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Abstract

Importance—Cytotoxic CD8+ T lymphocytes (TILs) participate in immune control of ovarian 

cancer; however, little is known about prognostic patterns of CD8+ TILs by histotype and in 

relation to other clinical factors.
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Objective—To define the prognostic role of CD8+ TILs in epithelial ovarian cancer.

Design—Prospective survival cohort.

Setting—Multi-center observational.

Participants—Over 5,500 patients, including 3,196 high-grade serous ovarian carcinomas 

(HGSOCs), followed prospectively for over 24,650 person-years.

Exposure(s)—Following immunohistochemistry, CD8+ TILs were identified within the 

epithelial components of tumor islets. Patients were grouped based on the estimated number of 

CD8+ TILs per high-powered field: negative (none), low (1–2), moderate (3–19), and high (≥20). 

CD8+ TILs in a subset of patients were also assessed in a quantitative, uncategorized manner, and 

the functional form of associations with survival was assessed using penalized B-splines.

Main Outcome Measure(s)—Overall survival time.

Results—Among the five major invasive histotypes, HGSOCs showed the most infiltration. 

CD8+ TILs in HGSOCs were significantly associated with longer overall survival; median survival 

was 2.8 years for patients with no CD8+ TILs and 3.0 years, 3.8 years, and 5.1 years for patients 

with low, moderate, or high levels of CD8+ TILs, respectively (p-trend=4.2 × 10−16). A survival 

benefit was also observed among women with endometrioid and mucinous carcinomas, but not the 

other histotypes. Among HGSOCs, CD8+ TILs were favorable regardless of extent of residual 

disease following cytoreduction, known standard treatment, and germline BRCA1 pathogenic 

mutation, but were not prognostic for BRCA2 mutation carriers. Evaluation of uncategorized 

CD8+ TIL counts showed a near linear functional form.

Conclusions and Relevance—This study demonstrates the histotype-specific nature of 

immune infiltration and provides definitive evidence for a dose-response relationship between 

CD8+ TILs and HGSOC survival. That the extent of infiltration is prognostic, not merely its 

presence or absence, suggests that understanding factors which drive infiltration will be key to 

unravelling outcome heterogeneity in this cancer.

INTRODUCTION

Epithelial ovarian cancer (OC) is the most lethal gynecologic cancer and is responsible for 

approximately 14,000 deaths annually in the United States.1 While initial remission is often 

achieved, most patients relapse and die from their disease. Immune checkpoint inhibitors 

have demonstrated clinical activity in a small subset of OC patients.2,3 Understanding the 

endogenous immune response to OC—including the frequency of CD8+ tumor infiltrating 

lymphocytes (TILs) and their impact on prognosis—has biological and clinical relevance.

Earlier studies demonstrated that OC prognosis is associated with TILs at the time of 

primary cytoreductive surgery.4–8 CD8+ T cells are stimulated by peptides from degraded 

proteins bound to human leukocyte antigen class I molecules.9 This can trigger CD8+ T cells 

to kill tumor cells and secrete proinflammatory cytokines. While the presence of CD8+ TILs 

within the epithelial component of OCs has been associated with favorable 

prognosis,2,6–8,10–12 most prior analyses used simple dichotomous classification of CD8+ 

TILs and neglected to specify the inclusion/exclusion of stromal tissue. Prior analyses have 
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been inadequately powered to evaluate histotype-specific survival associations. This is 

critical, as the invasive histotypes (high-grade serous, HGSOC, the most common and most 

lethal;13 endometrioid, ENOC;14 clear cell, CCOC;14,15 mucinous, MOC;16 and low-grade 

serous, LGSOC17–20) represent distinct biological processes, with distinct proposed cells of 

origin, clinical courses, and responses to chemotherapy.21–23

We conducted a large-scale assessment of intra-epithelial CD8+ TILs in over 5,000 

prospectively followed OC patients. Our goals were to clarify the associations and evaluate 

the functional form of CD8+ TILs with overall survival in HGSOCs, and to explore 

association of CD8+ TIL levels with overall survival in other histotypes.

METHODS

Study Design and Participants

We assembled a prospective cohort of 7,377 women with a primary diagnosis of epithelial 

ovarian, peritoneal, or fallopian tube cancer. Patients were followed from enrollment in an 

IRB-approved protocol until death from any cause (eTable 1).24–26 Tumors were obtained at 

initial debulking surgery, formalin-fixed, paraffin embedded, and arrayed on tissue 

microarrays (TMAs). Clinical covariates and vital status underwent standardized quality 

control measures. We excluded 288 patients due to loss to follow-up, 11 with missing age at 

diagnosis, 65 with non-epithelial disease, and 1,436 due to inadequate quality or amount of 

arrayed tumor tissue, resulting in a final sample size of 5,577, including 5,078 women with 

tumors of the five major invasive histotypes (HGSOC, ENOC, CCOC, MOC, and LGSOC) 

(eTable 2). Median time from diagnosis to enrollment was zero days (interquartile range, 0 – 

63); however, 38% of patients were enrolled > one month from diagnosis. As some HGSOC 

may be mistaken as ENOC,27 we utilized WT1 and TP53 immunohistochemical staining 

from 17 studies to re-classify 82 ENOC cases as HGSOC; overall survival of these 

reclassified cases was consistent with HGSOC (eFigure 1).

Immunohistochemistry and Scoring

For most patients (84%), staining was performed at the Mayo Clinic using the Leica Bond 

RX stainer (Leica, Buffalo, IL); however, for patients enrolled at the SEA and MAY1 study 

sites (8% and 9%, respectively), previously stained slides were used. Immunohistochemical 

methods are provided in Online-Only Text. Scoring was conducted at the University of 

Calgary; each core was screened for a hotspot of CD8+ TILs using a Nikon eclipse 80i 

microscope at 200 × magnification. Within each hotspot, one high power field at 400 × 

magnification with a 0.55 mm field diameter was evaluated, ensuring comparable area 

despite different core sizes across studies. Only CD8+ TILs within the epithelial component 

of the tumor (tumor islets) were considered, disregarding CD8+ cells in the stroma or 

abutting tumor cells (as seen, for example, in eFigure 2 classified as negative). A four-point 

ordinal score was defined a priori based on CD8+ TIL counts per high-powered field: 

negative (none), low (1–2 TILs), moderate (3–19 TILs), and high (≥20 TILs), similar to the 

validated method of Zhang and colleagues,4 except that we decreased the low to moderate 

cut-off from 6 TILs to 3 TILs. We did this to increase ease and consistency of scoring, as the 

≥3 TIL cut-off is routinely used in colorectal carcinoma reporting to assess Lynch 
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syndrome.28 Multiple cores from 156 cases were evaluated blindly by two gynecologic 

pathologists (WC, MK), and a weighted kappa statistic was estimated. Differences in 

interpretation were discussed at a multi-headed microscope, and WC scored 24% and MK 

76% of the remaining cohort. TMAs included an average of 2.4 cores per patient; for cases 

with more than one scored core, the maximum score was used, consistent with the scoring of 

hotspot regions.

Analysis

Chi-square tests compared CD8+ TIL categories across clinical factors. Kaplan-Meier curves 

visually compared survival across categories. Cox proportional hazards regression estimated 

hazard ratios (HRs) and 95% confidence intervals (CIs). Primary analyses were based on 

tests for trend, modelling the ordered CD8+ TIL categories as a one degree-of-freedom 

linear term. Regression models included age at diagnosis (continuous), stage (I/II, III/IV, 

unknown), and study site as covariates; we also ran sensitivity analyses adjusting for extent 

of residual disease and post-surgical treatment. Separate analyses were conducted by 

histotype and among histopathological groupings (e.g., combining LGSOC with their 

suspected precursor, serous borderline tumors), and by relevant clinical factors. This report 

meets REMARK reporting recommendations for tumor marker prognostic studies;29 

additional statistical methods are provided in Online-Only Text.

CD8+ TIL Cutpoint Analysis

Because categorical CD8+ TIL cutpoints may artificially restrict variability in the data and 

can be somewhat arbitrary, MK rescored all cores from a subset of 2,175 patients (1,449 

with HGSOC), recording CD8+ TIL count as a numeric marker. Each core was given a value 

between 0 and 20+, using a threshold of 20 for counts that exceeded that number. As before, 

the maximum score was used for cases with more than one scored core. Among HGSOC 

cases, we compared survival distributions of those with rescored levels to those without 

using Cox proportional hazards regression. Among HGSOC cases with rescored CD8+ TIL 

levels, we ran five additional sets of Cox regression analyses. We first categorized the levels 

using our original thresholds (0, 1–2, 3–19 and 20+ CD8+ TILs) to confirm that our original 

results using all HGSOC cases did not differ from the subset who were rescored. Second, we 

categorized the levels using the thresholds of Zhang and colleagues4 to determine the 

robustness of our original results to these cutpoints. Third, we assessed the functional form 

of the association between CD8+ TIL levels and survival using penalized B-splines.30 

Fourth, we fit the numerically-valued CD8+ TIL levels as a one-degree-of-freedom linear 

term. Finally, we carried out a formal cutpoint analysis similar to that described by Budczies 

and colleagues.31 Briefly, this approach examines all possible contiguous dichotomizations 

of TIL levels (i.e., 0 vs. 1+, 0–1 vs. 2+, 0–2 vs. 3+, etc.) using Cox proportional hazards 

regression to identify the threshold which best discriminates survivors from non-survivors 

based on evidence of association.
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RESULTS

Distribution of CD8+ TILs by Histotype

Epithelial CD8+ TILs were assessed using a four-tiered scoring system (inter-observer 

agreement 81.8%; weighted kappa 0.846, 95% CI 0.804–0.888). We observed intratumoral 

heterogeneity in CD8+ TILs across cores per patient (intraclass correlation coefficient = 

0.56, 95% CI 0.54–0.57). CD8+ TILs varied across the major invasive OC histotypes 

(HGSOC, ENOC, CCOC, MOC, and LGSOC, chi-square p=2.8 × 10−103; eFigure 3). Most 

HGSOC cases (83%) had evidence of CD8+ TILs, with a lower proportion seen in LGSOC 

and ENOC cases (73%, 72% respectively) and CCOC and MOC cases (52%, 51%, 

respectively). Most borderline tumors showed evidence of CD8+ TILs (serous 84%, 

mucinous 70%; eTable 3).

Associations of CD8+ TILs with Overall Survival by Histotype

We observed a striking association for longer survival time with increasing levels of CD8+ 

TILs in HGSOC cases (p-trend adjusted for study, age, and stage = 4.2 × 10−16; Table; 

Figure). Median survival was 2.8 years for women negative for CD8+ TILs, and 3.0 years, 

3.8 years, and 5.1 years for low, moderate, or high levels. At the extremes, women with high 

levels of CD8+ TILs (≥20 per field) had a 43% reduced risk of death compared to women 

with no evidence of CD8+ TILs (HR 0.57, 95% CI 0.49–0.65; Table). Associations were 

similar after adjustment for residual disease (eTable 4).

Increasing levels of CD8+ TILs were also associated with longer survival time among 

women with ENOC (p-trend=0.0084; Table; Figure). This association was also apparent in 

separate analyses of grade 1 ENOC and grades 2 and 3 ENOC, although these were limited 

in sample size (eTable 5). While there was a statistically significant dose-response similar to 

HGSOC, it is noteworthy that ENOCs with moderate levels (3–19 per field) showed the 

greatest improvement in survival time compared to women with ENOC and no detectable 

CD8+ TILs (HR 0.50, 95% CI 0.34–0.74).

A similar association was observed for women with MOC (p=0.037; Table; Figure), 

although, as the histotype with the lowest overall levels of CD8+ TILs, only 13 women (4%) 

had high TIL levels. Kaplan-Meier plots indicate a dose-response relationship, at least for 

negative to moderate levels (Figure). In contrast, CCOCs and LGSOCs showed no apparent 

association between CD8+ TILs and survival time (Table, eFigure 4). Because LGSOC is the 

rarest of the invasive histotypes, the null association in this group should be interpreted with 

caution. As some prior studies combined LGSOC and HGSOC, we also analyzed invasive 

serous cases as a group, including those with missing grade. We found that the striking 

HGSOC results were attenuated (eTable 5), suggesting that the relevance of CD8+ TILs 

among serous cases may be limited to HGSOC and confirming that immunohistochemistry-

aided histotype classification is a critical first step to improving the classification of OC 

cases.27,32 No other patterns were observed in analyses of histopathological groups (eTable 

5).
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Among the five major invasive histotypes, time to disease progression was known for 52% 

of cases (N=2,681). Progression-free survival results were remarkably similar to overall 

survival results (eTable 6).

Associations of CD8+ TILs with Clinical Features in HGSOC

The extent of residual disease following primary cytoreductive surgery was available for 

2,173 HGSOC cases. Our results showed a greater proportion of tumors without 

macroscopic residual disease had high CD8+ TIL levels than those with macroscopic disease 

(26% v 20%; p=0.0064; eFigure 3). Increasing CD8+ TILs were associated with improved 

survival in a dose-response manner in both surgical outcome groups, indicating that immune 

response improves prognosis regardless of the remaining residual disease after surgery 

(eTable 7).

Our study included 133 BRCA1 and 66 BRCA2 mutation carriers and 844 tested non-

carriers. The extent of CD8+ TILs differed by mutation status (p=0.024), as 29% of BRCA1 
mutation carriers had high TIL counts, yet only 18% of non-carriers and 15% BRCA2 
mutation carriers did (eFigure 3). The survival benefit associated with CD8+ TILs was also 

found to differ by mutation status (p-interaction=0.0055). Increased CD8+ TILs were 

associated with favorable survival among cases without mutations (p=5.1 × 10−7) and among 

cases with a BRCA1 mutation (p=0.0025, eTable 7). Among BRCA2 mutation carriers, 

there was no evidence of association between CD8+ TILs and survival (p=0.62).

Treatment details were documented for 501 HGSOC cases who received standard first line 

chemotherapy, including 295 who received the standard dose (carboplatin AUC 5 or 6 and 

paclitaxel 135 mg/m2 or 175 mg/m²). Association with CD8+ TIL level and overall survival 

was also observed within this group (p trend=0.003, eTable 7).

Among HGSOC cases, CD8+ TIL level was associated with earlier stage (p=4.3 × 10−4) and 

younger age at diagnosis (p=1.6 × 10−4). In stratified analyses CD8+ TIL level was 

consistently prognostic in stage and age subgroups (eTable 5). We also observed that cases 

born more recently showed higher levels (n=2,734, p=0.001); we adjusted all analyses 

additionally for year of birth, and results were similar. CD8+ TIL level was not associated 

with year of diagnosis (p=0.71), self-reported racial group (p=0.74), or pre- or post-

treatment CA125 (p=0.42 and 0.89; respectively).

Analysis of CD8+ TIL Cutpoints in HGSOC

Of the 3,196 HGSOC cases, 1,449 (45%) were rescored using a numeric count. There were 

no differences in survival between women who were rescored and those who were not 

(p=0.12; kappas comparing original values to rescored values 0.91 (95% CI 0.89–0.92). 

eTable 8 displays associations of categorized CD8+ TIL levels and survival in women with 

rescored tumors. After adjustment for age and stage, strong dose-response associations were 

observed using both the original threshold values (0, 1–2, 3–19 and 20+ CD8+ TILs) and 

those used by Zhang and colleagues (0, 1–5, 6–19, 20+ CD8+ TILs) (p<10−5 for each). As 

before, associations were slightly attenuated but remained significant after adjustment for 

extent of residual disease and post-surgical treatment (p<10−4 for each).

Goode et al. Page 6

JAMA Oncol. Author manuscript; available in PMC 2017 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assessment of the functional form of the association between numeric CD8+ TIL levels and 

survival using penalized B-splines, after adjustment for age and stage, is shown in eFigure 5. 

We observed a strong negative association with survival, indicating that increasing CD8+ 

TIL levels are progressively protective across this spectrum of values. The results of fitting 

CD8+ TIL levels as a one-degree-of-freedom linear term are also shown in eFigure 5 and 

track very closely to those using penalized B-splines, indicating that the association between 

CD8+ TIL levels and survival in women with HGSOC is virtually log-linear in nature.

Results of a formal cutpoint analysis examining all possible sets of contiguous 

dichotomizations of TIL levels can be found in eTable 9. The best discrimination of 

survivors from non-survivors occurred when comparing those with 0–13 TILs to those with 

14 or more (HR 0.75, 95% CI 0.65–0.86, p=1.5 × 10−5). However, each of the 19 

dichotomizations yielded highly significant results (all p<=1.1 × 10−3), with HRs 

consistently ranging from 0.75 to 0.83, again indicating that greater TIL levels are protective 

across the entire spectrum of values examined.

DISCUSSION

Our study is by far the largest report on intra-epithelial CD8+ TILs in OC to date and shows 

a robust dose-dependent increase in survival for increasing TIL levels in women with 

HGSOC. Analyses on a subset of individuals using numeric TIL counts confirmed a 

progressively protective, nearly log-linear survival effect as CD8+ TILs counts increased 

from 0 to 20 or more per high-powered field, suggesting that the quantity of CD8+ TILs, not 

merely their presence, is informative and that the most immune-rich HGSOCs are the most 

likely to have improved clinical outcome. This effect was not modified or confounded by the 

extent of residual disease after cytoreductive surgery. As there are fewer than a handful of 

other validated prognostic biomarkers for HGSOC, e.g., BRCA1 and BRCA2 status33 and 

PR expression,26 these results may provide increased prognostic prediction.

This is the first CD8+ TIL study in histotypes other than HGSOC; we revealed a significant 

reduction in risk of death for patients diagnosed with ENOC and MOC. In ENOC, cases 

with moderate CD8+ TIL levels had the most favorable survival, with no additional benefit 

observed beyond this threshold. As prior reports suggest that ENOCs with high CD8+ TIL 

are more commonly mismatch repair deficient,34 we speculate that, similar to endometrial 

cancers,35,36 ENOC with high CD8+ TIL levels may be associated with an intermediate 

outcome due to the association with mismatch repair deficiency. No survival associations 

were seen in CCOC.

Other investigations have noted higher response rates to immune checkpoint blockade 

among patients with a higher burden of neoantigens,37,38 suggesting that increased 

neoantigens increases likelihood that T lymphocytes recognize tumor as foreign and mount 

an immune response. It has also been demonstrated that BRCA1-mutated HGSOC tumors 

have a higher average neoantigen number than non-mutated tumors.39 Here, HGSOC 

patients with germline BRCA1 mutations demonstrated higher CD8+ TILs than patients with 

BRCA2 mutations or those tested mutation negative. While neoantigen load may explain 
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higher CD8+ TILs in BRCA1-mutated tumors, and their association with better outcome, it 

does not explain the better outcome of BRCA2-mutated tumors.40,41

Given its robust prognostic ability, relative ease of testing, and low inter-observer variability 

(percent agreement=81.8%, weighted kappa=0.846), quantitation of CD8+ TILs should be 

considered for clinical evaluation as suggested for other cancers.42–44 Unfortunately, as 

expected, we found intratumoral heterogeneity in CD8+ TILs across cores per patient 

(intraclass correlation coefficient = 0.56, 95% CI 0.54–0.57). To account for this, we utilize 

the maximum score, which is akin to the hotspot assessment of proliferation in other 

cancers, and is more feasible for surgical specimens with many tumor-containing slides. We 

also propose that, similar to the breast cancer community, a practical and robust scoring 

system should be developed.43 Additional issues requiring large-scale study which were not 

evaluated here include: utility of image analysis; evaluation of stromal CD8+ TILs; 

consistency across multiple tumor sites per patient; impact of neoadjuvant 

chemotherapy;45–47 relationships between CD8+ TIL levels, HGSOC molecular 

subtypes,48–50 common genetic variation,51 and epidemiologic risk factors;52 and evaluation 

of other lymphocyte subsets, such as CD4+ TILs, CD20+ TILs (B cells), tertiary lymphoid 

structures, and plasma cells.10,12–14,53 Clinically, it will be important to test whether CD8+ 

TILs predict response to certain therapies including standard chemo- and immune therapy, 

as, for example, CD8+ TILs predict chemo-response in subtypes of breast cancer.54 It will 

also be critical to study whether the immune response of CD8+ TILs can be activated by 

checkpoint blockade.

In summary, these large-scale analyses show that CD8+ TILs vary by histotype with 

HGSOC tumors having the highest levels and a strong association with survival, regardless 

of extent of residual disease or first line chemotherapy treatment. Penalized B-splines 

revealed that this association was nearly log-linear in nature, indicating that progressively 

greater TIL counts yield progressively better prognoses for HGSOC tumors. We showed for 

the first time that CD8+ TILs in HGSOC cases with germline BRCA2 mutations may not 

associate with survival. Finally, we find that ENOC and MOC tumors show trends 

associating CD8+ TILs with survival time and that CCOC do not. A clinically applicable 

scoring system for CD8+ TILs should be developed in order to incorporate into clinical 

trials.
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KEY POINTS

Question

To what extent are CD8+ tumor infiltrating lymphocytes (TILs) prognostic in epithelial 

ovarian cancer?

Findings

Analysis of over 24,000 person-years of follow-up on over 5,500 cases shows improved 

survival with increasing CD8+ TIL counts in high-grade serous, endometrioid, and 

mucinous ovarian cancers (p-trends 4.2 × 10−16; 0.0084, and 0.037, respectively). Among 

high-grade serous ovarian cancers, this nearly log-linear relationship was present 

regardless of extent of residual disease following cytoreduction, receipt of standard 

treatment, and germline BRCA1 mutation.

Meaning

CD8+ TILs are a key prognostic factor in certain ovarian cancer histotypes and warrant 

additional study in the context of immunotherapy.
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Figure. Kaplan-Meier Overall Survival Plots by CD8+ Tumor-Infiltrating Lymphocyte (TIL) 
Levels for the High-Grade Serous, Endometrioid, and Mucinous Ovarian Cancer
Negative, no CD8+ TILs; low, 1–2 CD8+ TILs; moderate, 3–19 CD8+ TILs; high, 20 or 

more CD8+ TILs per high-powered field. The numbers just above the x-axis represent the 

number of women at risk in two year time intervals. Number at risk on date of diagnosis 

may be smaller than number at risk later due to left truncation of follow-up resulting from 

delayed study enrollment.
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