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Abstract

The microbiome’s involvement in health and disease, and the complexity of its composition and 

function, make it intriguing to consider human genetic factors that impact microbiome 

composition. Genes may influence health through their ability to promote a stable microbial 

community in the gut. Studies of heritability yield a consistent subset of microbes that are 

impacted by genes, but the use of genome-wide association studies (GWAS) to identify specific 

genetic variants associated with microbiota phenotypes has proven challenging. Processing 

microbiome datasets into traits to be modeled and reducing the burden of multiple testing are just 

some of the technical hurdles in microbiome GWAS. Studies to date are small by GWAS 

standards, making cross-study comparisons and validations particularly important in identifying 

authentic signals. Cross-study comparisons are hampered by differences in analytical approaches. 

Nevertheless, some consistent associations have emerged between populations, most notably 

between Bifidobacteria and the lactase non-persister genotype. These early successes open the way 

for the microbiome to be incorporated into studies that quantify interactions among genotype, 

environment, and the microbiome for predicting disease susceptibility.
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Introduction

Microbiota coat the body’s surfaces. In the gut, microbial cells reach densities of 1012 per 

mL and in aggregate form a mass of up to a kilogram, constituting what amounts to an 

additional organ whose genome vastly expands the host’s in size and metabolic function. 

The host’s profound dependence on the microbiome for both establishment and maintenance 

of a normal phenotype is illustrated most vividly by comparisons of animals raised with and 

without a microbiome. Germfree animals, which are born, raised, and maintained 

aseptically, are devoid of microbial cells and therefore lack the many cues expected and 

necessary for their postnatal development and subsequent normal functioning. The 

abnormalities of germfree animals range across organ systems, from the immune to the 

cardiovascular system, and include basic functions such as lipid cycling, energy balance, and 

behavior (57). Many of the unusual phenotypes exhibited by germfree animals reverse upon 
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colonization with a microbiome (27), yet others require microbial exposure at critical points 

in the animal’s development (1, 24, 52, 59). Given the clear importance of the microbiome 

for host function, a key goal is to understand the factors that determine colonization and 

abundance of commensal microbes. The host’s microbiome is acquired at birth and during 

life through contact with microbes in the environment, so unsurprisingly, environmental 

factors strongly influence its composition. The microbiome can contribute to fitness and 

illness (6, 22, 26, 71), therefore the host has a strong interest in shaping the microbiome in 

such a way to promote its own fitness.

As part of their partnership in the symbiosis, the microbiota perform functions beneficial to 

the host, from enhancing digestion to protection from invasion of pathogens. Natural 

selection acts on individual bacterial species to enhance their fitness, and to improve the 

function of the microbiota as a stable community. Selection pressure on the host itself can 

also result in selection of microbiota that perform functions beneficial to the host (39, 49). If 

members of the microbiota enhance host fitness (49), this could have the effect of ensuring 

the presence of host habitat for these microbiota over the longer term. Indeed, microbiota 

allow their hosts to exploit specific niches, for instance through detoxification of plant 

secondary compounds. As an example, goats can eat Leucaena when they harbor bacteria 

able to degrade 3,4-DHP (33). A mammal host may in turn exhibit behavioral or other traits 

to ensure the beneficial microbiota transfer to the next generation (49). Mechanisms for 

selecting, retaining and transferring key elements of the microbiome are likely to be 

genetically encoded by the host, and the discovery of these genetic factors will point to 

mechanisms underlying host-microbial symbioses.

One way to uncover potentially new host-microbe interactions is to search for genes with 

alleles that co-vary across a population with traits in the microbiome. It is likely that human 

alleles critical in maintaining essential microbial functions have gone to fixation. Indeed, the 

genetic underpinnings of human gut physiology and function that help maintain the 

microbial habitat may not present much variation that can be associated with differences in 

the microbiome across a population. However, microbiota and/or functions beneficial only in 

a specific context may show a signal of association with human genetic variation. For 

example, the strongest evidence of recent selection on the human genome is seen in 

geographically restricted areas that presented specific environmental challenges, such as 

high altitude, high pathogen load, and high toxicity, among others (54). It is likely that 

genetic evidence for selection on attributes of the microbiome may also be linked to specific 

challenges that humans have faced in recent evolution.

Indeed, one of the strongest signals of recent selection on humans consists of the genetic 

changes that enabled lactase persistence in adulthood and thereby the drinking of non-

human milk. Remarkably, the most consistent signal to emerge from GWAS of the 

microbiome is related – it consists of an association between host genotype, milk 

consumption, and Bifidobacteria. In this instance, Bifidobacteria are more highly abundant 

in the gut microbiome of hosts who ingest milk post-weaning and that lack the lactase-

persister genotype (see below for an expanded discussion of this association). Other 

examples of human genetic variation associating with variation in the microbiome are 

starting to emerge (Table 1 and Figure 1). Here, we review the recent findings from human-

Goodrich et al. Page 2

Annu Rev Genet. Author manuscript; available in PMC 2018 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microbiome heritability and GWAS studies and the challenges emerging from the marriage 

of microbiome and human genetics.

The microbiome as a complex trait in human genetics

The microbiome is a complex community of organisms and many attributes can be modeled 

in studies that examine the role of host genetics. Typically the microbiota are characterized 

either with 16S rRNA gene sequencing or through metagenome sequencing (20). These 

datasets allow the quantification of taxa or gene functions across samples and can also form 

the basis of various ecological metrics that characterize diversity in a sample or within a 

population. The microbiota in the human gut, for instance, consists of hundreds of 

operational taxonomic units (OTUs) per individual, with tens of thousands of OTUs 

represented across a population. These OTUs can be collapsed into higher taxonomic levels 

along their phylogeny (e.g., genus, family, order, etc.). In addition to considering specific 

taxa in the gut, host genetics may influence the total number and evenness of the taxa 

present (alpha-diversity). Meanwhile, genetic effects could become apparent when 

considering the extent of OTU sharing between individuals of varying relatedness (beta-

diversity). Beyond taking a census approach to determine which microbes are present, 

shotgun sequencing can be used to characterize the functional metagenomic landscape of the 

microbiome. Microbial genes can be grouped into functional categories or pathways, and the 

abundances or presence/absence of those groups could be targets of modulation through host 

genetics. Any and all of these attributes can be characterized and modeled as a quantitative 

trait, for which heritability can be estimated and quantitative trait loci (QTLs) identified. 

Each of these microbiome attributes should be considered because it is unclear a priori how 

the host genome might influence the microbiome.

Heritable taxa of the human gut microbiome are increasingly validated 

across studies

The identification of heritable taxa from comparisons of related individuals preceded GWAS 

for two reasons: (i) to motivate GWAS, ensuring there was a genetic component determining 

microbiome composition, and (ii) to reduce the number of traits ascertained in a given 

GWAS by constraining it to the heritable list. The first unbiased search for heritable taxa 

among the human gut microbiota was conducted by Goodrich and colleagues, who studied 

genotyped twins from the TwinsUK registry. Stool samples were obtained from over 1,000 

twin pairs (3,261 samples total) and the modeled data consisted of 16S rRNA gene 

sequences (18, 21). Genotyped twins allowed for both twin-based heritability analysis and 

GWA to identify host genes and metabolic pathways associated with these heritable taxa. 

Heritability analysis revealed that ~10% of the 945 taxa identified by 16S and shared by a 

minimum of 50% of the subjects had a heritability greater than 0.2 with 95% confidence 

intervals that did not overlap zero. Remarkably, of the 26 heritable taxa reported by 

Goodrich et al. (2014), 13 were nominally replicated in the Canadian Genetic Environmental 

Microbial (GEM) Project cohort (Figure 1; 270 related individuals from 123 families) (65). 

Six of the 26 could not be addressed by Turpin et al. for technical reasons, which implies 

that more than half of the heritable taxa that could be compared were heritable in a second 
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population. Given that the human gut microbiome is variable across subjects and highly 

influenced by environmental factors such as diet, this congruence between studies argues 

strongly that specific, identifiable taxa are responsive to host genotype across populations 

and warrant a mechanistic follow-up.

For both the Goodrich 2014 and the Turpin 2016 studies, the list of heritable taxa that pass 

significance testing is a subset of the nominally heritable list. The nominally heritable list is 

generally assumed to be more likely to contain false positives and is usually not discussed in 

the main findings of the reports. However, an expansion of the population size and re-

analysis of heritability in the UK twins showed that the list of nominally heritable taxa might 

be quite valuable. In the study of UK twins, the list of heritable taxa was generated twice, 

first with 416 twin pairs (21) and then again with an expanded set of 1,126 twin pairs (18). 

The tripling of the dataset revealed the following: (i) the list of taxa stayed constant, with 

minimal reshuffling of the heritability rankings, and (ii) the confidence intervals around the 

heritability estimates were reduced. This had the effect that taxa formerly excluded from the 

heritable list due to confidence intervals overlapping with zero were considered heritable 

through the expanded analysis. Furthermore, these observations underscore that the types of 

heritable taxa are not dependent on the specific set of individuals studied within the 

population. These results also demonstrate the expected increase in power to detect heritable 

microbes with larger sample sizes and the gain of confidence in the results from smaller 

sample sets. Small-scale analyses may therefore yield valuable insights into the heritability 

of taxa even when underpowered, and the nominally heritable taxa may be interesting to 

pursue further.

Most estimates of microbial abundance stem from 16S rRNA gene sequence data, which 

provides phylogenetic information but generally little functional information. Furthermore, 

many taxa are functionally redundant in the gut, and this is thought to contribute to the 

stability of the system (loss of a taxon does not lead to loss of function if the function is 

widely shared). So it is interesting that some taxa are indeed heritable, and this observation 

implies that (i) some attribute of the taxa is under selection, and (ii) that attribute is 

phylogenetically restricted.

Overall, heritability estimates of components of the gut microbiota are generally low 

compared to other heritable traits (53). Heritability estimates calculated for the UK twin 

fecal microbiome ranged from 0 to ~0.40 (18, 21). Heritability estimates have also been 

obtained using Korean twins and their families (Lim et al., range of 0–0.46), Canadian 

families consisting of mostly siblings (Turpin et al., range of 0-0.67), and the Hutterites 

(Davenport et al. seasons combined ‘chip-heritability’, range of 0-0.37). The low values of 

the heritability estimates may be linked to the fact that the data are derived from stool, which 

is a mix of mucosal and luminal contents. If a heritable microbe can be quantified in its 

original habitat (e.g., the mucosal surface), true heritability estimates may be higher. The 

low heritability should be considered not just a first pass but also a worst-case scenario, 

because more focused studies are bound to yield higher values.
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Christensenellaceae

Goodrich et al. reported the most highly heritable taxon to be the family Christensenellaceae 

(21). Subsequently, the heritability of Christensenellaceae has been validated in Canadians 

of European descent (0.64) and in Koreans (0.31; Figure 1) (40, 65). Christensenellaceae is a 

family within Firmicutes that is relatively small (i.e., less branch length compared to a 

family such as the Ruminococcaceae), which might explain why the whole family is 

heritable. The heritability estimate for the whole family is driven by taxa that constitute 

branches of the phylogeny lacking cultured representatives at this time. Christensenella 
minuta, the first laboratory isolate, which leant its name to the family (47), has lower, non-

significant heritability in the TwinsUK dataset (0.27) (21), but was however found to be 

heritable in the study of Turpin et al. (0.54) (65).

Goodrich et al. reported that the family Christensenellaceae constitutes the hub (i.e., most 

interconnected node) of a co-occurrence network consortium that includes the families 

Methanobacteriaceae, Dehalobacteriaceae, SHA-98, RF39 (Tenericutes) and ML615J-28 

(Tenericutes), all of which are heritable. This consortium was also present in the data of 

Yatsunenko et al., derived from young adult twins from Missouri, USA (21, 72).

This Christensenellaceae consortium was, in addition to being heritable, enriched in lean 

versus obese individuals in the UK twins (21). It also positively correlated with alpha-

diversity, which was higher in lean compared to obese subjects in the TwinsUK population. 

The association of Christensenellaceae with a lean phenotype was also observed in Missouri 

twins (64), the Dutch LifeLines- DEEP population (17), Koreans (40) and Japanese 

individuals (51). Christensenellaceae was subsequently linked to visceral fat phenotypes in 

the TwinsUK cohort (3), as well as with healthy levels of triglycerides in the Dutch 

LifeLines- DEEP cohort (17). Furthermore, the Christensenellaceae increased in relative 

abundance in stool of subjects consuming resistant starch, and correlated with levels of 

specific SCFAs in stool (66).

Taken together, these studies point to an interaction between the Christensenellaceae and its 

consortium members with diet, lipid metabolism and host adiposity. Goodrich and 

colleagues tested the causality of the association between a lean host phenotype and the 

relative abundance of the Christensenellaceae experimentally using fecal transplants into 

germfree mice. Amendment of an obese microbiome known to be extremely low in 

Christensenellaceae with live C. minuta cells protected germfree mouse recipients from the 

levels of adiposity gains observed in controls (i.e., same obese-derived microbiome with no-

addition or with heat-killed C. minuta) (21). This finding linked the Christensenellaceae 

functionally to the lean phenotype and the underlying mechanisms are currently under 

investigation.

Methanogens

The co-occurrence of Christensenellaceae with methanogens as observed in UK twins was 

reported by Hansen et al. prior to the renaming of the family (25), and more recently in 

North Americans (66). Methanogens correlate with leanness in several studies (2, 38, 46, 

56). Methanobrevibacter smithii (the dominant human gut methanogen) carriage was first 
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shown to be heritable in Missouri twins (25). Corroborating this early finding, methanogen 

abundance was shown to be heritable in UK twins using both 16S rRNA data (Goodrich et 

al. 2016: 0.21) and metagenomic data (Xie et al. 2016: 0.38), as well as in Canadians of 

European descent (Turpin et al. 2016: 0.66) and in a cohort of Korean twins (Lim et al. 

2016: 0.21). In a study of 1,514 individuals using fecal metagenomic data, Bonder et al. 

showed that methanogen abundance was associated with SNPs located within a long-

noncoding RNA (5). Why methanogens are heritable and/or linked to this specific region of 

the genome remains unclear. Since methanogen abundances are typically correlated with 

other facets of the microbiome including specific taxa and alpha-diversity (see below), the 

association with the gene region may be driven by any of these co-occurring taxa, which 

complicates the task of understanding any mechanisms underlying the association.

Measures of richness

Alpha-diversity, expressed as various measures (e.g., number of observed OTUs, Shannon 

index, Faith’s Phylogenetic Diversity, etc.) (20), is heritable in at least three populations (10, 

18, 65). Although moderate heritability has been observed for some alpha-diversity metrics, 

none of these studies reported significant associations with genetic variants (10, 18, 65). 

Alpha-diversity is commonly negatively associated with several chronic inflammatory 

diseases such as inflammatory bowel disease (IBD) and obesity (48). For example, alpha-

diversity (assessed from 16S rRNA gene diversity analysis of fecal samples) has been 

observed to be lower in patients with Metabolic syndrome compared to controls (38, 40). 

The reasons why microbiomes exhibit lower alpha-diversity may differ between disease 

states.

One important factor that shapes the gut microbiome habitat and has been associated with 

alpha-diversity is gut transit time, which relates to stool consistency. The Bristol Stool Index 

(BSS) is often used as a proxy for colonic transit time because the two tend to be negatively 

associated (i.e., lower BSS indicative of longer transit time and harder stool). BSS has been 

negatively correlated with species richness and with the abundances of Methanobrevibacter 
and Akkermansia (i.e., these taxa and alpha-diversity are higher in hard stool) (67). In 

contrast, Tigchelaar et al. did not find a significant correlation between BSS and species 

richness, however, they did report that decreasing BSS score (i.e., harder stools) was 

significantly associated with Archaea (i.e., methanogens) and the bacterial families 

Christensenellaceae and Dehalobacteriaceae (all members of the heritable co-occurring 

consortium) (62). Roager et al. also reported species richness positively associated with 

colonic transit time (55). In addition, this group reported that three OTUs belonging to 

Christensenellaceae and one OTU classified as Methanobrevibacter positively associated 

with colonic transit time and with protein degradation products. In accord, in a study of 

Japanese subjects, the Christensenellaceae family negatively associated with bowel 

movement frequency (51). With longer transit time, microbiota have longer to work on 

substrates, liberate additional substrates (which can increase niche space and diversity), and 

potentially slower growing microbiota have the necessary gut retention time to reach 

measurable levels, all of which could lead to greater richness. Apart from associations 

between gut transit times and diseased states like cystic fibrosis and IBD, little work has 

been done on the genetics of gut transit time.
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Identifying microbiome-host genotype associations

Attributes of the microbiome that are used as traits in GWAS (Table 1) include both (i) 

individual level measurements, such as alpha-diversity, relative abundances of specific taxa 

(OTUs, or taxa counts summarized at various levels of taxonomy), and functional pathways 

or gene ontology (GO) terms and (ii) cross-sample traits, such as beta-diversity metrics. 

Alpha-diversity and microbial or functional pathway abundances can simply be treated as 

individual quantitative traits where standard GWAS methods can be applied to each trait (7). 

The microbiome GWAS to date have used standard additive genetic modeling approaches (4, 

10, 18, 30, 68), rank based correlations (5), or combination models, where common taxa are 

modeled as quantitative traits and rare taxa are modeled as binary traits (65).

Another avenue being explored for GWAS of microbiome attributes is the use of variable 

selection methods for high-dimensional data. Recently, Lynch et al. developed a pipeline 

called HOMINID, which uses a penalized regression method called Lasso (43). This 

pipeline performs a single regression for each genetic variant with all taxa as predictors. 

When HOMINID was applied to data from 93 participants in the Human Microbiome 

Project, six genetic variants remained significant following multiple testing correction. 

Application of this method to some of the recent microbiome GWAS that include thousands 

of individuals could be useful to identify more associations.

Association with beta-diversity is more complex because it is a measure of similarity or 

dissimilarity between two samples, resulting in a value for each pair of individuals. In the 

first GWAS of beta-diversity, Blekhman et al. performed principal coordinates analysis 

(PCoA) on the pairwise beta-diversity matrix and ran a GWAS for each of the first five 

principal coordinates (PCs) (4). This amounts to looking for human genetic variants that are 

associated with the majority of the microbiome variation in the dataset and allows for a 

reduction in the dimensionality of the data compared to testing the association of each taxon 

with all genetic variants. Recently, Wang et al. used the function ‘envfit’ in the ‘vegan’ R 

package to fit each genotype onto the main axes of the beta-diversity PCoA (by default the 

first two PCs) (68). In this method, genotype was treated as a categorical variable and SNPs 

associated with community composition are identified by determining if the centroids for the 

three genotypes (with respect to the main axes of the PCoA) are significantly different. Hua 

et al. developed a tool called microbiomeGWAS for associating beta-diversity with each 

genetic variant (28). MicrobiomeGWAS is based on the intuition that if a variant is 

associated with the microbiome, any two individuals with more alleles in common at a given 

locus (e.g., individuals have two alleles in common if both individuals are AA, and none in 

common if one is AA and the other is GG) will have more similar microbiota and therefore 

smaller beta-diversity distances.

Statistical challenges of microbiome GWAS

Treating the microbiome as a complex trait in genome-wide association studies is relatively 

new, and published studies have had small sample sizes (in the low thousands) by GWAS 

standards (hundreds of thousands). As such, it has been challenging for associations of 

specific alleles with microbiome traits to reach study-wide significance due to the burden of 
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multiple testing in these small studies. Indeed, study-wide significance is a high bar when 

the number of tests is based on the total number of SNPs (hundreds of thousands to millions) 

combined with the total number of traits (typically in the high-hundreds to thousands).

There are a number of ways researchers reduce the number of tests performed in order to 

mitigate the large multiple testing burden. Some studies begin by focusing their analysis on 

metrics of overall community composition (alpha- and beta- diversity). Although this is an 

important initial step, its main limitation is that it does not provide information about which 

specific microbes are influenced by host genetics. Additionally, given the significant impact 

of environmental factors on the microbiome, any signal from an association with only a 

subset of the community will likely be drowned out when examining the community as a 

whole.

Of the thousands of OTUs inhabiting the gut, relatively few are shared among all or most 

individuals in a population (29). The presence of large numbers of rare taxa lead to the 

problem of zero-inflation when attempting to model all taxa in the gut (70). Most of the 

previously published studies reduced the number of tests by excluding taxa/functions with 

low abundance or prevalence, limiting the traits of interest to those that are more widely 

shared in the population. This strategy mitigates both the issues relating to modeling zero-

inflated data, for which there would be low power to detect associations, and reduces the 

multiple testing burden. Even after this filtering, the number of traits that remain is typically 

in the hundreds, and performing an association for each taxon/function with each genetic 

variant results in a very large multiple testing burden. A strict Bonferroni correction for 

multiple testing would require studies to reach P values of 5 × 10−10 to 5 × 10−11.

In addition to filtering microbiome attributes, the number of tests can also be reduced by 

restricting which host genetic variants are examined. Constraining the SNPs tested to 

candidate gene sets is one strategy (19, 35). The drawback of this approach is that relevant 

genes not on the candidate gene list may be missed. Alternatively, others limit testing to 

SNPs only in genic regions (4). While this approach focuses on functional regions of the 

genome, it likely misses much of the signal, as human GWAS hits are often identified in 

intergenic regions thought to be regulatory in nature (12).

Replication cohorts can be used within a study to provide confidence in suggestive 

associations that do not pass a strict study-wide significance threshold in the discovery 

cohort (5, 65, 68). For instance, Bonder et al. used a three-step approach where all 

associations meeting a relaxed significance threshold (P < 5 × 10−5) in a discovery cohort 

were then examined in an independent cohort. If an association replicated in the independent 

cohort (same direction of association and a P < 0.01) it was tested in a meta-analysis using 

both the discovery and replication cohorts. The estimated study-wide FDR for associations 

that passed the meta-analysis significance (P = 5 × 10−8) was 12%.

Despite the challenges in modeling the microbiome with a true GWAS, there is immense 

value in reporting the results of an unbiased discovery approach. Results from separate 

studies can then be compared with each other, to identify taxa that are reproducibly 

associated with variants in the genome (9, 19, 68). This brings to light the critical 
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importance of validating suggestive associations across studies until larger more powerful 

studies reduce the numbers of false positives.

Bifidobacterium and human lactase persistence

The most consistent signal to have emerged from human gut microbiome GWAS to date is 

the association between Bifidobacterium in the fecal microbiota and SNPs near the LCT 
gene on chromosome 2, first reported by Blekhman and colleagues in the Human 

Microbiome Project subjects (Blekhman et al., 2015). Remarkably, this association has since 

been replicated in twins from the United Kingdom (18), the North American Hutterites (18), 

a Dutch cohort (5), and individuals from northern Germany (68). The CC genotype of the 

SNP rs4988235 at this locus is associated with lactase non-persistence (13, 63) and elevated 

abundance of Bifidobacteria compared to the TT or TC genotypes. Bifidobacteria can utilize 

lactose, the milk sugar, as an energy source. These observations led Goodrich et al. to 

suggest that Bifidobacteria break down lactose and increase in abundance in hosts who are 

lactase non-persistent yet nevertheless consume lactose (19). This scenario implied a host 

genotype by diet interaction. This prediction was verified by Bonder et al. who observed the 

same association of the non-persister genotype with Bifidobacteria in 1,514 samples derived 

from 3 cohorts, and where the microbiome was characterized by shotgun metagenomics (5). 

Bonder et al. also had dietary information on the subjects, and observed the association only 

in those consuming milk. The exact nature of the association between Bifidobacterium, 

lactose in the diet and the non-persister genotype still requires experimental confirmation. 

More work is needed to decipher which species and strains of Bifidobacteria are implicated 

in this association. It is possible that the presence of the Bifidobacteria confers a degree of 

lactose tolerance to lactase-non-persisters.

To date, the lactase persistence genotype and Bifidobacteria association has been detected in 

persons of European descent only. Persons of African descent may exhibit independently 

acquired lactase persistence by their ancestors via a different genetic mechanism (63). 

However, it is intriguing to note that the phenotype (lactose tolerance or intolerance) 

predicted by the genotype is not always accurate (54), indicating that the microbiome may 

be mediating the phenotype. An association with Bifidobacteria may be expected in African 

populations as well, or it could be that the African equivalent occurs through lactase activity 

of a different gut microbe.

GWAS reveal tissues, pathways, and genes consistently associated with 

microbiome attributes

In addition to the replication of the Bifidobacterium - LCT association across multiple 

studies of the gut microbiome, a number of other broad trends emerge from cross-study 

comparisons of microbiome GWAS. First, select host tissues and pathways have been 

implicated across studies. Additionally, specific human genes repeatedly associate with the 

microbiome, although the corresponding taxa vary between studies. Finally, multiple lines of 

evidence point to human genetic influence on the abundance of distinct microbial pathways 

and functions.
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Host tissues and pathways implicated

The most consistent finding between reports to date is that the regions containing variants 

associated with the microbiome are enriched for genes related to immunity. Through a 

pathway enrichment analysis, Blekhman et al. found enrichment for genes involved in the 

following immunity-related pathways: Leptin Signaling in Obesity, Melatonin Signaling, 

JAK/Stat Signaling, Chemokine Signaling, CXCR4 Signaling, and Role of Pattern 

Recognition Receptors in Recognition of Bacteria and Viruses (4). Genes associated with the 

microbiome of nasal, oral, and skin body sites drove most of the enrichment in these 

pathways. In a study of the nasal microbiota in a Hutterite population, Igartua et al. used the 

Ingenuity Pathway Analysis Knowledge Base to identify protein-protein interaction (PPI) 

networks from genes near nasal microbiome associated loci (30). Both of the significant PPI 

networks identified contain highly connected proteins (hubs in the PPI network) that play 

important roles in modulating mucosal immunity (including IgA, IgG, IL12/IL12RA, TCR 

and STAT5A/B).

Immune-related genes are also implicated in many of the gut microbiome GWAS. A targeted 

gene analysis in Bonder et al. revealed several significant associations of microbial and 

functional abundances with immune response genes (5). Their strongest signal in the 

targeted analysis was between the GO2000 term ‘cell–cell signaling’ and a SNP in the 

C11orf30–LRRC32 locus, which has been associated with multiple immune-related 

phenotypes. Other associations include genes implicated in IBD risk (CCL2, DAP2, IL23R), 
nucleotide-binding oligomerization domain genes NOD1 and NOD2, two CLEC loci, and 

two genetic variants in the MHC region. Additionally, the most significant association in 

Turpin et al. that was also validated in their replication cohort was between the abundance of 

the family Rikenellaceae and a locus containing the gene UBR3, which encodes for a protein 

involved in the protein ubiquitination pathway (65). The authors note that ubiquitination 

plays many crucial roles in the immune system.

In the gut microbiome studies, evidence suggests genetic variation may act in digestive tract 

tissues to affect microbiome composition. For instance, Wang et al. reported enrichment for 

genes expressed in the digestive tract (68). In the North American Hutterites, genetic 

variants associated with Faecalibacterium were enriched in DNase hypersensitivity sites 

(DHS) of intestine and stomach tissues (10). Goodrich et al. did not perform an enrichment 

analysis to identify candidate tissues, but when searching for an association between taxa 

and predicted gene expression across tissues, the only significant associations were with 

expression in the transverse colon (18).

Many microbiome GWAS studies report genes associated with several of the same complex 

diseases. This includes IBD (4, 5, 65, 68), obesity (4, 5, 10, 65, 68) and type 2 diabetes (5, 

65, 68), all of which are also associated with alterations in the gut microbiota (16, 37, 64). 

IBD risk genes are also repeatedly linked to gut microbiota composition in targeted 

association analyses (5, 15, 31, 35). Genetic variants near the genes PLD1 and LINGO2, 

which have been implicated in obesity GWAS (42, 50), associated with the abundance of 

Akkermansia (10) and Blautia (5) respectively. Both Akkermansia and Blautia have been 

linked to obesity related phenotypes (3, 14, 21). The overlap observed between genetic 

variants associated with both microbiome attributes and complex diseases motivates further 
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investigation to better understand how human genetic variation impacts the microbiome in 

the context of these diseases.

Specific human genes and proteins implicated

The gene SLIT3 has been reported by three studies as having an association with some 

aspect of the microbiome. The most significant microbial pathway association observed by 

Bonder et al. was between SLIT3 and the sitosterol degradation to androstenedione pathway 

(involved in plant-derived steroid degradation) (5). Goodrich et al. also found an association 

with a variant in this gene and the abundance of unclassified Clostridiaceae (Heritability: 

0.32) (18). The nasal microbiome GWAS performed by Igartua et al. identified a significant 

association between the abundance of Dermacoccus in the nasal vestibule and another 

variant in this gene (30). SLIT3 is a secreted protein expressed in several tissues including 

skin, stomach, small intestine, and colon (11). Hypermethylation at the SLIT3 5′ CpG 

island occurs in colorectal cancers (11). SLIT3 likely plays a role in inflammation: the 

expression of SLIT3 increases after LPS stimulation of mouse macrophages (60), and this 

gene has been associated with BMI in a GWAS for obesity (41).

Another emerging theme from the human microbiome GWAS is a link between host 

genetics, the microbiome and bile acids. One of the strongest signals of association with 

overall community composition reported by Wang et al. was with SNPs located in the gene 

that encodes for the vitamin D receptor (VDR). Further exploration into this association 

revealed that Parabacteroides was the taxon most highly associated with VDR and that 

Parabacteroides abundance was also significantly higher in VDR knockout mice compared 

to wild-type (68). VDR is a known receptor for secondary bile acids (45) and activation of 

VDR can inhibit bile acid synthesis (23). This led Wang et al. to profile serum bile acids: 

they reported significant correlations between the bile acid measurements, gut microbiome 

composition, and genetic variation at VDR as well as other loci. Interestingly, Blekhman et 

al. observed an enrichment of microbiome associated genes in the Primary Bile Acid 

Biosynthesis KEGG pathway (4). In addition, Xie et al. reported that the abundance of bile 

salt hydrolase genes was significantly heritable in UK Twins (Heritability = 0.29) (69), and 

Bonder et al. identified an association between the MetaCyc bacterial bile acid metabolism 

pathway and SNPs in the ARAP2 gene (5). All of these studies support an interaction 

between host genetics and the microbiome through regulation of bile acid metabolism.

One last example suggests a link for transit time (described above), a specific gene family 

and members of the gut microbiome. Jankipersadsing et al. conducted a GWAS using stool 

frequency as a trait in the LifeLines-Deep (LLD) population (n=1,546) and reported that the 

second strongest association is with the gene ALDH1A1 (32). The authors noted this gene’s 

role in xenobiotic metabolism. Goodrich et al. noted an association between another member 

of the aldehyde dehydrogenases gene family (ALDH1AL1) and SHA-98, a member of the 

heritable Christensenellaceae consortium that includes the methanogens, and noted this 

gene’s role in C1 metabolism. Whether and how these findings may be related remains to be 

clarified.
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Microbial pathways implicated

To date, only Bonder et al. have used shotgun metagenomics to investigate the relationship 

between microbial pathways and host genetic variation genome-wide (5), preventing a cross-

study comparison of microbial pathways that are associated with genetic variants. However, 

Xie et al. recently reported estimates of heritability for gut microbial pathways using 127 

twin pairs from the TwinsUK cohort (69). As a result, it is possible to search for overlap 

between the significantly heritable pathways reported by Xie et al., and the pathways with a 

genetic association reported in Bonder et al. In addition to the bile acid metabolism example 

mentioned above, both studies suggested host genetics could have some influence on the 

abundance of microbial genes involved in riboflavin biosynthesis (Heritability = 0.51). 

Humans acquire riboflavin (vitamin B2) both through their diet and from riboflavin-

producing gut microbes. The machinery required for riboflavin synthesis has been found in 

the genomes of most Bacteroidetes, Fusobacteria, and Proteobacteria examined, while a 

complete riboflavin operon was only present in about half of the Firmicutes and almost no 

Actinobacteria (44, 61). Riboflavin can be used as a redox mediator by Faecalibacterium 
prausnitzii to facilitate extracellular electron transfer, which consequently promotes its 

growth (34). Increased riboflavin metabolism has been observed in individuals with 

ulcerative colitis (36), while F. prausnitzii abundance is reduced in individuals with 

inflammatory bowel disease (58). Riboflavin biosynthesis was correlated with SNPs near the 

gene CLEC4A, which encodes a C-type lectin (5). Members of this gene family have a wide 

range of functions including important roles in inflammation and immunity (8). As more 

studies use metagenomics to investigate which microbial genes and functions are influenced 

by human genetics, comparisons across studies will be important to validate these initial 

findings.

Current difficulties when comparing across studies

Although common themes emerge when comparing GWAS results across studies providing 

insight into the genetic factors that influence the human microbiome, direct validation of 

specific associations is largely still lacking. Each study curates the uncovered associations 

and chooses to highlight only a subset, making comparisons across studies based on the 

findings mentioned in the text problematic. An association highlighted in one study may be 

present in another, but if it falls just under the significance threshold, it might not be 

reported. For example, the Bifidobacterium - LCT finding does not reach genome-wide 

significance in most studies, and it likely would not have been reported as a main finding 

without Blekhman et al. previously pointing it out. However, when specifically targeting the 

association between LCT and Bifidobacterium, most of the published studies observed this 

association. This is again related to the power issues in untargeted studies that make it 

difficult to differentiate between false positives and real signals.

There may be several more cases like the LCT example that are overlooked when comparing 

just the highlighted results of the reported findings. Additionally, any differences in the data 

analysis pipeline, for example in the filtering of less abundant and less prevalent taxa, makes 

comparisons across studies extremely difficult. To properly compare across studies requires 

all data to be analyzed in the same way, which implies a laborious re-processing of all 

datasets. Aspects of the analysis that are important to standardize include the method for 
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OTU picking, the database and algorithm for taxonomy classification, cutoffs for taxa 

inclusion, the transformation method used on the microbiome data (if any), and the test for 

association (e.g., recent studies have used linear/logistic mixed models, negative binomial 

generalized linear models, log-normal generalized estimating equation models, and rank-

based Spearman correlations). Only after this standardization can there be a more reliable 

comparison of associations across all studies for the same taxon × SNP pairs.

Prospectus

The microbiome is a complex trait. Initial forays into the identification of genes that co-vary 

with aspects of the microbiome are promising and have highlighted the role of immunity and 

diet in shaping the microbiome, although more direct comparisons between studies where all 

data are similarly processed are needed to improve the comparisons. Heritable taxa are so far 

remarkably consistent across studies, and many are health-associated. How the microbiome 

interacts with genotype to influence disease phenotype is an open frontier. Acquisition of 

SNP genotype information on common gut microbes based on deep metagenomic data will 

open opportunities to examine the evolutionary tuning of the microbiome to the human gut. 

Larger studies, across multiple populations, and in the context of disease susceptibility, 

should continue to shed light on human-microbiome interaction and co-evolution.
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Figure 1. Heritability and genome-wide association studies of the human gut microbiome
The top panel shows a world map indicating the locations and relative sample size of the 

currently published human gut microbiome heritability and GWA studies. Each colored 

circle represents a single study and the size of the circle indicates the study’s sample size. 

The bottom panel is a comparison of taxon heritability across studies. Only taxa found to 

have nominally significant heritability estimates (P < 0.05 or in the case of Davenport et al. 

‘chip heritability’ estimates with a standard error not overlapping 0) in at least two of the 

four heritability studies are shown in the bar chart (bars are colored by study).
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Figure 2. 
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Figure 3. 
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