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Abstract

The degree of vertebral wedging, a key structural characteristic of spinal curvatures, has

recently been found to be negatively related to vertebral cross-sectional area (CSA). The

purpose of this longitudinal study was to examine the relation between vertebral cross-

sectional growth and vertebral wedging progression within the immature lumbar spine.

Using magnetic resonance imaging (MRI), we analyzed the potential association between

increases in lumbar vertebral CSA and changes in L5 vertebral wedging in 27 healthy ado-

lescent girls (ages 9–13 years) twice within a two-year period. Vertebral CSA growth was

negatively associated with changes in posteroanterior vertebral wedging (r = -0.61; p =

0.001). Multiple regression analysis showed that this relation was independent of gains in

age, height, and weight. When compared to the 14 girls whose vertebral wedging pro-

gressed, the 13 subjects whose vertebral wedging decreased had significantly greater ver-

tebral cross-sectional growth (0.39 ± 0.25 vs. 0.75 ± 0.23 cm2; p = 0.001); in contrast, there

were no significant differences in increases in age, height, or weight between the two

groups. Changes in posteroanterior vertebral wedging and the degree of lumbar lordosis

(LL) positively correlated (r = 0.56, p = 0.002)—an association that persisted even after

adjusting for gains in age, height, and weight. We concluded that in the immature skeleton,

vertebral cross-sectional growth is an important determinant of the plasticity of the vertebral

body; regression of L5 vertebral wedging is associated with greater lumbar vertebral cross-

sectional growth, while progression is the consequence of lesser cross-sectional growth.

Introduction

Just as the term plasticity in engineering exemplifies the ability of solid material to undergo

deformation in response to load, skeletal plasticity describes the facility of growing bone to

alter modelling as a consequence of mechanical stresses [1]. Contrary to the permanent
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deformations that adult vertebrae sustain under load, asymmetrical vertebral growth in chil-

dren has the capacity to change shape in response to mechanical stresses [2,3].

Wedging of the vertebral body, a key structural characteristic of spinal curvatures [4,5,6,7],

is the result of a simultaneous increase in longitudinal growth on the convex side of a curve

and inhibition on the concave side [8,9,10]. We recently found a negative correlation between

values for vertebral cross-sectional area (CSA) and both lateral vertebral wedging in scoliosis

and posteroanterior vertebral wedging within the lumbar curve [4]—relations that were inde-

pendent of age and body size. Since vertebral CSA is a major determinant of spinal flexibility

and strength [11,12,13,14,15], asymmetrical vertebral growth secondary to unbalanced axial

load would be most prominent in the presence of small vertebral cross-sectional dimensions.

In the current study, we examined the potential for wedge deformities in immature verte-

brae to reshape or resolve over time. Using magnetic resonance imaging (MRI), we analyzed

the relations between lumbar vertebral cross-sectional growth and changes in the degree of L5

vertebral wedging in healthy adolescent girls. We hypothesized that vertebral cross-sectional

growth is a major determinant of vertebral body plasticity and negatively correlated to changes

in vertebral wedging. We predicted that greater lumbar vertebral cross-sectional growth would

result in diminished or even regression of L5 vertebral wedging, while lesser cross-sectional

growth would lead to progressive wedging.

Materials and methods

The study protocol was approved by the Institutional Review Board (IRB) for Clinical Investi-

gations at Children’s Hospital Los Angeles (CHLA), which was compliant with the Declaration

of Helsinki and the Health Insurance Portability and Accountability Act. Written assent and

consent were obtained from all subjects and their parent(s). All study subjects were recruited

from the Division of General Pediatrics at CHLA, and were included in a previous cross-sec-

tional investigation [4]. For the purpose of this study, adolescent girls with at least three cm

increase in height, who continued having normal physical examinations a year or more later,

were eligible to participate. Using these criteria, a total of 27 healthy girls between the ages of

9–13 years underwent follow-up examinations of their lumbar spine one to two years later.

Baseline and follow-up MRI examinations were performed in the supine position with

extended legs and without the use of general anesthesia or contrast enhancement using a 3.0

Tesla whole-body MRI scanner (Achieva R3.2, Philips Healthcare, Cleveland, Ohio) with a

standard 15-channel spine coil. Three dimensional T2-weighted turbo spin echo scans were

taken with TE of 120 ms, TR of 3000 ms, a flip angle of 90˚, and with a voxel size of 1.0 x 1.0 x

1.0 mm. Vertebral CSA of the lumbar vertebral bodies, posteroanterior vertebral wedging of

L5, and LL angle were measured as previously described [4,14]. Briefly, LL was measured in

the sagittal plane as the angle between the superior endplate of L1 and the inferior endplate of

L5. Vertebral CSA was measured in the axial plane at the midportion of the vertebral body

based on the anterior and posterior heights of the lumbar vertebrae; an average of all 5 lumbar

vertebrae was used. Posteroanterior vertebral wedging was defined as the angle between the

superior and inferior endplates at the midsagittal plane of L5. The coefficient of variation for

repeated MRI measurements of vertebral CSA, LL angle, and vertebral wedging are between

0.8–3.0% [4,14]. All measurements were analyzed offline manually with image processing soft-

ware (Osirix; Pixmeo, Switzerland). The change in a variable is defined as the difference

between the values obtained at the second and first time points, and is denoted by a delta (Δ).

The data were analyzed using paired and unpaired t tests, and simple and multiple linear

regression analyses using Statview software (version 5.0.1; SAS Institute, Cary, NC). Statistical

significance was considered a P< 0.05. All values are expressed as mean ± SD.
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Results

The age, height, weight, and MRI characteristics of spinal morphology of the 27 girls at base-

line and 13 to 18 months later are described in Table 1. As expected, values for height, weight,

and the CSA of the vertebral body were significantly greater at follow-up. In contrast, vertebral

wedging and LL angles did not significantly change between studies.

Changes in vertebral wedging angle did not correlate with increases in age or weight, but

negatively correlated to increases in height (r = -0.49; p = 0.010). A negative correlation was

also observed between increases in vertebral CSA and changes in vertebral wedging (r = -0.61;

p = 0.001) (Fig 1). Overall, girls with the smallest vertebral cross-sectional growth had the

greatest gains in vertebral wedging. Multiple linear regression analysis of the independent

effects of increases in age, height, weight, and vertebral CSA on changes in vertebral wedging

indicated that vertebral CSA growth was the sole variable that entered into the model

(Table 2).

Although vertebral CSA increased in all subjects, vertebral cross-sectional growth was sig-

nificantly lower in the 14 girls in which the vertebral wedging increased (Table 3). Notably, the

90th percentile for vertebral CSA gains in subjects with increased vertebral wedging corre-

sponded to ~50th percentile in girls with decreased vertebral wedging (Fig 2). In contrast,

there were no significant differences in increases in age, height, or weight between the two

groups (Table 3).

Table 1. Age, anthropometric, and MRI measurements of lumbar spine morphology in 27 healthy girls at baseline and follow-up.

Baseline Follow-Up Change p Value

Age (yr) 11.2 ± 1.30 12.4 ± 1.27 1.22 ± 0.09 <0.0001

Height (cm) 147.9 ± 9.60 154.2 ± 8.42 6.39 ± 2.31 <0.0001

Weight (kg) 41.7 ± 10.4 48.8 ± 11.4 7.14 ± 3.44 <0.0001

Lumbar Vertebral CSA (cm2) 7.96 ± 1.04 8.52 ± 1.07 0.56 ± 0.30 <0.0001

Vertebral Wedging (˚) 13.1 ± 3.01 13.2 ± 2.53 0.11 ± 2.97 0.849

Lumbar Lordosis (˚) 26.6 ± 8.93 28.9 ± 8.76 2.28 ± 5.59 0.044

https://doi.org/10.1371/journal.pone.0190225.t001

Fig 1. Simple linear regression between changes in vertebral CSA and vertebral wedging (r = -0.611;

p = 0.001).

https://doi.org/10.1371/journal.pone.0190225.g001
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There were no significant correlations of height with the degree of LL either at baseline or

follow-up (p’s> 0.05), whereas age correlated to degree of LL at both time points (r’s = 0.42

and 0.41; both p’s< 0.04). Weight, however, correlated to LL angle at baseline (r = 0.50;

p = 0.008), but not at follow-up (r = 0.33; p = 0.098). Conversely, vertebral wedging positively

correlated to LL at both time points (r’s = 0.57 and 0.60; both p’s< 0.002). Multiple regression

analysis indicated that vertebral wedging was an independent predictor of LL both at baseline

and follow-up (Table 4). Additionally, there was a positive correlation between changes in ver-

tebral wedging and LL angles (r = 0.56, p = 0.002).When changes in LL were used as the depen-

dent variable to examine their relationship to age, anthropometric measures, and vertebral

wedging over time, the latter was the only significant independent variable in the model

(Table 5).

Discussion

We recently found that smaller vertebral CSA is associated with greater vertebral wedging in

scoliosis and lumbar lordosis curves [4]. In the current longitudinal study, we provide further

evidence that vertebral cross-sectional growth is a major determinant of variations in vertebral

wedging within the immature lumbar spine. Although vertebral CSA increased in all girls,

those with the smallest increases in lumbar vertebral CSA during the adolescent growth spurt

had the greatest progression in vertebral wedging—an association that persisted even after

accounting for changes in age, height, and weight. When compared to healthy adolescent girls

whose vertebral wedging progressed, subjects whose vertebral wedging decreased had on aver-

age 90% greater vertebral cross-sectional growth. These findings underscore the importance of

vertebral cross-sectional growth as a modulator of vertebral wedging progression and highlight

the plasticity of the immature spine in reshaping vertebral wedge deformities.

Accumulating evidence suggests that vertebral CSA is a structural determinant of spinal

strength and flexibility [4,11,12,13,14,15]. During axial compressive loading, stress within the

vertebral body is directly proportional to the applied force and inversely proportional to its

cross-sectional dimensions [13,16]; a small vertebral CSA therefore imparts a mechanical dis-

advantage that increases stress within the vertebrae for all physical activities [17,18]. Since

Table 2. Multiple linear regression model relating gains in age, height, weight, and vertebral CSA to changes in vertebral wedging.

β 95% CI p Value R2

Δ Vertebral Wedging (˚) 0.442

Δ Age (yr) 3.405 -10.107, 16.916 0.607

Δ Height (cm) -0.235 -0.752, 0.282 0.356

Δ Weight (kg) -0.174 -0.481, 0.133 0.252

Δ Vertebral CSA (cm2) -5.783 -10.320, -1.245 0.015

https://doi.org/10.1371/journal.pone.0190225.t002

Table 3. Changes in age, anthropometric measures, and lumbar spine morphology of girls with increased and deceased vertebral wedging.

Increased Wedging Decreased Wedging p Value

(n = 14) (n = 13)

Δ Age (yr) 1.2 ± 0.07 1.3 ± 0.10 0.091

Δ Height (cm) 5.6 ± 2.10 7.3 ± 2.26 0.049

Δ Weight (kg) 7.1 ± 3.78 7.2 ± 3.17 0.895

Δ Lumbar Vertebral CSA (cm2) 0.39 ± 0.25 0.75 ± 0.23 0.001

Δ Vertebral Wedging (˚) 2.4 ± 2.09 -2.3 ± 1.41 <0.0001

Δ Lumbar Lordosis (˚) 4.0 ± 6.90 0.5 ± 3.02 0.103

https://doi.org/10.1371/journal.pone.0190225.t003
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vertebral CSA is also inversely related to spinal flexibility, small cross-sectional dimensions

would increase the magnitude of asymmetric loading on the vertebrae due to a larger range of

motion. In the presence of disproportional loading, like that in LL, longitudinal bone growth

is inhibited on the concave side of a curvature while accelerated on the convex side

[3,7,19,20,21]. Hence, the two biomechanical properties associated with small vertebral cross-

sectional growth, lesser strength and greater spinal flexibility, concurrently present a possible

mechanism for the development and progression of vertebral wedging. As both properties are

likely determinants of vertebral wedging, yet markedly different, it becomes very difficult to

assess causality and establish which comes first [22].

Likewise, it is also challenging to determine whether increased wedging leads to greater

lumbar lordosis or vice versa. The results of the current study are, nevertheless, consistent with

prior investigations reporting a strong association between lumbar vertebral wedging and LL

[4,7]. We found the degree of posteroanterior L5 wedging to be positively correlated to LL

angle at both baseline and follow-up examinations—relations that persisted even after

accounting for age, height, and weight. Moreover, multiple regression analysis indicated that

LL progression was primarily predicted by gains in vertebral wedging.

This study is not the first to suggest that the plasticity of the immature vertebral body

includes the potential for correcting asymmetric growth in response to changes in mechanical

Fig 2. Boxplot showing differences in vertebral cross-sectional growth between girls with increased

(n = 14) and decreased vertebral body wedging (n = 13); p = 0.001.

https://doi.org/10.1371/journal.pone.0190225.g002

Table 4. Multiple linear regressions of baseline and follow-up lordosis as a function of age, height, weight, and vertebral wedging.

Baseline β 95% CI p Value R2

Lumbar Lordosis (˚) 0.664

Age (yr) 2.916 0.117, 5.715 0.042

Height (cm) -0.237 -0.730, 0.255 0.328

Weight (kg) 0.394 0.029, 0.758 0.036

Vertebral Wedging (˚) 1.802 1.023, 2.582 <0.0001

Follow-Up β 95% CI p Value R2

Lumbar Lordosis (˚) 0.480

Age (yr) 2.301 -0.759, 5.361 0.133

Height (cm) -0.285 -0.870, 0.299 0.322

Weight (kg) 0.212 -0.164, 0.589 0.255

Vertebral Wedging (˚) 1.857 0.726, 2.988 0.003

https://doi.org/10.1371/journal.pone.0190225.t004
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stress. Makino and colleagues recently investigated the plasticity of vertebral wedge deformi-

ties in the immature skeleton of adolescents with idiopathic scoliosis (AIS). They showed the

degree of wedging in thoracic vertebrae to diminish a year after posterior corrective surgery

[19]. A similar phenomenon occurs in pediatric patients with vertebral fractures secondary to

leukemia or hypercorticolism [23,24,25,26,27,28,29]. In contrast to the mature skeleton, these

pathological fractures frequently regain normal dimensions following treatment [29,30,31,32].

Interestingly, older teenagers, like adults, are less likely to regain vertebral body height

[31,33,34], supporting the notion that vertebral body plasticity is a property of the immature

axial skeleton.

There are several limitations in this study. Notably, we confined our investigation to the

analysis of LL in adolescent girls, and whether our findings are generalizable to males, older

populations, or other spinal curvatures is unknown. We chose to examine growing females

since anterior lumbar curves increase markedly during adolescence [35], and are more promi-

nent in females than in males [36,37,38,39,40]. Additionally, females have significantly smaller

vertebral cross-sectional dimensions than males–a difference that is independent of body size

and present throughout life [13,41,42,43]. The smaller female vertebral CSA is associated with

greater spinal flexibility and likely facilitates the increased LL needed during pregnancy [44].

We selected girls due to their smaller vertebrae, greater degree of LL, and higher risk for verte-

bral wedging. While progressive scoliosis is most prevalent in adolescent females and vertebral

wedging is also closely related to scoliosis severity [19,20,21], lateral spinal curvatures are com-

plex deformities with multi-dimensional wedging progression [8]. By examining LL, we

restricted the analysis of vertebral deformation to a single plane reducing the complexity and

inaccuracies of measurements.

This study also has other methodological limitations. Since spinal morphology was deter-

mined using MRI, measures for LL were confined to the supine orientation. Prior reports,

however, have shown that measures of LL in the upright and supine positions can be inter-

changeable when the lower extremities are straightened [45]. We also acknowledge that verte-

bral wedging was only measured in a single lumbar vertebra (L5); yet, among all the vertebral

bodies of the lumbar spine, L5 has the greatest degree of posteroanterior wedging, and is the

greatest contributor to the degree of lumbar curvature [4,35,46]. Lastly, our study was limited

to a relatively short follow-up. However, all participants had at least a 3-centimeter increase in

height, and prior data shows the degree of tracking for measures of vertebral CSA to be high

and comparable to that of height throughout development [47]. Knowledge that children with

small vertebral CSA will likely continue to have low values as young adults, highlights our

potential ability to identify those children at risk to develop progressive wedging.

In conclusion, the current study provides evidence that vertebral cross-sectional growth is a

key determinant of vertebral body plasticity in the immature lumbar spine. Vertebral wedging

regressed in girls with the greatest vertebral cross-sectional growth, while those with the least

growth experienced progression of the wedge deformity and LL. A better understanding of the

Table 5. Multiple linear regression model on the effect of changes in vertebral wedging, after adjusting for gains in age, height, and weight, on

lumbar lordosis progression.

β 95% CI p Value R2

Δ Lumbar Lordosis(˚) 0.361

Δ Age (yr) 0.606 -23.595, 24.807 0.959

Δ Height (cm) 0.593 -0.415, 1.601 0.235

Δ Weight (kg) -0.034 -0.624, 0.555 0.906

Δ Vertebral Wedging (˚) 1.283 0.506, 2.060 0.002

https://doi.org/10.1371/journal.pone.0190225.t005
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reshaping potential of the growing vertebral body could aid in the design of novel preventative

and corrective treatments for wedge deformities in children.

Supporting information

S1 Table. Ages, anthropometric characteristics, and MRI measures of vertebral morphol-

ogy and degree of lumbar lordosis included in the analyses.
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