.6 Identifying GO networks associated with PGG families

The PGG networks identified (in-house PGG family IDs: 1149,1152,1235) were 

individually used to generate GO term networks using the BiNGO tool27 in cytoscape28,29. 

GO term annotations and hierarchy are used to generate a network from the members of 

each PGG family. Within each PGG family we use these GO networks to view the possible 

functional impact of the pseudogenes assigned to each PGG family. Each pseudogene that is 

contained within the PGG families could have an effect on the functions detected by the 

BiNGO tool. Specifically, functional impact (functional roles) of the pseudogenes of interest 

are interpretable from the proximity of pseudogenes to their gene counterparts in the PGG 

networks.

3 Results

3.1 Generating gene homolog families

In total, 3,281 exclusive subgraphs were generated by separating all connected subgraphs in 

the full GRCh38 gene homolog graph. These subgraphs represent 3,281 gene families that 

varied greatly in size with most having relatively few genes. The larger gene families had 

important structural features that included hub and bottleneck genes that connected to the 

entire family through homology. These gene family networks could take different forms 

containing a single or multiple hubs and bottlenecks (Figure 2A–C). These network 

structures indicate that genes in the same family can vary greatly in sequence, and help us 

understand how new genes arose and evolved through sequence changes.

3.2 Mapping pseudogenes to gene homolog families

Through mapping pseudogenes to gene homolog families, we generated the comprehensive 

set of pseudogene-gene (PGG) families. Pseudogenes are relatives of genes and other 

pseudogenes in the same PGG family. The alignment scores between the pseudogenes and 

the consensus genes representing gene homolog families varied greatly between different 

pairs (i.e. alignments between pseudogenes and consensus genes) (Figure 3). Some had high 

conservation of sequences thus sequences are closely aligned with high scores. While some 

others had negative alignment scores indicating no relationship in sequence – the alignment 

incurred many more penalties than matches (these pairs would not be combined into PGG 

families). Pseudogenes were assigned to gene families with the highest alignment score for 

that pseudogene across all gene families. Thus each pseudogene was assigned to one unique 

gene family, and each gene family could accept multiple pseudogenes.

3.3 Network analysis of individual PGG families

PGG networks were transformed into MSTs and graphed to view the relationship structure 

between the genes and pseudogenes in PGG families. The MSTs also highlight the 

bottlenecks. Three PGG families were selected as examples due to the large number of 

possible PGG families all of which could not be displayed. We also provide data matrices to 

generate all PGG family MSTs in Supplementary Materials which can be downloaded from 
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GitHub (https://github.com/yanzhanglab/PGG_DB). Figure 4 shows the MSTs for three 

PGG families of interest. PGG family 1152 is of interest because it contains multiple genes 

that are related to chemokine receptors, olfactory receptors, and taste receptors. In this 

family a large portion of the nodes are pseudogenes, which is consistent with the knowledge 

of olfactory family reduction in primates with the greatest reduction of olfactory genes in 

hominoids (e.g. mice have more olfactory genes than primates of which humans have the 

least)30,31. There are even some examples of chemokine receptors becoming pseudogenes in 

Humans from other primates. An example is CCR5 which has a known pseudogene 

polymorphism in human that is known for reduced risk of HIV infection in exposed 

individuals32,33. PGG family 1149 is of interest because it contains the proto-oncogene 

RELA which has been implicated in pseudogene regulatory activity34,35. Another family of 

interest is 1235 that contains SOX2, which has been identified as a member of ceRNA 

networks36,37.

The betweenness centrality (BC) of the PGG networks (Figure 5) showed that there were a 

higher proportion of genes with non-zero BC (17.29%) than pseudogenes (13.82%) with an 

odds ratio of 1.304 95% CI (1.056, 1.610) and p-value of 0.017. Higher non-zero BC 

implicates higher importance of the node in the network. After removing nodes with zero 

BC, it was found that the BC across all genes and pseudogenes was skewed higher in genes 

(Kolmogorov-Smirnov p-value = 2.856×10−8). These observations implicates that more 

genes than pseudogenes work as bottlenecks in the networks. Both gene and pseudogene BC 

followed exponential distributions with λ= 0.081 95% CI (0.075, 0.088) and λ=0.217 95% 

CI (0.199,0.235) respectively (Figure 5A–B).

3.4 Functional annotation of PGG families

Functional annotation of all genes contained in PGG families showed that there was 

enrichment in olfactory receptor and sensory receptor terms (Table 1). This supports the 

validity of our method since the most enriched function (Annotation Cluster 1) recapitulated 

the high number of known pseudogenes related to olfactory and other senses in human 

(Figure 5). Cluster 3 is also of interest due to the increasing evidence of the regulatory role 

of pseudogenes. DNA binding could be indicative of some forms of RNA regulation, which 

is further supported by the over-represented GO terms (GO:0045893:positive regulation of 

transcription, DNA-dependent and GO:0045944~positive regulation of transcription from 

RNA polymerase II promoter). Also, there is a growing body of evidence that proteins do 

not exclusively bind to DNA or RNA38 and a presence of over-represented ribonucleotide 

binding GO terms in our DAVID functional enrichment which could be indicative of ceRNA 

networks in which pseudogenes compete with genes for regulatory binding elements.

We extracted olfactory genes from the first functional annotation cluster using the full 

DAVID clustering table and labeled PGG networks as Olfactory if they contained at least 

one of the extracted olfactory genes (27 Olfactory and 418 Not Olfactory). Based on this 

stratification we found that olfactory related PGG families were more likely to contain both 

gene and pseudogene bottlenecks – olfactory related PGG families were more likely to have 

both genes and pseudogenes with non-zero BC (OR = 3.641 95% CI: (1.650,8.035), p-value 

= 0.002).
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3.5 Identifying phylogenetic relationships and conserved regions

The phylogenetic tree (PGG family 1149) shows that one lineage consists purely of genes 

while the other consists of both genes and pseudogenes (Figure 6A). Not surprisingly these 

same genes are the bottlenecks in the MST graph (Figure 4), which could be indicative of 

the pseudogenes being generated from the bottleneck genes. Another result of note was the 

lack of conserved regions (CRs) found in the majority of PGG families. PGG family 1149 

had an identified CR but PGG families 1152 and 1235 did not have identified CRs. We 

tested whether this was related to the containment of pseudogenes within PGG families and 

found that PGG families that have assigned pseudogenes are more likely to contain CRs 

with an odds ratio of 13.79 95% CI (10.70, 17.78) and p-value 3.169×10−95.

3.6 Functional analysis of pseudogenes within PGG networks

Using BiNGO, we can evaluate the GO terms in each of the PGG networks. From PGG 

families 1149, 1152, 1235 we produced the following GO term networks (Figure 7), which 

can be used to evaluate the pseudogene functions included in the networks. PGG family 

1149 had significant terms related to neurogeneration (Figure 7A). Pseudogene AL356458.1 

is contained in PGG family 1149 and has copy number variations in oral carcinogenesis39. 

Pseudogene TNPO1P2 is also in PGG family 1149 and has implications in 

neurodegeneration in the frontotemporal lobe40. PGG family 1152 included multiple 

significant sensory related GO terms (Figure 7B). The pseudogene MARK2P16 is present in 

PGG family 1152 and its related gene MARK2 is needed for the migration of postnatal 

neuroblasts in the olfactory bulb41. PGG family 1235 included both NP1P13 and 

PCDHGB8P pseudogenes. PCDHGB8P is a protocadherin pseudogene with high sequence 

homology to other protocaderins such as PCDHGB3 and PCDHGB4 that have implications 

in multiple forms of cancer. The PGG family 1235 GO network includes significant 

proliferation terms (Figure 7C). PCDHGB3 and PCDHGB4 have implications in various 

cancer including lymphoma42 and PCDHBG4 has implications in metastatic breast cancer43. 

Analysis of Wilms’ tumors has shown frequent hypermethelated down-regulation of 

protocaderins (including PCDHGB4) in the tumor samples. NPM1P13 is implicated in a 

neurodevelopmental disorder, Saethre-Chotzen syndrome44. Significant GO terms in PGG 

family 1235 related to neurological development are also present (Figure 7C). PGG families 

1149, 1152, and 1235 all have interesting functional relationships. These functional 

relationships (Figure 7) share documented functional similarities to either pseudogene 

members of the PGG family or the pseudogene members gene counterparts.

4 Discussion

4.1 Insights

Aside from the evolutionary relationships of pseudogenes to the genome we also find proto-

oncogenes in PGG families containing pseudogenes. In PGG family 1149 we observed a 

network inclusive of a possible proto-oncogene RELA and small regulatory RNAs. RELA 

over-expression in mice was shown to delay the appearance of tumors and reduce 

proliferation in vitro45. The mapping of large numbers of pseudogenes to the RELA 

homolog family supports a possible regulatory relationship. Within these pseudogenes we 

find TNPO1P2 and AL356458.1 with some evidence in the literature of possible 
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relationships to the BiNGO functional networks generated from the PGG families. Aside 

from RELA, another PGG family 1235 contained SOX2, a gene that has been implicated in 

ceRNA networks7. Within this network we identify PCDHGB8P and NPM1P13 that have 

literature supporting potential functions related to those identified in the BiNGO functional 

network. These findings support the hypothesis that pseudogenes may play a regulatory role 

in the genome, and the networks of interest are worth further investigation. Within the 

olfactory related PGG network 1152 we find olfactory related function in both the BiNGO 

functional network and literature supporting olfactory function for MARK2 the gene 

precursor to MARK2P16 pseudogene.

Genes and pseudogenes with a high non-zero BC are important to the structure of the PGG 

network. Directly it means these genes/pseudogenes constitute bridges between more 

dissimilar sequences within a PGG network. Biologically this could imply that that a gene/

pseudogene likely contains key mutation signatures that triggers the change of function (e.g. 

silencing an ancient gene, or re-activating a pseudogene) or contributes to the gene/

pseudogene family expansion (i.e. generating large number of descendants in the PGG 

network). The distribution of non-zero BC for genes and pseudogenes were also altered 

where genes tend to have higher BC values. Evolutionarily this could imply that genes are 

more likely to be bottlenecks in PGG families and are more important bottlenecks than 

pseudogenes.

We also find that gene families that were assigned pseudogenes were more likely to contain 

CRs. This could be examined further to evaluate what function this conservation could have. 

This difference in enrichment level of CRs may be related to family size, or biased by the 

sequence similarity threshold defined by computational tools used for identifying 

pseudogenes.

Of the gene families with many aligned pseudogenes, there was enriched annotation of 

olfactory receptor genes, as shown in DAVID results. This is in congruence with previous 

findings that the olfactory receptor family in humans has large numbers of pseudogenes46,47.

Another important note is that we generate PGG families through alignment of pseudogenes 

to gene families. Especially in the case of processed pseudogenes this unbiased approach 

should be taken into account when examining the potential of competing endogenous RNA. 

Since the sequences by definition must closely related to the assigned gene family, many of 

these pseudogenes could be candidates for ceRNA networks and evaluated further.

In the following work we will integrate all of the aspects of this project into an online query 

tool, which will return PGG families and functional prediction for specific novel pseudogene 

sequences of interest. The functional enrichment included in existing GO annotation tools 

(e.g. BiNGO) do not take into account the proximity of pseudogenes and genes in the same 

network. In the future we will try to overlay these weights in our GO inference method to 

improve the functional predictions given by our tool. Aside from the user interface and 

refined functional prediction, the tool itself due to its network structure could easily be 

integrated with other experimental methodologies (e.g. ChiP-Seq and Competition-ChiP) 

paired by gene/pseudogene IDs. Our goal is to use our current database as a baseline 
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functional prediction for pseudogenes that can be easily augmented by the improved 

methodologies both currently available and developed in the future. This makes our database 

immensely scalable as new and improved features are added to aid in functional prediction 

of pseudogenes.

4.2 Limitations

One limitation affecting this approach includes the ambiguous definition of pseudogenes in 

available annotations. There are DNA segments annotated as genes but do not code proteins. 

There are also gene-like DNAs generating regulatory RNAs and are not annotated as 

pseudogenes. This ambiguity in annotation could introduce noise to the alignment steps.

In our current approach, we treat different pseudogene biotypes (processed, duplicated, or 

unitary pseudogenes) uniformly. The full gene sequences were used to make this approach 

more computationally tractable. Because there were intronic regions in gene homologs, 

whereas processed pseudogenes do not contain introns, the alignments of gene families to 

processed pseudogenes are not as accurate as aligning to duplicated or unitary pseudogenes. 

However, the effects of using full length gene sequences is mitigated by the use of local 

alignment. In our future studies, we will fine-tune our approach to treat different pseudogene 

biotypes respectively.

A large portion of the genes within the PGG families did not have associated functional 

annotation within DAVID, which implies annotation bias where not all genes are equally 

well-studied. Because the number of genes in some networks was small, some families had 

few genes to study functional enrichment from.

5 Conclusion

In this study, we investigate the functional relationships between pseudogene and gene 

homolog families, by integrating graph analysis, sequence alignment and functional 

analysis, and generate the comprehensive set of pseudogene-gene families in human. By 

studying the network structure of these pseudogene-gene networks, we find that there is an 

over-representation of olfaction related PGG families, differential BC between genes and 

pseudogenes, and structural patterns that can be used to differentiate PGG networks. These 

patterns in network structure also can be used to differentiate different classes of networks. 

Olfactory PGG families were associated with a network structure in which both genes and 

pseudogenes had bottleneck qualities (measurable BC). Similarly we view these networks as 

important tools in predicting function for pseudogenes, similar to previous methods that 

infer gene ontologies for under-annotated genes48. We use our PGG families to associate GO 

terms to under-documented pseudogenes and describe the utility of this database to query 

new pseudogene sequences to infer functional potential. In summary, here we have proposed 

a novel, comprehensive, and scalable evaluation of pseudogenes at the gene homolog level 

and showed that network structure can be related to functionality.

We also propose in future work a refined pipeline that i) treat different pseudogene biotypes 

respectively, ii) preprocesses the gene annotation prior to analysis to reduce ambiguity, iii) 

can identify possible ceRNA networks algorithmically, iv) provide a search utility to query 
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novel pseudogene sequences against our network database to predict pseudogene function 

and v) use network weights to more accurately associate known and novel pseudogene 

sequences to GO terms within the assigned PGG family. Aside from these immediate 

improvements that are under development currently we also plan to make this database 

scalable in the different types of data that can be integrated (e.g. ChiP-Seq and Competition-

ChiP) via pairing nodes via gene names or interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simplified workflow from raw annotation through processing and analysis of the resulting 

pseudogene-gene (PGG) families.
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Figure 2. 
Subgraphs separated from gene homolog network. A: Gene family 6, B: Gene family 18, C: 

Gene family 32, D: Histogram of gene family sizes. Outliers were removed past 100 nodes 

so that the distribution of the common (smaller) sizes could be seen.
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Figure 3. 
A) The distribution of pairwise pseudogene to consensus gene alignment scores for all 

pseudogenes and consensus genes (color also signifies Log2 alignment scores, lighter is 

higher and darker is lower). B) Distribution of mean pseudogene alignment score. C) 

Distribution of mean gene family alignment score.
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Figure 4. 
Minimum spanning trees of PGG families 1149, 1152 and 1235 with pseudogenes (red 

nodes) and genes (blue nodes). Genes of interest (with GO annotation or bottleneck node) 

are highlighted in green and pseudogenes of interest (with possible functional relationship to 

gene family) are highlighted in yellow.
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Figure 5. 
BC of PGG families. A) BC distributions and associated exponential empirical PDF for 

pseudogenes (red) and genes (blue). B) Empirical CDF for pseudogenes (red) and genes 

(blue).
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Figure 6. 
Phylogenetic trees and CRs, A) phylogenetic tree for PGG family 1149, B) CR for PGG 

family 1149 identified by PhastCons. IDs starting with ENSG constitute genes and ENST 

constitute pseudogenes.
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Figure 7. 
GO term networks from example PGG families. Each node denotes a GO term. Yellow 

nodes designate GO terms that are significant at p-value= 0.05. A) is a partial GO term 

BiNGO network for PGG family 1149 highlighting cell differentiation and glial cell 

development. B) is the full GO term BiNGO network from for PGG family 1152. C) is a 

partial BiNGO GO term network for PGG family 1235 highlighting cell proliferation GO 

terms and neuron development.
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Table 1

DAVID functional annotation of the genes contained within PGG families (High stringency).

Category Term P-value Fold Enrichment FDR

Annotation Cluster 1 Enrichment Score: 12.91

SP_PIR_KEYWORDS olfaction 2.89E-16 7.33 4.33E-13

GOTERM_BP_FAT GO:0007608~sensory perception of smell 4.38E-15 6.45 6.98E-12

INTERPRO IPR000725:Olfactory receptor 5.28E-15 6.52 7.15E-12

Annotation Cluster 2 Enrichment Score: 12.36

SP_PIR_KEYWORDS g-protein coupled receptor 1.69E-19 5.45 2.20E-16

INTERPRO IPR017452:GPCR, rhodopsin-like superfamily 1.15E-18 5.44 1.54E-15

INTERPRO IPR000276:7TM GPCR, rhodopsin-like 1.20E-18 5.43 1.61E-15

Annotation Cluster 3 Enrichment Score: 2.64

SMART SM00389:HOX 8.08E-04 4.46 0.83

SP_PIR_KEYWORDS Homeobox 2.42E-03 3.85 3.11

UP_SEQ_FEATURE DNA-binding region:Homeobox 2.56E-03 4.33 3.61
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