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Abstract: Alzheimer’s disease (AD) is a neurological disorder that creates neurodegenerative changes
at several structural and functional levels in human brain tissue. The fractal dimension (FD) is a quan-
titative parameter that characterizes the morphometric variability of the human brain. In this study,
we investigate spherical harmonic-based FD (SHFD), thickness, and local gyrification index (LGI) to
assess whether they identify cortical surface abnormalities toward the conversion to AD. We study 33
AD patients, 122 mild cognitive impairment (MCI) patients (50 MCI converters and 29 MCI
nonconverters), and 32 healthy controls (HC). SHFD, thickness, and LGI methodology allowed us to
perform not only global level but also local level assessments in each cortical surface vertex. First, we
found that global SHFD decreased in AD and future MCI converters compared to HC, and in MCI
converters compared to MCI nonconverters. Second, we found that local white matter SHFD was
reduced in AD compared to HC and MCI mainly in medial temporal lobe. Third, local white-matter
SHFD was significantly reduced in MCI converters compared to MCI nonconverters in distributed
areas, including the medial frontal lobe. Thickness and LGI metrics presented a reduction in AD
compared to HC. Thickness was significantly reduced in MCI converters compared to healthy controls
in entorhinal cortex and lateral temporal. In summary, SHFD was the only surface measure showing
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differences between MCI individuals that will convert or remain stable in the next 4 years. We suggest
that SHFD may be an optimal complement to thickness loss analysis in monitoring longitudinal changes
in preclinical and clinical stages of AD. Hum Brain Mapp 38:5905–5918, 2017. VC 2017 Wiley Periodicals, Inc.
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thickness; gyrification index
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INTRODUCTION

The fractal dimension (FD) is a quantitative parameter
that has been used in neuroimaging to analyze structural
patterns of the human brain. Metrics of FD are able to
characterize the complexity of a wide range of objects of
interest by assessing how a fractal structure occupies their
geometrical target space [Mandelbrot, 1983]. The versatility
of FD analysis has enabled the development of a remark-
able number of applications in structural neuroimaging
[Di Ieva et al., 2015], mostly using the MRI modality, such
as in multiple sclerosis [Esteban et al., 2009], amyotrophic
lateral sclerosis [Rajagopalan et al., 2013], schizophrenia
[Tae et al., 2005], mild cognitive impairment (MCI) [Yuan
et al., 2013], or Alzheimer’s disease (AD) [King et al.,
2010]. Although some pioneer studies of FD analysis used
single FD values to characterize the whole brain or hemi-
sphere shape, new methods have arisen to evaluate FD
from a higher resolution framework. As neurodegenerative
disorders present distinctive structural changes along the
cortical mantle, it seems optimal to evaluate them sepa-
rately and not in combination with the rest of the cerebral
tissue. In this sense, King [2014] has proposed a modifica-
tion of the classic box-counting method to estimate local
FD values for regions of the cerebral cortex with sizes of
from 15 to 60 isotropic voxels mm. Moreover, Yotter and
collaborators [Nenadic et al., 2014, 2017; Yotter et al., 2011]
have presented a new method to quantify local FD using
spherical harmonic reconstructions [Shen et al., 2009]
(SHFD). The SHFD method calculates FD complexity maps
from a cerebral cortex surface at different scales: (1) global:
a single value for the whole brain hemisphere; (2) regional:
a set of values for regions of interest; and (3) local: a value
for each surface vertex. This approach presents a high
test–retest reliability [Madan and Kensinger, 2017] and has
two main advantages compared to the box-counting
method [Yotter et al., 2011]: (1) as this method does not
need to down-sample the cortical surface, it delivers high-
resolution results; (2) moreover, it is able to obtain FD esti-
mations independently of the orientation of the surface,
which is a typical caveat of the box-counting method.

Previous studies have analyzed the FD of the cerebral
cortex in aging [Madan and Kensinger, 2016; Zhang et al.,
2007] and MCI/AD individuals [King et al., 2009, 2010;
King, 2014; Yuan et al., 2013], particularly using global
and local box-counting FD analysis of the cortical surface
in both 2D [King et al., 2009] and 3D [King et al., 2010;

King, 2014]. In general, the FD of the cortical surface of
AD subjects is lower than controls—particularly in the
medial temporal lobes and parietal lobes—and it correlates
well with other brain surface measures such as local gyrifi-
cation index (LGI) [Schaer et al., 2008] but not with thick-
ness [Fischl and Dale, 2000]. In this study, we aimed to
characterize the cortical surface complexity of AD and
MCI individuals using a high-resolution SHFD approach
and two other well-known surface analytical approaches,
namely thickness and LGI. Thickness is associated to tis-
sue lost or atrophy and LGI is a good descriptor of cortical
development. On the other hand, the SHFD of the cortical
surface measures the folding pattern, so more convoluted
cortical surfaces or white matter structures with a more
complicated branched pattern present higher SHFD values.
Thus, SHFD can complement thickness and LGI metrics
for the study of structural changes in AD by measuring
the topological complexity of the cortex and providing a
sensitive measure of subtle brain structural changes, even
locally at vertex level. Furthermore, given that structural
changes are thought to be close to cognitive decline [Jack
et al., 2013], SHFD metric may be specially relevant for the
identification of MCI at risk of conversion to AD. We
directed our analysis to detecting the structural surface
features that identify future conversion to Alzheimer’s dis-
ease, particularly focused on differentiating MCI convert-
ers (MCIc) and MCI nonconverters (MCIn) in the next 4-
year follow-up period. Thus, we used an SHFD method
[Yotter et al., 2011] to analyze the shape of the cerebral
surface (pial surface and gray/white surface) in a local
cohort of 187 subjects. Despite the potential advantages of
using fractal analysis to detect complex structural changes
in AD stages, little is known about the differences between
MCI subjects that convert to AD and MCI that remain
stable [Yuan et al., 2013], and no information has been
reported regarding high-resolution SHFD changes in these
populations.

METHODS

Subjects

We included 187 subjects in this study (see Table I for
demographics): 32 elderly healthy control (HC) subjects (16
males, 16 females, mean age: 72.7 6 5.9), 33 subjects with AD
(10 males, 23 females, mean age: 75.7 6 3.7), and 122 subjects
suffering MCI (58 males, 64 females, mean age: 73.2 6 5.7).
All individuals with AD and MCI diagnosis were recruited

r Ruiz de Miras et al. r

r 5906 r



by experienced neurologists from dementia units of the
Valencian community healthcare system in Spain. Control
participants were recruited from patient’s relatives and/or
friends without any notable medical illnesses; history of
drug or alcoholic abuse; or a family history of AD.
Participants were informed of the nature of the research and
provided written informed consent prior to their participation
in the study. The Institutional Review Board of the Universitat
Jaume I of Castell�on approved this research study and all of
the study procedures conformed to the Code of Ethics of the
World Medical Association.

The AD group was composed of patients that met revised
criteria for probable AD [McKhann et al., 2011] and showed
a Clinical Dementia Rating (CDR) score of 1 (mild AD). For
the MCI group, the inclusion criteria included (1) memory
complaints (autoinformed or confirmed by an informant); (2)
objective memory impairment assessed with the long delay
free recall subtests of the Verbal auditory memory subtest
from the Barcelona’s test [Pe~na Casanova, 2005]; (3) essentially
intact activities of daily living; (4) no evidence of dementia;
and (5) a CDR score of 0.5. Cognitively normal subjects were
included in the control group if they had no memory com-
plaint, normal performance (within 61.5 SD corrected by age)
in the tests included in the neuropsychological assessment
(see below) and a CDR score of 0. None of the participants of
the study had any of the following clinical characteristics: (1)
other nervous system diseases such as a brain tumor, cerebro-
vascular disease, encephalitis, epilepsy, or met the criteria for
other dementias different from AD or MCI in the case of
impaired individuals; (2) Geriatric Depression Scale score� 6
[Aguado et al., 2000; Yesavage et al., 1982]; (3) visible abnor-
malities reported by an experienced radiologist in magnetic
resonance images, such as leukoaraiosis or infarction;
(4) current psychiatric disorder or use of psychoactive
medication.

All participants underwent a structured clinical inter-
view and a neuropsychological assessment which included
MMSE [Folstein et al., 1975; Lobo et al., 2002], Functional
Activities Questionnaire (FAQ; [Pfeffer et al., 1982]), short
form of Boston naming test [Serrano et al., 2001], Verbal
fluency test, Verbal auditory memory subtest from the
Barcelona test [Pe~na Casanova, 2005], and Digit subtest
(forward and backward) from the Wechsler memory
scale-III (WMS-III; [Wechsler, 1997]). The MCI patients
were followed up clinically with periodic neuropsycholog-
ical assessment and clinical interviews (every 6 months)
for a period of 4 years, although the MR data was
acquired only once in the first clinical visit. These patients
were classified into two groups depending on the conver-
sion to AD in any moment of the clinical follow-up period
(see Table II for demographics). MCI subjects were consid-
ered converted to AD when they met the AD criteria
exposed previously in any of the clinical follow-up evalua-
tions by trained neurologist. The MCIn group consists of
those subjects that showed no change during the time of
follow-up. The participants who abandoned the study
before a year of follow-up were included in the analyses
involving the whole MCI group but were not included in
the MCIc or MCIn groups. Thus, the follow-up period for
the MCI subjects ranged from 1 to 4 years (mean:
1.68 6 1.08). Of note, MCIc (N 5 50, 20 males, 30 females,
mean age: 74.4 6 5.3) and MCIn (N 5 29, 14 males, 15
females, mean age: 71.9 6 5.7) are subsamples of the base-
line MCI population of 122 individuals. The baseline MCI
group is referred to as MCI in figures and results.

MR Acquisition

MRI data acquisition was performed on a 3 T MR scan-
ner (Siemens Magnetom Trio, Erlangen, Germany) using a
12-channel head coil. Whole-brain 3-D images were

TABLE I. Demographic data

HC MCI AD
N 32 122 33 p-value

Age (y) 72.7 6 5.9 73.2 6 5.7 75.7 6 3.7 F 5 2.82, P 5 0.062a

Gender (M:F) 16:16 58:64 10:23 v2 5 5, P 5 0.025b

MMSE 29.6 6 0.7 27.3 6 2.3 22.3 6 3.3 F 5 93.47, P 5 1.64 3 10217c
FAQ 0.5 6 0.56 3.74 6 3.47 14.5 6 6.55 F 5 159.66, P 5 1.7 3 10225c

Boston 11.96 6 0.17 9.53 6 1.94 7.35 6 3.37 F 5 22.20, P 5 5.5 3 1026c
Phon. Flu. 13.69 6 2.32 8.13 6 2.55 5.37 6 2.27 F 5 28.37, P 5 3.67 3 1027c

Sem. Flu. 17.60 6 3.91 11.06 6 3.22 7.96 6 2.37 F 5 23.64, P 5 2.9 3 1026c
Imm. Recall 8.53 6 0.98 4.04 6 1.19 2.22 6 1.45 F 5 52.06, P 5 2.43 3 10211c
Del. Recall 6.53 6 0.94 1.13 6 1.05 0.09 6 0.39 F 5 28.63, P 5 3.20 3 1027c

FDS 7.18 6 0.69 5.62 6 1.32 4.70 6 1.71 F 5 10.34, P 5 0.0016c

BDS 6.25 6 1.07 3.69 6 1.21 2.54 6 1.26 F 5 21.83, P 5 6.5 3 1026c

Values expressed as mean 6 standard deviation.
aAnalysis of variance: HC, AD, and MCI.
bv2 test: HC, AD, and MCI.
cAnalysis of variance: AD and MCI.
MMSE, Mini-Mental State Examination; FAQ, Functional Activities Questionnaire; Phon. Flu., Phonemic Fluency; Sem. Flu., Semantic
Fluency; Imm. Recall, Immediate Recall; Del. Recall, Delayed Recall; FDS, Forward Digit Span; BDS, Backward Digit Span.
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collected using sagittal T1-weighted images (MP-RAGE
sequence, 176 slices, 256 3 256 matrix, TR 5 2300 ms, TE
2.98 ms, flip angle 98, spatial resolution 1 3 1 3 1 mm).

Cortical Surface Reconstruction

Cortical reconstruction and volumetric segmentation of
the images were performed using FreeSurfer v. 5.3 (http://
surfer.nmr.mgh.harvard.edu/). The main processing steps
in FreeSurfer consist of motion correction and averaging of
multiple volumetric T1-weighted images [Reuter et al.,
2010], removal of nonbrain tissue [S�egonne et al., 2004], seg-
mentation of the white matter and gray matter volumetric
structures [Fischl et al., 2002], tessellation of the gray mat-
ter–white matter boundary [Fischl et al., 2001], and surface
deformation to place the gray/white and gray/cerebrospi-
nal fluid borders [Dale et al., 1999]. Once the cortical models
are complete, two additional procedures were performed
for further data processing and analysis: surface inflation
[Fischl et al., 1999a] and registration to a spherical atlas to
match cortical geometry across subjects [Fischl et al., 1999b].

Cortical thickness and LGI are two cortical measures
widely used to detect structural complexity in the human
brain. Following previous studies that have compared these
two measures with the FD [Im et al., 2006; Jiang et al., 2008;
King et al., 2010], we included them in our investigation.
Cortical thickness is calculated in FreeSurfer as the closest
distance from the gray/white boundary to the gray/CSF
boundary at each vertex on the tessellated surface [Fischl
and Dale, 2000]. The Gyrification index quantifies the
amount of cortex buried within the sulcal folds as compared
with the amount of cortex on the outer visible cortex.

A cortex with extensive folding has a large gyrification
index, whereas a cortex with limited folding has a small gyr-
ification index. The method incorporated into FreeSurfer

[Schaer et al., 2008] computes local measurements of gyrifi-
cation at thousands of points over the whole cortical surface,
generating a map called the LGI. Figure 1A–E shows an
example of a T1-weighted image, the corresponding pial
(gray/cerebrospinal fluid border) and white (gray/white
border) tessellated surfaces and the thickness and LGI maps
for that image, all obtained by the FreeSurfer pipeline
through the command recon-all with the localGI option. As
each individual map corresponds to a tessellated surface
that is not equal between subjects, a preprocessing step is
needed to smooth and reparameterize each individual map
to a common space. These reparameterized and smoothed
maps were computed in FreeSurfer through the commands
mris_preproc, targeting the average subject provided by
FreeSurfer, and mri_surf2surf with a default FWHM value of
10 mm. Finally, the average map for each group was calcu-
lated with the FreeSurfer command mri_concat. Global val-
ues of thickness and the gyrification index for each
hemisphere were obtained as the average of the values at
each vertex in the corresponding local map for that hemi-
sphere. These global values were obtained by using the Free-

Surfer command mris_anatomical_stats.

Fractal Dimension Computation Based on

Spherical Harmonics

To obtain a precise local value of FD for each vertex of
the pial and white tessellated surfaces, we implemented
the SHFD method developed by Yotter et al. [2011].

TABLE II. Demographic data of MCI subjects

MCIn MCIc P value

N 29 50
Time (y)a 2.34 6 1.09 1.30 6 0.90
Age (y) 71.96 6 5.7 74.42 6 5.3 F 5 3.66, P 5 0.06b

Gender (M:F) 14:15 20:30 v2 5 2, P 5 0.15c

MMSE 28.8 6 1.1 26.3 6 2.4 F 5 27.33, P 5 1.42 3 1026b

FAQ 3.17 6 1.62 5.04 6 4.34 F 5 4.93, P 5 0.029b

Boston 10.10 6 1.31 8.82 6 1.61 F 5 13.22, P 5 4.97 3 1024b

Phon. Flu. 8.78 6 2.23 8.11 6 2.02 F 5 1.86, P 5 0.17b

Sem. Flu. 11.49 6 2.28 10.31 6 2.58 F 5 4.11, P 5 0.046b

Imm. Recall 4.03 6 1.08 3.74 6 1.09 F 5 1.30, P 5 0.25b

Del. Recall 1.24 6 0.68 0.95 6 0.88 F 5 2.15, P 5 0.14b

FDS 5.20 6 0.81 5.28 6 1.37 F 5 0.06, P 5 0.79b

BDS 3.58 6 0.73 3.42 6 1.14 F 5 0.49, P 5 0.48b

Subjects in MCIn group are those nonconverter MCI subjects with a follow-up time >1 year. Values expressed as mean 6 standard
deviation.
aTime to conversion for MCIc (AD diagnosis date–first MR date) and follow-up time for MCIn (years).
bAnalysis of variance.
cv2 test.
MMSE, Mini-Mental State Examination; FAQ, Functional Activities Questionnaire; Phon. Flu., Phonemic Fluency; Sem. Flu, Semantic
Fluency; Imm. Recall, Immediate Recall; Del. Recall, Delayed Recall; FDS, Forward Digit Span; BDS, Backward Digit Span.
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Spherical domains or genus-zero surfaces, as the surface
representing a brain hemisphere, can be naturally decom-
posed into a set of spherical harmonics (SH) [Zhou et al.,
2004]. The SH functions Ym

l u; uð Þ : jmj � l 2 N
� �

are
orthornormal functions defined on the unit sphere as

Ym
l u; uð Þ5kl;mPm

l cos uð Þeimu

where u 2 0;p½ �, u 2 0; 2p½ , kl;m is the constant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l11

4p
l2mð Þ!
l1mð Þ!

q
,

and Pm
l is the associated Legendre polynomial. A spherical

function g : S2 ! R can be expanded in terms of SH as

g u; uð Þ5
X1

l50

X
jmj�l

cl;mYm
l u; uð Þ

where the coefficients cl;m are the amplitudes of the corre-

sponding SH functions.
A genus-zero triangulated 3D surface can be re-

parameterized to spherical coordinates [a spherical param-
eterization is a bijective mapping between (x, y, z) and
(u; u)] and then described by three spherical functions
x u; uð Þ, y u; uð Þ, and z u; uð Þ. These three spherical func-
tions can be expressed in terms of SH functions, and their
corresponding coefficients cl,m can be computed using
standard least-squares estimation up to a user-specified
maximum degree Lmax. From these estimated coefficients,
we can reconstruct the original function, where the larger
Lmax is used, the more accurate the reconstruction is.

We used the software package SPHARM (http://www.
enallagma.com/SPHARM.php) to obtain the spherical
parameterization of the triangulated surface describing
the brain hemisphere [Shen and Makedon, 2006] and then
to estimate the coefficients of the SH functions up to a
degree of Lmax 5 60. From these coefficients, by using
SPHARM, we obtained a set of reconstructions of the orig-
inal triangulated surfaces of the hemisphere provided by
FreeSurfer, from l 5 1 to l 5 Lmax [Shen et al., 2009]. This set
of reconstructions is the base element used to calculate the
SHFD value of the hemisphere and the SHFD map at local
level. A limit of Lmax 5 60 was established based on the
fact that the reconstructed surface quickly converges to the
original surface when l increases and therefore, as we will
show below, the reconstructions actually needed to calcu-
late the SHFD value have a degree l rather lower than 60.

We show in Figure 1F the original triangulated cortical
surface of a right hemisphere and a set of reconstructed
surfaces from SH functions with degrees ranging from
l 5 1 to l 5 60. The reconstructed surfaces have the same
number of triangles as the original surface, 221,481 trian-
gles in the case of Figure 1F, and each vertex in each sur-
face reconstruction has the same vertex index. This figure
also shows how quickly the reconstructed surface approxi-
mates the original surface when l increases, and therefore,
the difference between consecutive reconstructions is very
small for high values of l.

The classical box-counting method for calculating the
FD is based on counting the number of boxes covered by

Figure 1.

3D visualization of a T1-weighted volumetric image (A). Surfaces

and maps obtained from image A through the FreeSurfer pipeline:

pial surface with overlapped tessellation (B); white surface (C);

thickness map (D); and local gyrification index (LGI) map (E).

The original cortical surface of a right hemisphere as was

obtained from FreeSurfer and the reconstructed surfaces

obtained with SPHARM for the SH functions with degree l rang-

ing from 1 to 60 (F). [Color figure can be viewed at wileyonline-

library.com]
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the object for different box sizes and then obtaining the
slope of the log–log plot of (1/box size) versus number of
covered boxes [Hou et al., 1990]. The algorithm used to
obtain the SHFD [Yotter et al., 2011] follows a similar
strategy, but the degree l of the reconstructed surfaces and
the surface areas are used instead of considering the box
sizes and the number of covered boxes, respectively. This
allows us to obtain not only a global SHFD value for the
entire hemisphere surface but also a local SHFD value for
each vertex of the triangulated surface.

The global SHFD value for each hemisphere surface was
calculated as follows: (1) The total area of each recon-
structed surface was calculated by adding the area of all
their triangles. (2) A log–log plot of degree l versus surface
area was obtained from all reconstructed surfaces. In
this plot, the areas of the reconstructed surfaces were
normalized regarding the area of the original surface. (3)
The global SHFD value was calculated as the slope of the
regression line for the linear fragment of the log–log plot
obtained in Step (2). Previous studies [Nenadic et al., 2014,

; Yotter et al., 2011] have demonstrated that a range of
reconstructions with l from 11 to 29 provides the best
approximation of this linear fragment for the case of the
surface of a brain hemisphere obtained from FreeSurfer,
so this was the range of l we used. This range of recon-
structions supposes an approximate total area of 40%
(l 5 11) to 80% (l 5 29) of the original surface area. Figure
2A shows the log–log plot and the regression line for the
values obtained from the hemisphere in Figure 1F.

The local SHFD value for each vertex of the hemisphere
surfaces was calculated as follows: (1) An area value was
associated to each vertex in each reconstruction calculated
as the average area of the triangles of the reconstruction
that share that vertex [Yotter et al., 2010]. (2) The set of
average areas for the vertices in each reconstruction was
smoothed through a 30 mm Gaussian heat kernel [Chung
et al., 2005] by using the software provided by Dr Chung
at http://brainimaging.waisman.wisc.edu/~chung/lb/. A
distance of 30 mm was selected to enhance features in the
range of the distance between sulci and gyri, which is

Figure 2.

(A) Global SHFD computation as the slope of the regression

line of the log–log plot of surface area versus degree l of the

reconstruction. Surface areas of reconstructions were normal-

ized by the original surface area. The linear approximation

shown in red corresponds to reconstructions with degrees

l from 11 to 29. (B) Local SHFD computation for a vertex as

the slope of the regression line of the log–log plot of average

area versus degree l of the reconstruction. Average areas for

the vertex in each reconstruction were normalized by the origi-

nal average area for that vertex. The linear approximation

shown in red corresponds to reconstructions with degrees

l from 21 to 40. (D) Local SHFD map of the pial surface shown

in Figure 1. (C) Local SHFD map of the white surface shown in

Figure 1. [Color figure can be viewed at wileyonlinelibrary.com]
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about 20–30 mm [Luders et al., 2006]. (3) For each vertex,
a log–log plot of degree l versus average area was
obtained from all reconstructed surfaces. In this plot, the
average areas associated to the vertex for each recon-
structed surface were normalized regarding the average
area associated to the vertex in the original surface. (4)
The local SHFD value was then calculated as the slope of
the regression line for the linear fragment of the log–log
plot obtained in Step (3). Owing to the fact that the linear
fragment is quite variable among the tens of thousands of
vertices present in each surface, we selected the range of
degrees l that maximized the correlation and minimized
the error of the linear regression for the majority of the
vertices. We made an exhaustive search testing all the
intervals from l 5 1 to l 5 60 which have a size ranging
from 15 to 20, and the selected interval corresponded to
degrees l from 21 to 40. As an example, Figure 2B shows
the log–log plot and the regression line for the values
obtained for a vertex (the vertex number 20,034 out of
221,481) in the cortical surface shown in Figure 1F.
Figure 2C,D respectively shows the local SHFD maps
obtained visualizing the local SHFD values for all the vertices
in the pial and white surfaces of the hemisphere shown in
Figure 1B,C.

All SHFD algorithms were implemented in C11 and
global SHFD values and local SHFD maps were obtained
from the SH reconstructions of pial and white surfaces for
all subjects in the study. To perform group comparisons at
local level, average local SHFD maps for each group were
obtained following the same steps described above for the
case of thickness and LGI maps.

Statistical Analysis

Statistical differences between groups in global values
for thickness, gyrification index, and SHFD were assessed
using an analysis of covariance (ANCOVA) with age as
covariate to remove the effect of age. The resulting values
were thresholded at a P value of P< 0.05. Regression coeffi-
cients were computed using the Pearson partial correlation
method controlling for the effect of age. Analyses at global
level were performed using statistical functions within
MATLAB R2013a (The MathWorks Inc., Natick, MA).

Vertex-wise comparisons between each pair of groups at
local level were performed using the general linear model
(GLM) in FreeSurfer by using the mri_glmfit tool. In each
group comparison, the measure (thickness, LGI, local
SHFD—pial, and Local SHFD—white) was the dependent
variable, and the diagnostic group was the independent var-
iable, including age as a nuisance covariate. Surface maps
showing significant differences between groups were then
generated. Correlations of surface measures with MMSE
were performed establishing the measure as the dependent
variable and MMSE as the independent variable. All the
results obtained were corrected for multiple comparisons
using the false discovery rate (FDR) method [Benjamini and
Hochberg, 1995] with a q rate of 0.05.

RESULTS

Alzheimer’s Disease Versus Elderly Healthy

Controls Comparisons

After comparing the global scores of SHFD, thickness, and
LGI, we found that AD display significant reductions in
their SHFD global values (Fig. 3A,B) and in thickness and
LGI average scores (Fig. 3C,D). Particularly, SHFD was sta-
tistically significantly reduced in AD compared to HC in
both cerebral hemispheres for the white matter SHFD and in
the right hemisphere for the pial SHFD (Fig. 3A,B). Thick-
ness was reduced in the AD group compared to HC in both
hemispheres (Fig. 3C), and LGI was reduced in the AD
group compared to HC unilaterally in the right hemisphere
(Fig. 3D). All F-statistics and exact P values of group com-
parison of Figure 3 are presented in Supporting Information,
Table I. Moreover, for methodological comparison purposes,
we show the Pearson correlation scores between SHFD,
thickness, and LGI within each study group in Supporting
Information, Table II. White-matter SHFD and pial SHFD
displayed r values ranging from 0.85 to 0.92. Both SHFD
metrics were also correlated with LGI, with r values ranging
from 0.50 to 0.78. The thickness score did not achieve signifi-
cant positive correlation with any of the remaining metrics.

At local level, we found that white-matter SHFD, thickness,
and LGI analysis, but not pial SHFD, were able to detect signif-
icant vertex-wise changes in the AD group compared to HC
(Fig. 4). AD displayed significant decreases in white matter
SHFD in the insula, temporal pole, medial temporal lobe—
including the entorhinal, hippo/parahippocampus areas—and
the posterior cingulate cortex (PCC) (Fig. 4A). AD displayed
significant reductions of cortical thickness in the lateral tempo-
ral, anterior/medial temporal lobe—including the entorhinal,
hippo/parahippocampus areas—and PCC (Fig. 4B). As for
LGI, the AD group showed a more distributed pattern but
with a particular contribution of the posterior-medial temporal
lobe (Fig. 4C). All comparisons between AD and HC were
more prominent in the right hemisphere.

Mild Cognitive Impairment Comparisons

At global level, SHFD was the only measure displaying
significant reductions in MCIc group compared to HC and
MCIc compared to MCIn. SHFD was also statistically sig-
nificantly reduced in AD compared to MCIn and MCIc
compared to HC, all presented in both cerebral hemi-
spheres for the white matter SHFD and in the right hemi-
sphere for the pial SHFD (Fig. 3A,B). Thickness was
reduced in the AD group compared to MCIn, MCIc, and
MCI in both hemispheres (Fig. 3C), and LGI was reduced
in the AD group compared to MCIn and MCI unilaterally
in the right hemisphere (Fig. 3D).

At local level, similar to comparisons involving healthy
controls, the AD group showed reductions when compared
to the baseline MCI group. Although some extension differ-
ences are observable in the maps, all three metrics display
changes in equivalent cortical locations (Fig. 5A–C).
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Significant reductions in equivalent but smaller zones were
found when compared AD to MCIn in thickness and LGI
(maps not shown). No significant differences were found
between HC and MCI in any measure.

Importantly, we observed that only white-matter SHFD
and thickness were able to detect changes in the group of
individuals that clinically convert to AD within the 4
years’ follow-up period (Fig. 6). The white matter SHFD
metric showed cortical differences in distributed areas—
including an extended area in the medial frontal lobe—
between MCIc and MCIn (Fig. 6A). This metric also pre-
sented similar regions with cortical differences in the fron-
tal lobe between MCIc and HC (Fig. 6B). On the other
hand, the thickness approach captured differences in the
entorhinal cortex, lateral temporal, and PCC between
MCIc and HC (Fig. 6C). No significant differences were
found between AD and MCIc in any measure. Of note,
Supporting Information, Figures 1 and 2 show the average
maps of the three cortical surface metrics per group.

Association Between Local Cortical Complexity

and Cognition (MMSE)

We investigated whether cognitive impairment was
associated to the SHFD, thickness, and LGI metrics. No
significant correlation was found between MMSE and any

of the metrics in each group separately; nevertheless, we
observed that MMSE correlates with cortical surface
changes among the impaired individuals of our sample in
all three approaches (Fig. 7). MMSE displayed significant
correlations with white-matter SHFD in distributed areas
such as the left medial/superior frontal lobe, left intrapar-
ietal sulcus, and bilateral limbic areas—including the ento-
rhinal and hippo/parahippocampus areas (Fig. 7A).
MMSE displayed significant correlations with cortical
thickness in the left lateral temporal, bilateral entorhinal
and inferior temporal cortex, and right PCC (Fig. 7B).
MMSE displayed significant correlations with LGI in dis-
tributed areas such as the bilateral posterior-medial and
lateral temporal lobe, insula, and dorsolateral prefrontal
cortex (Fig. 7C). We have also investigated MMSE associa-
tion in the group composed of AD plus MCIc (Supporting
Information, Figure 3). Compared to the previous results
(AD plus MCI), we observed that some FDR-corrected cor-
relations on the left hemisphere disappear, while cortical
areas with significant correlation in the right hemisphere
remain present.

We also computed all partial correlations controlling for
the age between the other neuropsychological measures
(Table I) and the three structural metrics for each group.
However, no significant correlation was found in any of
these measures.

Figure 3.

Boxplot with differences between groups for each hemisphere in Global SHFD - white (A),

Global SHFD - pial (B), average thickness (C), and average LGI (D). P values correspond to

ANCOVA analyzes with age as covariate. Only P values below 0.05 are displayed. [Color figure

can be viewed at wileyonlinelibrary.com]
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Association Between Local Cortical

Complexity and Age

Finally, given that age is one of the most important fac-
tors for brain structural changes in elderly, we also investi-
gated whether age was associated with cortical surface
metrics. We found that thickness in the HC group was the
only measure displaying significant correlations with age.
At global level, correlation coefficients r 5 20.49 (left
hemisphere) and r 5 20.44 (right hemisphere) were
obtained. Vertex-wise correlations shown in Supporting
Information, Figure 4 indicate that thickness decreases with
age in some small areas of the anterior/superior temporal
lobe, supramarginal gyrus, and superior frontal gyrus.

DISCUSSION

AD involves neurodegenerative changes that alter the
structural complexity of the human brain. As these structural
alterations begin years before the clinical manifestations and
conversion to AD, there is a critical need for developing and
implementing neuroimaging biomarkers that can detect
changes in the normal shape of the cerebral gyri. In the past,
cortical-related assessments such as thickness and LGI analy-
sis, and more recently, FD quantifications have been pro-
posed as sensitive approaches to detecting early fingerprints
of neurodegeneration due to their ability to characterize small
morphometric deformations at the surface level. Using a large
sample of individuals, we found that FD, thickness, and LGI

Figure 4.

Vertex-wise comparisons of white-matter SHFD, thickness, and

local gyrification index between Alzheimer’s disease and elderly

healthy control groups in inflated surface. Statistical analysis was

controlled for age. Results were corrected for multiple compari-

sons using false discovery rating with q rate of 0.05.

Uncorrected results are also displayed in the second row for

references purposes. The color bars show the logarithmic scale

of P values (2log 10). [Color figure can be viewed at wileyonli-

nelibrary.com]

r Cortical Surface Changes in Alzheimer’s Disease r

r 5913 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


metrics display distinctive capabilities for describing cortical
complexity changes in impaired populations (AD, MCI,
MCIc, and MCIn) compared to healthy controls.

In our study, we included three surface-related methods
belonging to two different categories: one aimed to investi-
gate the cortical thickness, therefore, with little ability to
assess shape-related properties, and two focused on detect-
ing changes in cortical folding patterns (FD and LGI). In
agreement with these categories, we observed that global
white matter SHFD, pial SHFD, and LGI approaches display
strong correlations among themselves within all studied
groups, while the thickness approach did not show signifi-
cant positive associations with the other two methods. Other
studies have shown similar findings, where significant
correlations between global FD measurements based on

box-counting or regional FD assessments and gyrification
index have also been described in control groups [King
et al., 2010; Madan and Kensinger, 2016]. Moreover, King
et al. [2010] reported no correlations between thickness and
FD of pial and white matter surface, although other signifi-
cant correlations were found between the FD of the pial sur-
face and thickness in healthy subjects [Im et al., 2006; Jiang
et al., 2008; Madan and Kensinger, 2016]. Interestingly, King
et al.’s study also obtained better estimations for FD differ-
ences between studied groups using the white surface rather
than the pial surface. Our results fully agree with this obser-
vation, where the white-matter SHFD approach seems to be
more sensitive to detecting bilateral changes at the global
level and statistically corrected changes at the local level
than the pial SHFD.

Figure 5.

Vertex-wise comparisons of white-matter SHFD, thickness, and

local gyrification index between Alzheimer’s disease and mild

cognitive impairment groups in inflated surface. Statistical analy-

sis was controlled for age. Results were corrected for multiple

comparisons using false discovery rating with q rate of 0.05.

Uncorrected results are also displayed in the second row for

reference purposes. The color bars show the logarithmic scale

of P values (2log 10). [Color figure can be viewed at wileyonli-

nelibrary.com]
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Despite the potential advantage of detecting complex
structural changes, it is still poorly understood whether cor-
tical surface-based methods are useful for characterizing
populations at risk of conversion to AD. Thus, we designed
our study to investigate the structural surface features that
may identify future conversion to Alzheimer’s disease in
MCI subjects. In this sense, several recent studies have ana-
lyzed and compared the local thickness between healthy
controls and patients suffering MCI and AD [Blanc et al.,
2015; Delli Pizzi et al., 2014; Julkunen et al., 2009; Li et al.,
2011; Mak et al., 2015; Wang et al., 2016; Zhao et al., 2015] (in

Wang et al., 2016, LGI is also analyzed). In general, they
reported significant differences between HC and AD in simi-
lar regions as our findings, including the bilateral temporal
cortex, and distributed regions in the parietal and frontal
lobe [Blanc et al., 2015; Delli Pizzi et al., 2014; Li et al., 2011;
Zhao et al., 2015]. The study presented in Mak et al. [2015] is
a longitudinal analysis involving the percent change of
thickness over 12 months (longitudinal cortical thinning).
Although their results are not directly comparable to ours,
they found significantly greater percent change of thickness
in the AD group compared with HC in similar bilateral

Figure 6.

Vertex-wise comparisons between mild cognitive impairment

converters and mild cognitive impairment nonconverters groups

for white-matter SHFD (A), and vertex-wise comparisons

between mild cognitive impairment converters and elderly

healthy control groups for thickness in inflated surface (B).

Statistical analysis was controlled for age. Results were

corrected for multiple comparisons using false discovery rating

with q rate of 0.05. Uncorrected results are also displayed in

the second row for reference purposes. The color bars show

the logarithmic scale of P values (2log 10). [Color figure can be

viewed at wileyonlinelibrary.com]
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regions, where we found significant differences between HC
and AD: the temporal pole, lateral and medial temporal
lobe, and PCC. Moreover, small parietal and temporal
regions with significant differences between HC and amnes-
tic MCI were found in Wang et al. [2016] in both thickness
and LGI. Julkunen et al. [2009] found that MCIc displayed
significantly reduced thickness bilaterally in the superior
and middle frontal, superior, middle and inferior temporal,
fusiform, and parahippocampal regions and the cingulate
and retrosplenial cortices and also in the right precuneal and
paracentral regions compared to MCIn subjects. As for FD-
related studies, there is only one previous investigation that
applies a local FD approach to AD or MCI individuals
[King, 2014]. Unfortunately, that study uses a box-counting
local FD method on only two subjects: one healthy control
and one AD patient, and it is difficult to draw conclusions
about any similarities with ours. Another study used a lon-
gitudinal FD (box-counting) approach to study the atrophy
of several regions of interest (ROI) in MCI [Yuan et al., 2013].
Although the box-counting FD of ROIs is not exactly equiva-
lent to a local vertex-wise FD analysis such as ours, their
results revealed lower FD values for MCIc compared to
MCIn after 12 months (hippocampus), 18 months (temporal
lobe), and 24 months (cingulate gyrus) of follow-up.

As supported by our findings, all three surface-based
metrics (white-matter SHFD, thickness, and LGI) are able
to detect cortical changes in the AD group compared to

HC and MCI. However, they perform distinctively. White-
matter SHFD FD identifies changes in limbic structures,
particularly in the temporal lobe and PCC. Thickness also
distinguishes limbic regions in the medial temporal lobe
and PCC, but additionally detects alterations in the lateral
temporal. LGI is able to capture local changes in the
posterior-medial temporal lobe.

In any case, one of the most interesting target populations
in AD research is the MCI converter. As AD stages may be
too late to introduce therapeutic interventions, the study of
MCI individuals that remain stable or not over time may be
more interesting to understand the underlying mechanisms
of progression. Thus, we investigated the three surface-
based metrics in MCI individuals with information about
future conversion within 4 years. When comparing MCIc
and MCIn, only white-matter SHFD showed significant dif-
ferences both at the global and local vertex-wise level. More-
over, white-matter SHFD displayed changes between HC
and MCIc in similar regions as white-matter changes
between MCIc and MCIn. On the other hand, the thickness
approach detected changes between HC and MCIc and
between HC and AD in analogous regions. In this sense,
white-matter SHFD and thickness analysis may complement
each other to cover the preclinical spectrum of AD, in which
thickness analysis seems to be sensitive to detecting early
conversion in the entorhinal and limbic system and white-
matter SHFD in the medial prefrontal system, a prominent

Figure 7.

Vertex-wise partial correlations, with age as nuisance covariate, between cortical measures and

MMSE for AD plus MCI. Results were corrected for multiple comparisons using false discovery

rating with q rate of 0.05. The color bars show the logarithmic scale of P values (2log 10).

[Color figure can be viewed at wileyonlinelibrary.com]
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area of the default mode network. No known previous stud-
ies have examined the biological mechanism of the FD
changes in AD or MCI. It is hypothesized that FD reductions
in the brain WM could be mainly due to axonal loss, although
other factors such as an increased water content, a decreased
myelin content, and other inflammatory events can also
contribute to a more amorphous tissue that may lead to the
decrease of FD [Esteban et al., 2007; Zhang and Yue, 2016].

Finally, our study supports the association between corti-
cal surface-based metrics, including white-matter SHFD,
and cognitive impairment measured by MMSE. In the past,
the correlation between thickness, LGI, and MMSE in AD
and aMCI has been analyzed in several studies [Blanc et al.,
2015; Fjell et al., 2009; Wang et al., 2016; Yao et al., 2012].
Results shown in Blanc et al. [2015] and Fjell et al. [2009]
revealed significant correlations between thickness and
MMSE in an AD group in distributed areas including parie-
tal and temporal entorhinal cortices. In Wang et al. [2016],
the aMCI group shows small regions with significant corre-
lation between thickness and MMSE (left post central, left
inferior parietal, left precuneus, right supra marginal, and
right fusiform), although in Yao et al. [2012], only a region
on the left-middle and superior temporal gyrus presented a
positive correlation between thickness and MMSE in aMCI.
In Wang et al. [2016], LGI and MMSE presented a positive
correlation for the aMCI group in a small zone of the right
superior temporal gyrus. Similar to our previous compari-
son results, white-matter SHFD, thickness, and LGI display
patterns of cortical associations in which different cortical
systems correlate with MMSE.

CONCLUSIONS

Our results suggest that white-matter SHFD may be a
sensitive measure for characterizing complex cortical fold-
ing changes in populations at risk to convert to AD. SHFD
results complement known findings about thickness loss
in AD and MCI samples. In this sense, SHFD appears to
be a promising tool for obtaining a deeper understanding
in morphological changes of cortex present in AD, MCI,
and possibly other neurodegenerative diseases. The main
study limitation is the relatively small sample size of the
HC group (N 5 32).
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