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Abstract

As a commonly used tool for operationalizing measurement models, confirmatory factor analysis 

(CFA) requires strong assumptions that can lead to a poor fit of the model to real data. The post-

hoc modification model approach attempts to improve CFA fit through the use of modification 

indexes for identifying significant correlated residual error terms. We analyzed a 28-item emotion 

measure collected for n = 175 participants. The post-hoc modification approach indicated that 90 

item-pair errors were significantly correlated, which demonstrated the challenge in using a 

modification index, as the error terms must be individually modified as a sequence. Additionally, 

the post-hoc modification approach cannot guarantee a positive definite covariance matrix for the 

error terms. We propose a method that enables the entire inverse residual covariance matrix to be 

modeled as a sparse positive definite matrix that contains only a few off-diagonal elements 

bounded away from zero. This method circumvents the problem of having to handle correlated 

residual terms sequentially. By assigning a Lasso prior to the inverse covariance matrix, this 

Bayesian method achieves model parsimony as well as an identifiable model. Both simulated and 

real data sets were analyzed to evaluate the validity, robustness, and practical usefulness of the 

proposed procedure.
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Confirmatory factor analysis (CFA) is a commonly used technique for studying theory-

driven hypotheses regarding observed and unobserved variables. CFA has been extensively 

applied to research areas in psychology and the social sciences including personality 

assessment (Briggs & Cheek, 1986; Marsh & Hocevar, 1985), organizational studies (Stone-

Romero, Weaver, & Glenar, 1995), and quality of life research (Hays, Anderson, & Revicki, 

1993). Using CFA, the number of factors is assumed to be known a priori and is thus treated 
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as a fixed number in the estimation procedure. Unlike exploratory factor analysis (EFA), 

CFA requires the observed variables to have zero loadings on all factors except the 

appropriate ones, which are a priori specified in the model. The increasing use of CFA is 

partly due to its relative ease to set up, its robustness to mild deviations from the underlying 

assumptions (e.g., Curran, West & Finch, 1996; Flora & Curran, 2004; Hu, Bentler, & Kano, 

1992), and its important role in structural equation modeling (SEM; see Brown, 2006, p. xi; 

Thompson, 2004, p. 110), which has undergone rapid growth as a tool for studying causal 

relationships (Hershberger, 2003). For a recent review of CFA, see DiStefano and Hess 

(2005).

Researchers using CFA for various purposes often encounter a dilemma. Although in many 

ways theory-based CFA is more compelling than its counterpart of more exploratory work, 

sometimes the theory being tested simply does not fit the data well. Using the Big Five 

Personality data, Muthén and Asparouhov (2012) demonstrated that even in well-established 

theory, CFA may not fit well and possible correlated residuals may exist among items. When 

such a scenario occurs, it is tempting for researchers to revert to EFA, compare the results 

derived from the two different approaches, and make changes for a separate round of CFA 

exercise. For example, items that were found to cross-load on more than one factor in EFA 

are considered for deletion in the subsequent analysis. Recent work in Bayesian factor 

analysis proposed using different priors such as ridge regression prior or spike and slab prior 

- to shrink cross-loadings in EFA toward zero (Muthén and Asparouhov, 2012; Lu, Chow, & 

Loken, 2016). Another possibility is to use modification indexes (MIs) for identifying 

components in the model that could be tweaked for the purpose of improving overall 

goodness-of-fit. Typically, a constrained parameter is modified to become a free parameter 

and if the corresponding MI suggests that the improvement of model fit is significant, the 

model with the freed parameter will be used. This approach, sometimes known as post-hoc 

model modification (PMM, Kaplan, 1990; Sörbom, 1989), has been popularized by software 

programs such as LISREL (Jöreskog & Sörbom, 1984) and Mplus (Muthén & Muthén, 

1998–2013), both of which allow users to examine MIs and make changes to a number of 

parameters. Although critics of the method views MI as either a form of data snooping or a 

devious departure from the theory-driven paradigm (Steiger, 1990), there are several 

advantages to the modification approach from a practical point of view. First, CFA is a 

restrictive tool because hypotheses are rarely available that allow the specification of a 

simple factor pattern that agrees with real data. Second, the standard for acceptance for CFA 

models, such as criterion of percentage of variance accounted for, is higher than the standard 

of acceptance for EFA models (Bentler & Bonett, 1980). Such a high standard cannot always 

be achieved in practice. Lastly, when used appropriately, the PMM approach may pinpoint 

pockets of misspecification in the model, which could lead to modification and a more 

robust model (MacCallum, 1995; Sörbom, 1989).

One problem in using the PMM methodology is that the related statistical hypothesis testing 

can only be sequentially applied to nested models. Suppose model A containing a fixed 

parameter ψ1 = 0 is nested within model B, which contains the freed parameter of ψ1. A 

chi-squared statistic of one degree of freedom is used to evaluate whether the improvement 

due to the change of freeing the ψ1 parameter is statistically significant. If another parameter 

ψ2 needs to be tested, it must be tested after the testing of parameter ψ1. Although the 
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sequential testing procedure in PMM using MI can be used to modify a CFA model, the 

post-hoc procedure cannot simultaneously identify locations where modifications are 

needed. In other words, PMM may lead to a suboptimal solution. MacCallum (1986) 

examined specification searches and found methods such as MI tend to produce incorrect 

results. A second problem with PMM is that the procedure may not be practical when the 

number of items is large. For an CFA on 30 items, even when a small percentage, say 5%, of 

covariances deviate from the diagonal matrix assumption, there would be 22 flagged 

covariances. This is complicated by the possibility of false discovery; how PMM would 

control for spurious significant findings is far from clear. Additionally, there is no guarantee 

that the modified covariance matrix is positive definite, a critical requirement for the model 

based on the estimated parameters to form a proper joint density. We will return to these 

issues in more depth in the Discussion section.

In this paper we adopt the view that CFA is a modeling effort in which (1) the researcher has 

a theory-based factor structure in mind for the measures in the traditional CFA sense, and (2) 

the residual covariance structure in the error terms across all variables is not necessarily 

diagonal, but only a few of the off-diagonal elements are bounded away from zero. In 

particular, these covariance terms are treated as nuisance parameters — deviations from the 

theory-driven factor model that need to be accounted for but otherwise of little substantive 

interest. In other words, we do not adjust a CFA model post hoc but rather start with a 

comprehensive CFA model that allows for correlated residual errors between measures after 

accounting for the latent factors. Using a full correlated-error model has its own problems 

that the covariance matrix for the error terms can be quite large. Using the aforementioned 

example of CFA for 30 measures, the 30 × 30 covariance matrix contains 435 distinct off-

diagonal entries. We propose the use of a highly sparse representation of the covariance 

matrix. The technical implementation of such an idea is through the Bayesian Lasso (Least 

Absolute Shrinkage and Selection Operator) approach, in which the entire residual 

covariance matrix for all observed measures are modeled as a sparse structure that contains 

only a few covariance entries bounded away from zero.

Consider a researcher who uses SEM for a substantive analysis that requires CFA on a 20-

item response data set. Suppose that although the 3-factor model is an interpretable model 

and consistent with the theory, the 4-factor model offers better fit in terms of goodness-of-fit 

indexes such as CFI and RMSEA. Additionally, further examining the 3-factor model result 

reveals that 5%, or a 10-residual correlation, still lingers in the covariance matrix. Suppose 

the researcher prefers the 3-factor solution but has concerns using the diagonal 3-factor 

structure because the CFA result could be biased, and perhaps more important, that the bias 

could percolate to the other SEM components. In such a scenario, what can the researcher 

do? She can dismiss the error covariances and defend the solution using theory, or she can 

use PMM whose limitations we have discussed. An alternative is to use the Bayesian Lasso. 

The greatest practical benefits that we see for the Bayesian Lasso in this situation include (1) 

the ability to retain a more parsimonious factor structure that could be more consistent with 

the theory by treating off-diagonal errors as a nuisance factor, and (2) the use of a defensible 

statistical method for handling the limited and yet non-negligible number of error 

covariances. In contrast to PMM, the Lasso approach avoids the form of p-value hacking 

inherent in PMM. In other words, truly zero covariance that shows up as significant due to 
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sampling error is likely to be shrunken to near zero, and truly non-zero covariance will likely 

be detected and adjusted for in the CFA analysis. As a result, the researcher can specify a 

theory-based confirmatory factor-structure and adjust the model using a data-driven process 

instead of tediously modifying one parameter at a time.

The third practical benefit of the Bayesian Lasso method is that it can prevent or at least 

reduce the propagation of bias in CFA to SEM estimates. In a study using simulated data 

that we provide later, we demonstrate this effect using a simple SEM example. In addition to 

the above-mentioned practical benefits, the Bayesian Lasso also enjoys many technical 

benefits, compared with other methods including PMM. First, it is a formal statistical model 

that maintains the positive definiteness property of the covariance matrix. Second, unlike a 

CFA model with a fully specified error covariance under a frequentist framework, the 

Bayesian Lasso model is identifiable. Third, as we shall see, the Bayesian Lasso can easily 

incorporate an additional step of imputation in handling missing values. This could be very 

useful for data sets that contain partially missing values — e.g., when participants miss a 

response on some items but not all. Fourth, the Bayesian Lasso model generally fits the data 

better. By limiting the denseness of the covariance in terms of deviation from a diagonal 

form, the Bayesian Lasso is able to achieve an optimal tradeoff between overall fit and 

model complexity. Finally, the Bayesian Lasso can be used as a diagnostic tool for affirming 

or refuting theory-based factor configurations. As we shall see from the simulation 

experiments, specific patterns in the residual covariance matrix often signal certain forms of 

misspecification. An excessive amount of covariance error terms would suggest that the CFA 

is not fitting well and that the researcher should investigate –this is an advantage that a 

global goodness-of-fit index would not offer.

The Bayesian Lasso factor model proposed in this paper can be viewed as a specific 

implementation of Bayesian structural equation modeling (SEM) as discussed in Muthén 

and Asparouhov (2012). The authors argued that in many SEM applications, unnecessary 

restrictions to models are applied to represent hypotheses derived from substantive theories. 

As hypotheses are reflected in parameters fixed at zero, they proposed to replace parameters 

of exact zeros with approximate zeros via a Bayesian analysis using small variance priors. 

For the Bayesian Lasso factor model, limiting the numbers of nonzero (or not-so-close-to-

zero) parameters is especially important as we focus on the residual covariance matrix and 

the number of parameters that grow quickly with the dimension of the problem. Without the 

Lasso component, a Bayesian approach for handling residual covariance would be to free the 

covariance parameters and assign prior distributions to the covariance entries. However, such 

a generic Bayesian approach would not necessarily lead to a sparse solution. As previously 

pointed out, Muthén and Asparouhov (2012) demonstrated the use of a ridge-regression 

prior for exploring the presence of cross-loadings in CFA as an example of the Bayesian 

SEM approach. The Bayesian Lasso in this paper is a special implementation of the 

Bayesian SEM for CFA covariance structures, not for cross-loading. The current approach is 

also analogous to some local dependent models in item response theory (IRT; e.g., Ip et al., 

2004). Similar to local dependent item response models, the Bayesian Lasso approach treats 

the set of nonzero entries in the error covariance matrix as a means of achieving a better 

goodness-of-fit, but is otherwise only of peripheral interest.
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The remainder of the paper is organized as follows: First, we provide an overview of the 

Bayesian and Lasso approaches. We then describe the CFA model with Bayesian covariance 

Lasso prior and outline the estimation procedure. Next we describe several simulation 

studies for evaluating the proposed procedure. An analysis of a real data set collected from a 

study on emotion is then presented. Finally, we provide a discussion.

The Bayesian Covariance Lasso Prior CFA Model

Bayesian Analysis

The Bayesian approach is well recognized in the statistics and psychology literature as an 

attractive way of analyzing a wide variety of models (see for example, Congdon, 2005, 

2007, 2014, and the references therein). The most attractive features of the Bayesian 

approach in statistical modeling and data analysis are as follows (Gelman et al., 2004; 

Congdon, 2007). First, it allows the use of genuine prior information in addition to the 

information available in observed data to produce results. Second, sampling-based Bayesian 

methods rely less on large-sample asymptotic theory, thereby producing reliable results even 

with relatively small sample sizes. Third, it provides better statistics for goodness-of-fit and 

model comparison as well as other useful statistics; for example, point estimates and interval 

estimates on parameters and probability values on hypotheses. Lastly, compared with 

maximum likelihood (ML)-based methods, the Bayesian approach is conceptually simple 

and can be implemented in complex models that are more difficult to fit using classical 

methods.

A typical Bayesian analysis can be outlined in the following steps:

1. Define a model M with unknown parameter θ;

2. Assign prior distribution of θ under model M, p(θ|M), which reflects the prior 

information from some sources, such as the knowledge of experts, analyses of 

similar data or past data, and so on.

3. Construct the likelihood function p(y|θ, M) based on the observed data y and the 

model M defined in Step 1;

4. Determine the posterior distribution of θ by incorporating the sample 

information in p(y|θ, M) and prior information in p(θ|M) through p(θ|y, M) ∝ 
p(y|θ, M) × p(θ|M), where p(θ|y, M) is the posterior of θ;

5. Calculate the quantities of interest for θ (for example, point estimates and 

interval estimates) based on the posterior distribution of θ in Step 4.

Lasso Model

Regularization is a general approach that requires additional model information for 

improving a solution that is inherently unstable or too complex for meaningful 

interpretation. In frequentist framework, the Lasso approach implements regularization by 

adding a penalty term to the usual likelihood so that the model would move toward a 

solution that contains fewer parameters. In general, frequentist Lasso tends to produce some 

coefficients that are exactly zero, which not only helps to increase predictive accuracy, but 
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also enjoys desirable properties including improved interpretability and numerical stability. 

Suppose the set of parameters in a model is denoted by θ and θj denotes individual 

parameters, j = 1, ⋯, p. Specifically a Lasso approach uses the following objective function:

(1)

where PL(θ) and LL(θ) are respectively the penalized and the usual log-likelihoods based on 

model M, and λ ≥ 0 is a tuning parameter that determines the amounts of shrinkage 

(Tibshirani, 1996). A larger λ value tends to increase the penalty for more complex models 

that have more parameters. Because each tuning parameter value corresponds to a fitted 

model, selecting λ can be viewed as a model selection problem. Tibshirani (1996) proposed 

the quadratic programming algorithm to find the Lasso solutions and described methods 

such as cross-validation to select the tuning parameter λ in Eq. 1.

In Bayesian framework, the key quantity is the posterior distribution p(θ|y, M) ∝ p(y|θ, M) 

× p(θ|M), where p(θ|M) is the prior distribution. Compared to a frequentist approach in 

which inference is based on the likelihood term p(y|θ, M), the Bayesian posterior contains 

the additional term for the prior p(θ|M). This is an important observation as it is the 

connection to a regularization approach such as Lasso. The log posterior in a Bayesian 

approach takes the general form

where LPrior(θ) represents the log prior (possibly multivariate). Thus, if the appropriate 

form of prior distribution is chosen, the log prior distribution in Bayesian analysis tends to 

play the role of the penalty function in Lasso. For example, Tibshirani (1996) suggested that 

Lasso estimates can be interpreted under the Bayesian framework when the θj’s are assigned 

independent and identical double-exponential priors, . The probability density 

functions of double exponential with some different values of λ were presented in Fig. 1. 

Like the normal distribution with zero mean, this distribution is unimodal and symmetrical. 

However, it has a sharper peak than the normal distribution. The plots revealed that the 

larger the value of λ, the more the probability density function concentrated around zero.

Algorithms for implementing Lasso include Efron et al. (2004), Friedman et al. (2007, 

2010), and Wu and Lange (2008). However, none of these algorithms provide a valid 

measure of standard error, which can be problematic for the frequentist Lasso (Kyung et al., 

2010). Park and Casella (2008) proposed Gibbs sampling for the Lasso with the double-

exponential priors in the hierarchical model, which was the first explicit treatment of a 

Bayesian Lasso regression; see also Hans (2009). Compared with the frequentist Lasso, the 

Bayesian Lasso provides a valid measure of standard error (Kyung et al., 2010). Moreover, 

the sampling-based Bayesian framework also provides a flexible way of estimating the 

shrinkage parameter λ along with other parameters simultaneously, which lessens the 
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heavily computational burden in selecting the optimal values of λ via a commonly used 

cross-validation procedure.

In recent years, a tremendous amount of work has been done to apply Lasso and L1-like 

penalties to the traditional models (Tibshirani, 2011). One example is the graphical Lasso 

(Yuan & Lin, 2007; Friedman et al., 2007) for fitting a sparse Gaussian graph that applied 

the L1-penalty — i.e., the sum of |θj |, to the inverse covariance matrix for graph-edge 

selection. The modeling of the inverse covariance matrix (or the precision matrix), instead of 

the covariance matrix, was an innovation proposed by Dempster (1972). For a joint 

multivariate normal distribution, zero entry of the precision matrix at the (i, j) position 

corresponds to conditional independence of the corresponding variables i and j given all 

other variables. Compared with zero entry of the covariance matrix at the (i, j) position 

which only implies non-correlation between variables i and j, the conditional independence 

assumption is both stronger and more interpretable (Edwards, 2000). Indeed, a sparse 

inverse covariance matrix implies a sparse graphical model or path diagram of which 

conditional independence relationships between variables can be directly read off. The 

graphical Lasso is also known as covariance Lasso (Khondker et al., 2013). Because our 

proposed model was inspired by the Bayesian approach for covariance Lasso in Khondker et 

al. (2013) and Wang (2012) hereafter we refer the proposed model as Bayesian covariance 

Lasso CFA.

Bayesian Covariance Lasso for Confirmatory Factor Analysis

Suppose y1, y2, ⋯, yn are independent random observations and each yi = (yi1, yi2, ⋯, yip)T 

satisfies the following factor analysis model:

(2)

where μ is p × 1 vector of intercepts, and Λ is a p × q factor-loading matrix that reflects the 

relation of observed variables in yi with the q × 1 latent factors in ωi. Moreover, it is 

assumed that ωi follows N[0, Φ], and εi is a p×1 random vector of measurement errors, or 

residuals, which is independent of ωi and follows N[0, Ψ]. Following a standard modeling 

approach for CFA, the number of latent factors and the structure of Λ are specified a priori. 

In contrast to the common diagonality assumption about Ψ in factor analysis, in our model, 

the variance-covariance matrix Ψ is not necessarily diagonal.

The proposed Bayesian covariance Lasso for CFA assigns prior distributions for the inverse 

of the covariance matrix instead of directly for the covariance matrix. Let Σ = Ψ−1 = (σij)p×p. 

Together with a positive definiteness constraint on the covariance matrix, independent 

exponential priors and the double exponential priors are respectively assigned for the 

diagonal and the off-diagonal elements of Σ (Wang, 2012). The double exponential density 

has the form , i < j, whereas the exponential density function has the form 

. For a full Bayesian Lasso approach, instead of using cross-validation methods, 

an appropriate hyperprior is assigned to λ. Specifically, λ ~ Gamma(αλ0, βλ0), where αλ0 

and βλ0 are hyperparameters whose values are preassigned. This Bayesian method of 
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modeling λ has been applied in the context of Bayesian Lasso regression models (Hans, 

2009; Park & Casella, 2008). The common choices for these hyperparameters are αλ0 = 1 

and βλ0 to be small.

For the structural parameters involved in μ, Λ, and Φ, the following conjugate prior 

distributions are assigned (Lee, 2007). For k = 1, ⋯, p,

(3)

where  is the kth row of Λ; μ0, Λ0k, ρ0, and positive definite matrices Hμ0, H0k, and R0 

are hyperparameters whose values are assumed to be given to represent the available prior 

knowledge that may be obtained from the subjective knowledge of field experts and/or 

analysis of past or closely related data.

Gibbs Sampler and Positive Definiteness of Covariance Matrix

The Gibbs sampler (Geman & Geman, 1984), which is a form of Markov chain Monte Carlo 

(MCMC; Gilks, Richardson, & Spiegelhalter, 1996), combined with the idea of data 

augmentation (Tanner & Wong, 1987), iteratively simulates observations from the full 

conditional distributions such that eventually the posterior distribution of the parameters of 

interest and latent quantities can be empirically represented by a collection of simulated 

values. For example, in a simple model of two parameters θ1, θ2, the Gibbs sampler would 

iteratively draw values from the full conditional distributions p(θ1|θ2, y) and p(θ2|θ1, y), 

where y represents the data. If the full conditional distributions are standard distributions, 

simulating observations from them is rather straightforward and fast. For nonstandard 

conditional distributions, the Metropolis-Hastings (MH) algorithm can be used (see 

Hastings, 1970; Metropolis et al., 1953 for more details). Suppose the parameters of interest 

from the kth iteration in the Gibbs sampler is denoted by . It has 

been shown that under mild regularity conditions, the joint distribution of 

( ) converges to the desired posterior distribution [θ|y, M], after a 

sufficiently large number of iterations (called a burn-in phase), say K. After discarding the 

observations obtained at the burn-in phase (or say, after convergence), statistical inference of 

θ can be carried out on the basis of the simulated samples {θ(K+j) : j = 1, 2, ⋯, J}. For 

example, Bayesian point estimates and standard error estimates of θ can be produced by 

using the corresponding posterior means and their posterior covariance matrix of the 

simulated samples.

The specification of the Bayesian covariance Lasso CFA model allows a block Gibbs 

sampling scheme to be implemented for statistical inference. An outline of the 

implementation of the block Gibbs sampler is given in Appendix 1. The block Gibbs 

sampler offers a convenient way to handle missing values. Under the Missing-At-Random 

(MAR) assumption (Little & Rubin, 1987), missing values were imputed. In other words, 

the conditional distributions of a missing variable uses data from other variables to inform 

the imputation. The block Gibbs sampler eventually provides an estimate of Σ that can be 
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inverted to obtain Ψ = Σ−1. Detailed model specification and full conditional distributions 

are described within the R codes provided in the online Supplementary Materials Section 1 

on the journal website.

Under the proposed block Gibbs sampler, it can be proved that covariance matrix estimate is 

positive definite. The mathematical proof of positive definiteness of Σ is included in 

Appendix 2. The positive definiteness of Σ implies that Ψ is also positive definite. The result 

is an important technical innovation because the positive definiteness of the covariance 

matrix is a necessary condition for a valid CFA solution.

Convergence Monitoring, Goodness-of-Fit, Uncertainty Estimates, and Identifiability 
Checking

The convergence of the MCMC algorithm is monitored by the estimated potential scale 

reduction (EPSR) value (Gelman, 1996) of each individual parameter of interest. The EPSR 

value can be calculated from several parallel sequences of simulated observations generated 

independently via different starting values. For more details of computation of the EPSR 

value, please refer to Gelman (1996). The whole simulation procedure is said to be 

converged if all the EPSR values are less than 1.2. Once the algorithm is judged to converge, 

a large number of draws can then be sampled from the joint posterior distribution to produce 

Bayesian point estimates and standard errors estimates of the unknown parameters and latent 

variables. The EPSR value can be obtained by using an R package called coda (Plummer et 

al., 2006).

The goodness-of-fit of the posited model was tested via the posterior predictive (PP) p-value 

(Gelman, Meng, & Stern, 1996; Scheines e al., 1999) as introduced in Lee (2007) for SEMs 

and related models. As discussed in Muthén and Asparouhov (2012), the PP p-value is akin 

to a model fit index. Here we used the PP p-value as a complementary statistic for assessing 

the goodness-of-fit of a single model, given that the Bayesian Lasso was already used as a 

model selection tool. The implementation of the PP procedure in Mplus can be found in 

Asparouhov and Muthén (2010) and a brief overview can be found in Muthén and 

Asparouhov (2012). A model is considered plausible if the PP p-value estimate is not far 

from 0.5.

Analogous to the measure of confidence interval in a frequentist’s approach, the Bayesian 

approach uses the concept of Highest Posterior Density (HPD) intervals to characterize the 

uncertainty associated with an estimated parameter. The 100(1 − α)% HPD interval (Box & 

Tiao, 1992; Chen & Shao, 1999) for an unknown parameter θ is defined as

where δ is the largest constant such that ∫H(δ) p(θ|y, M)dθ = 1 − α. The HPD interval can 

also be obtained by using the R package coda, which was used for the analysis in this paper.

A key issue using a full covariance matrix for errors in CFA is model identifiability, for 

example, the model is not identified if the parameters are redundant. Under a frequentist 
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framework, freeing all the residual covariance parameters violates the counting rule (Kaplan, 

2009) — i.e., the number of free parameters is less than or equal to p(p + 3)/2, where p is the 

dimension of yi — that generally leads to an unidentified model. Using the data setting in 

the simulation study 1 as an example, when p = 10, the number of free parameters is 76, 

which is greater than 10×(10+3)/2 = 65, meaning that the model is unidentified. In a 

practical implementation such as using Mplus, when all residual co-variances are specified 

to be freely estimated under the ML framework, an error message appears, stating that the 

degree of freedom for this model is negative and that the model is not identified will be 

returned. Under the Bayesian framework, model identification can be achieved by the 

provision of prior information in restricting the range of individual elements in the 

covariance matrix. The Bayesian Lasso method does not, however, exactly assign zero 

values to off-diagonal elements in the covariance matrix; it shrinks the more weakly related 

parameters close to zero faster (Park & Casella, 2008), and as a result, avoids the 

nonidentification problem. Kaufman and Press (1973) proved that the Bayesian CFA model 

with an inverse-Wishart prior for the full Ψ matrix is identified. For the proposed CFA 

model with a covariance Lasso prior, identifiability can be empirically evaluated by 

examining the convergence of an MCMC sequence of the parameters. One common way to 

do this is to generate parallel MCMC sequences with different starting values and check that 

the sequences mix well via trace plots. An alternative is to check EPSR values (<1.2). Both 

methods were used to check identifiability in our subsequent data analysis.

Empirical Studies

Study 1: Parameter Recovery When the Model is Correctly Specified

The main purpose of this section is to evaluate the parameter recovery of the proposed CFA 

model with a Bayesian covariance Lasso prior when the model is correctly specified. A data 

set was simulated based on the model specified in Eq. 2 with the number of observed 

variables set at p = 10 and the number of factors set at q = 2. It was assumed that Eq. 2 

contained the following structure:

where the 1’s and 0’s are fixed for identification purpose, and
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All elements in Ψ were considered free and accordingly estimated. The model structure was 

presented in Fig. 2(a). The true values of the structural parameters were set as follows: μ = 

(μ1, μ2, ⋯, μ10)T = (0.5, 0.5, ⋯, 0.5)T, λ21 = λ72 = λ82 = 0.8, λ31 = λ41 = λ92 = 0.5, λ51 = 

λ10,2 = 0.3, ϕ11 = ϕ22 = 1.0, ϕ21 = 0.3, and ψkk = 0.36, for k = 1, 2, 6, 7, 8; ψkk = 0.50, for k 
= 3, 4, 5, 9, 10; ψ16 = ψ61 = ψ27 = ψ72 = ψ35 = ψ53 = ψ8,10 = ψ10,8 = 0.3. Two levels of 

sample sizes were used, N = 200 and N = 500, and for each sample size 100 replications 

were generated.

Additionally, a sensitivity analysis regarding inputs in the prior distributions was conducted 

by perturbing the prior input as follows:

Perturbed Input I: The elements in μ0 and Λ0k were taken as 0.0, and Hμ0 and H0k were 

taken as diagonal matrices with all diagonal elements equal to 4.0 in appropriate order. ρ0 = 

6, R0 = 6I2, where I2 is an identity matrix, αλ0 = 1, and βλ0 = 0.01.

Perturbed Input II: The elements in μ0 and Λ0k were taken as true values, and Hμ0 and H0k 

were taken as identity matrices in appropriate order. ρ0 = 3, R0 = 6I2, where I2 is an identity 

matrix, αλ0 = 1, and βλ0 = 0.005.

Several test runs were initially conducted to determine the approximate number of MCMC 

iterations that would be required for achieving convergence. It was observed that the 

algorithm converged in less than 5,000 iterations, as indicated by the EPSR values being less 

than 1.2. In the actual run, we used the more conservative number of iterations of 10,000 for 

the burn-in. For each replication, we used 10,000 draws subsequent to the burn-in period for 

deriving required statistics. Based on 100 replications, the bias of the estimates (BIAS), the 

mean of the standard error estimates (SE), and the root mean squares (RMS) error between 

the estimates and the true values were computed. Table 1 summarizes the results of the 

simulation study with N = 200. Both BIAS and RMS values were quite small, indicating that 

the Bayesian estimates of the unknown parameters are generally accurate. Additionally, it 

can be seen that for the given level of sample size, the Bayesian estimates perform well 

under different prior inputs, suggesting that the analysis results are not sensitive to how prior 

inputs are specified. The result for N = 500 is similar to that for N = 200. Briefly, for most 

unknown parameters, the BIAS, SE and RMS reduced when sample size was increased to N 
= 500. To save space, we do not present the full result for N = 500.

We also compared the performance of the Bayesian CFA that used the proposed Lasso prior 

to a standard Wishart prior distribution using the same simulated data sets. The simulation 

experiment, which is not fully reported here due to space limitations, suggests that the 

proposed Lasso prior distribution performs better than the Wishart prior in terms of bias and 

RMS. For example, in N = 200 and 500, compared with the Wishart prior, the L1 loss for the 

Bayesian Lasso method was respectively reduced by 67% and 75%. The better performance 

of the Lasso prior may be due to (1) the priors were applied to correctly specified models 

and the Lasso prior expects the covariance structure to be sparse, which is indeed the case, 

and (2) the flexibility of the Lasso prior as compared to the Wishart prior, which tends to 

concentrate probability mass at the expected value.
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Study 2: The Power of Detecting Significant Residual Covariances and the Potential 
Problem of Capitalization on Chance

Simulation Study 2 evaluates the performance of the proposed model in detecting genuine 

nonzero residual covariances and investigates the extent of capitalization on the chance the 

proposed model may suffer from as pointed out by MacCallum (1986) and thus both power 

and Type I error rates will be examined. A data set was simulated based on the model 

structure specified with the number of observed variables set at p = 10 and the number of 

factors set at q = 2. Two residual correlations ψ16 and ψ27 were set to non-zero values. The 

set-up is visualized in Fig. 2(b). Two levels of factor loadings (0.5, 0.8), two levels of factor 

correlation (0.3, 0.7), and three levels of residual correlation (0.0, 0.3 and 0.7) were 

specified, resulting in a total of 2 × 2 × 3 = 12 different conditions. A sample size of 250 was 

used for all the conditions and 100 replications were generated for each condition. For each 

condition, power for detecting individual nonzero residual correlation ψ16 and ψ27 as well 

as the average Type I error rate over zero residual correlations was calculated based on the 

100 replications. The results are summarized in the top half of Table 2. It can be seen that in 

general the power of detecting ψ16 and ψ27 is satisfactory except for ψ27 under conditions 5 

and 7, of which residual correlations are at the lower level of 0.3. By comparing these results 

to the patterns of other conditions of which residual correlation is low, we suspected that 

lower power is due to the larger ratio between factor loading (0.8) and residual correlation 

(0.3). In order to test this hypothesis, four additional settings (13–18) were considered for 

different levels of factor loading (0.3, 0.5, 0.8) and one level of residual correlation (0.2). 

The results are reported in the bottom half of Table 2. It seems plausible that a low ratio of 

residual correlation and factor loading would result in low power.

For Type I error rates — i.e., capitalization on chance when residual correlation is actually 

zero — the results in Table 2 reveal that the Bayesian covariance Lasso CFA procedure can 

maintain detection of spurious nonzeros at approximately the nominal rate of 5%. When 

both the correlation between the factors and the residual correlation are high (conditions 4 

and 20), the Type I error rate tends to elevate slightly above the nominal rate.

Study 3: Diagnostic Tool for Misspecification with Cross-loading

Because the CFA is a strong model that places strict assumptions on the pattern of factor 

loading, it is prone to misspecification. For example, an item may cross-load on more than 

one factor. The performance of the Bayesian Lasso under such a situation would be of 

interest because residual correlations may manifest and sound an alarm. Thus, a study of the 

performance of the Bayesian covariance Lasso under a misspecified model is important for 

an understanding of the relationship between the various model components as well as 

potential use as a diagnostic tool.

We conducted a simulation experiments for two scenarios of misspecification with cross-

loading. A data set was simulated based on the model specified in Eq. 2 with the number of 

observed variables set at p = 6 and the number of factors set at q = 2. It was assumed that Λ 
contained the following overlapping structure:
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where the 1’s and 0’s are fixed for identification purpose, and Ψ is assumed to be a diagonal 

matrix. Item 2 is cross-loaded on both factors 1 and 2 with respective loadings of 0.8 and 

λ22. The model structure is visualized in Fig. 2(c). Four settings were considered: {λ22 = 

0.3, N = 250}, {λ22 = 0.3, N = 500}, {λ22 = 0.8, N = 250}, and {λ22 = 0.8, N = 500}. For 

each setting, 100 replications were generated. The data set was analyzed under the proposed 

CFA model with the Bayesian covariance Lasso prior and the following non-overlapping 

factor structure of Λ:

(4)

Due to space limitations, we only report the full results for the high cross-loading cases of 

which λ22 = 0.8 with N=500, and highlight findings for N=250, as well as for the low cross-

loading cases of which λ22 = 0.3. Table 3 reports the patterns of significant residual 

covariances detected in the 100 replications. The most frequently detected significant 

residual covariances were {ψ42, ψ52, ψ62} (across factor 1 and 2), and {ψ54, ψ64, ψ65} 

(within factor 2). It can be seen that when the cross-loading for item 2 is substantial (λ22 = 

0.8) and the sample size is N=500 (250), the total numbers of significant residual 

covariances for ψ42, ψ52, ψ62, ψ54, ψ64, and ψ65 are then respectively 97 (94), 99 (91), 99 

(93), 99 (96), 98 (96), and 99 (97), all out of 100. (See Table 3.) The patterns reveal that 

when the Bayesian Lasso model was misspecified by treating λ22 as zero, significant 

residual covariances are present between item 2 and the items that are loaded on factor 2 as 

well as the residual covariances amongst items that are on factor 2. Interestingly, the cross-

loading (in this case item 2) appears to induce correlations to all of the item pairs within the 

factor to which the item belongs. When the cross-loading for item 2 is small (λ22 = 0.3), the 

pattern of significant residual covariance is not as obvious. For example, the total number of 

significant residual covariances for the above parameters for N = 250 are 4, 4, 7, 5, 5, and 3, 

and for N = 500, 18, 17, 17, 21, 24, and 15. The Bayesian Lasso procedure is not powered to 

detect small residuals at these sample sizes. In summary, we observe that for both low and 

high cross-loading, when the sample size becomes larger, the trend of significant residual 

covariances becomes more apparent. When an item that belongs to a primary factor is cross-

loaded on a different factor, it tends to “infect” all of the items within its primary factor. We 

conducted a separate experiment to examine more complex cross-loading. The patterns of 

residual covariances were consistent with what we observed but became more complex 

when the cross-loading patterns varied. The full results of the additional simulation 

experiments are not reported here.
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Study 4: Analysis of Emotion with Bayesian Covariance Lasso CFA

The Bayesian covariance Lasso CFA, was applied to a data set collected from a study on 

emotions and diet in women (Lu, Huet, & Dubé, 2011). Data were collected from a sample 

of n = 186 Caucasian adult non-obese women in a large North American city. Participants, 

who were recruited through a local advertisement, all signed an informed consent form 

before engaging in the study. Each participant received a small incentive for participating. 

The study protocol was approved by the human subjects ethics committee of McGill 

University, Canada. Twenty-eight items were selected to cover the entire spectrum of 

positive and negative affects. The selected items were adapted from the Consumption 

Emotions Set (CES) (Richins, 1997), which includes 47 emotion descriptors (items) 

representing the broader range of emotions consumers most frequently experience in 

consumption situations. To keep the questionnaire concise, Lu, Huet, and Dubé (2011) 

selected 28 emotion items that were found most relevant to food consumption from the 

literature on eating behaviors (Canetti, Bachar, & Berry, 2002) and excluded those less 

eating-relevant emotion items. Participants were asked to indicate the degree to which they 

experienced each of the emotions at the present moment by placing a mark on a 15-cm 

visual analogue scale with 0 cm indicating “don’t feel the emotion at all” and 15 cm 

indicating “feel it intensely.” The scales were then transformed into numerical scales ranging 

from 0 to 150 mm with 1-mm gradations. Each participant reported her emotional states 

every 2 hour, 6 times per day over 10 observation days. In the current study, the response 

data from the third time point of observation were used to demonstrate the proposed method.

For the data used in the current study, out of 186 participants, n = 11 of cases were deemed 

to have high proportions (60% or more) of missing values were not included in the analysis, 

resulting in a sample size of n = 175. Six participants had 3.6% and one participant had 25% 

of missing values in their responses. The missing values were assumed to be MAR and the 

Gibbs sampler scheme imputed values for the missing data in our implementation (see 

Section on Gibbs sampler). All raw data were treated as continuous and standardized.

To conduct the proposed Bayesian covariance Lasso CFA, we first needed to determine the 

factor structure of the items. Arguably, the CES contains the most extensive list of emotion 

descriptors of emotions. However, the number of identified emotion factors (hereafter called 

emotions) in either valence — positive emotion (PE) or negative emotion (NE) — are 

substantial in the CES. Table 4 contains the list of identified emotions and emotion 

descriptors from CES. Although prior work on eating-related emotion has identified four to 

six emotions, only a few used a two-factor model of positive and negative emotional valence 

(e.g., Han & Back, 2008). Macht (1999) reported that four emotions — joy, anger, fear, 

sadness — could change the characteristics of eating. In a study of eating in everyday life, 

Macht & Simons (2000) found 6 emotions that covered different emotional states relaxation, 

joy, anger, sadness, and tension. In the original analytic work in Lu, Huet, and Dubé (2011), 

a total of 28 items (emotion descriptors) and 5 emotions were represented by the following 

descriptors and identified in a CFA happy, peaceful, angry, ashamed, and worried. A 

comparison of the 5 identified factors to the CES emotions is provided in Table 4.

Partly because the focus of Lu, Huet, and Dubé (2011) was to test how location (home vs. 

away-from-home) moderated the relationship between emotion and food choice, some low-
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arousal positive emotions such as peaceful and calm that were often experienced at home 

were included while other positive emotions not directly related to this context such as 

surprised and amazed were not included. On the other hand, negative emotions such as 

guilty and ashamed have been known to be associated with overeating and junk food 

consumption. The ashamed factor in the 5-factor solution (Table 4) reflects this salient 

feature of the study. While the original CFA in Lu, Huet, and Dubé (2011) appears to have 

some limitations (e.g., the use of an averaged data set), as pointed out by a reviewer, we 

followed the 5-factor model for our illustration of the Bayesian covariance Lasso CFA after 

examining the emotion structure and seeing its agreement with the CES. In the next section 

we provide alternative factor analyses of the same data set and compare the results to the 5-

factor CFA.

In summary, the Bayesian covariance Lasso CFA that we considered is defined in Eq. 2 with 

p = 28, q = 5. The PE factors were labeled Happy/Joyful (ξ1; 12 items), Peaceful (ξ2; 4 

items), and the NE factors were labeled Angry/Depressed (ξ3; 6 items), Ashamed (ξ4; 3 

items), and Worried/Tense (ξ5; 3 items). A non-overlapping factor structure of Λ with fixed 

zero entries at the appropriate positions and the covariance matrix among the factors Φ can 

be expressed as follows:

Following common practice in CFA, each factor contained a loading value of one for one of 

the measurement variables for the identification of the scale of the latent factor.

The following hyperparameter values were used in the analysis: μ0 and Λ0k fixed at vector 

0, Hμ0, H0k fixed at four times the identity matrices with appropriate dimensions, and ρ0 = 

12, R0 = 6I, αλ0 = 1, and βλ0 = 0.01.

To assess the convergence behavior of the Gibbs sampler in the analysis, the EPSR values of 

the parameter sequences using different starting values were calculated, which suggested 
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that the Gibbs sampler converged in fewer than 3,000 iterations. In our actual 

implementation, the Bayesian analysis results were obtained using 20,000 simulated draws 

from the posterior distributions subsequent to a burn-in period of 5,000 iterations. The 

program is written in R (R Core Team, 2013). Conducting the real data analysis using a PC 

with Intel Core i7-2600@3.40 GHz CUP and 8G RAM took about 45 minutes. Sample 

codes for fitting the Bayesian covariance Lasso CFA to the emotion data are included in 

Supplementary Materials Section 2 on the journal website.

For the proposed Bayesian Lasso model, the PP p-value was 0.517, providing evidence that 

the model fitted reasonably well to the sample data. The Bayesian estimates of the unknown 

parameters in Λ, Φ, the diagonal elements in Ψ, and their corresponding 95% Highest 

Posterior Density (HPD) intervals are presented in Table 5. It can be seen that all factor 

loading estimates are statistically significant and substantial in magnitude, which suggest 

strong associations between the latent factors and their corresponding indicators. As 

expected, from the estimates of ϕij ’s, the PE factors are positively correlated, the NE factors 

are positively correlated, and the PE factors and NE factors are negatively correlated.

Altogether, 29, or 7.6% significant residual covariance estimates ψij (i < j) resulted out of 

378 (= C(28, 2)) in Ψ. Table 6 reports the 95% HPD intervals of significant residual 

covariances between pairs of observed variables. The results show that after conditioning on 

the PE and/or NE factors, dependence between measurements—some within the same factor 

and some between factors — remains. The strongest covariances are observed for the 

within-factor item pair Miserable/Sad (0.30), and Angry/Miserable (0.25) (for NE), and 

Fulfilled/Accomplished (0.20), and Joyful/Happy (0.16) (for PE). Some cross-factor 

negative correlations, for example Happy/Sad (−0.27), and Happy/Depressed (−0.2), are also 

noted.

Comparison with Other Factor Analytic Models—To gain a deeper understanding of 

the behavior of the Bayesian covariance Lasso model, the following CFA models were used 

in the comparison: the 5-factor CFA model with the Bayesian covariance Lasso prior (M1), 

the 5-factor CFA model with diagonal Ψ (M2), and a CFA model with diagonal Ψ (M3), 

whose number of factors would be determined by an EFA. For the model (M3), the EFA 

(with oblique rotation), based on factors with eigenvalues > 1, revealed a 6-factor structure 

(Table 4). The 6-factor structure agreed reasonably well with the emotions identified in the 

CES. Two observations were made. First, compared to the 5-factor model, Fulfilled and 

Accomplished from the factor Happy/Joyful, together with Contented from the factor 

Peaceful, were separated out as a distinct factor. Second, the item Happy, to our surprise, 

was loaded in the Angry factor with high negative loading. Referring to Table 6, most of the 

significant residual covariances found in M1 were among these items. In other words, if one 

is willing to let the data select the number of factors (via EFA), additional factors that group 

observed measurements with high error covariance would be revealed. The total explained 

variance of the 6-factor structure was 70.40%, compared with 66.49% in the 5-factor 

structure (M2). Hereafter, M3 refers to the 6-factor CFA model with diagonal Ψ.

We applied multiple criteria to ascertain the quality of the three comparison models. First we 

examined traditional goodness-of-fit indexes. Several model fit indices, which are 
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commonly reported in SEM software such as Mplus (Muthén and Muthén, 1998–2013), are 

presented in Table 7. The results indicate that neither 5-factor diagonal model M2 nor the 6-

factor diagonal M3 fit the data very well, although the 6-factor model is slightly better than 

the 5-factor model. Model M1, which contains 29 significant residual covariances as 

identified by the Bayesian covariance Lasso, fitted the data better in terms of all of the 

conventional fit indices (Table 7). For example, the RMSEA of M3 is only approximately 

half of that of either the 5- and 6-factor diagonal models, and the CFI of M3 is higher than 

the cutoff of 0.9 while the other two models were below.

We further examined the impact of relaxing the diagonality requirement of the covariance on 

model goodness-of-fit in terms of differences in observed and expected (fitted) correlations 

between pairs of measurements. Various similar diagnostics have been proposed for latent 

class models; see for example, Garrett and Zeger (2000), and Reboussin, Ip, and Wolfson 

(2008). Unlike a latent class analysis that focuses on binary indicators, the CFA model 

contains continuous indicators. We defined an analogous version of Reboussin, Ip, and 

Wolfson’s (2008) log-odds-ratio check as follows:

(5)

where  is the correlation coefficient between item i and item j calculated from the 

observed data, and  and  are, respectively, the Bayesian estimates of the correlation 

coefficient between item i and item j and the corresponding standard error estimates 

calculated from the simulated samples of the parameters. The idea behind the use of the z-

value is that if the model is correctly specified, the observed and expected correlations 

between pairs of measurements in a covariance structure analysis should be close. In other 

words, a z-value plot can be used as a visual tool for assessing what might have gone wrong 

at the item-pair level. As suggested by Reboussin, Ip, and Wolfson (2008), the relative 

magnitude of the z-values were examined and threshold levels of ±1.5 were used for 

determining a significant deviation. A model that produces many large z-values would 

suggest that the model could be misspecified.

For these three comparison models, Fig. 3 displays the z-values for different pairs of 

emotion items among the 28 emotion items. Under model M2, there is strong evidence that 

dependence exists between many pairs of items. Increasing the number of factors to 6 (M3) 

apparently reduces the number of large z-values. Additionally, the proposed model M1 

results in smaller z-values and no z-value exceeds the threshold of 1.5 in either direction. In 

other words, M1 (5-factors with residual correlation) fits the data well and the fit is 

comparable, if not superior to, M3 (6 factors with no residual correlation).

A conundrum that a researcher using factor analytic method often faces is that, while more 

factors can help to achieve a better fit, some factors may not be of substantive interest. As a 

highly restrictive model, the CFA requires that the number of factors and to which factor an 

item belongs are predetermined, and that no correlation between item pairs is allowed given 
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the factor structure. As demonstrated by the emotion example of 28 items, result from data 

analysis may not perfectly agree well with a theory-guided factor structure. While increasing 

the number of factors (from 5 to 6 in the emotion example) could improve goodness-of-fit, 

the interpretation of the model becomes less clear as one of the factor contains both PE 

(Happy) and NE (Angry) emotions. The previous analysis and comparison are not meant to 

be support one theory over another; the purpose is to demonstrate that the relaxation of the 

diagonal assumption of the covariance matrix by replacing the covariance with a sparse 

structure can be used as an approximation to the theory. The solution keeps the factor 

structure intact and moves the solution empirically closer to real data. The empirical 

example also shows how the Bayesian covariance Lasso CFA can be used as a diagnostic 

tool. First, if a large number of significant residual covariance terms are present relative to 

the size of the matrix, or large individual covariances exist, it would then suggest that the 

entire CFA approach needs to be revised, or that additional steps need to be taken, such as 

removing items. Although we are not aware of any existing guideline for how large is 

“large,” without controlling for multiple comparisons, we would surmise that > 10% of 

significant covariances or absolute values of correlation > 0.5 should raise serious concern. 

Further studies are needed to provide guidelines for determining when an CFA needs to be 

refuted. The emotion example here shows weak-to-moderate residual covariances between 

some item pairs that signifies a certain level of item redundancy within the same factor. 

However the covariances do not appear to suggest a high level of clustering within and 

across factors. We suspect that a residual dependence between some item pairs arises partly 

because participants were unable to clearly distinguish certain descriptors of emotions that 

only have subtle differences in meaning — e.g., Miserable and Sad, and Optimistic and 

Hopeful.

Study 5: Bias Reduction in Structural Equation Models

To illustrate the bias propagation problem for SEM and how the Bayesian covariance Lasso 

method can reduce bias in SEM parameter estimates, we simulated response data using a 

simple SEM example. The path diagram of the model is presented in Fig. 4. The SEM 

involves 10 observed variables that are related with 3 latent factors ωi = (ηi, ξi1, ξi2), where 

ηi is endogenous factor, and ξi1 and ξi2 are exogenous factors that follow a bivariate normal 

distribution with mean zero and variance-covariance Φ. The specification of Λ and Φ, and 

the values of their parameters are given by:

where the 1’s and 0’s in Λ are fixed for identification purpose. μ = (μ1, μ2, ⋯, μ10)T = (0.5, 

0.5, ⋯, 0.5)T and
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All elements in Ψ were considered free parameters and estimated accordingly. The 

structural component of the generative model is given by the regression equation:

where γ1 = 0.6, γ2 = −0.6, and δi follows a normal distribution with mean 0 and variance 

0.36. Two levels of sample sizes were used, N = 200 and N = 500, and for each sample size 

100 replications were generated. The generated data was analyzed by two models: SEM with 

the proposed Lasso prior to Ψ and SEM with the diagonal Ψ. Based on the 100 replications, 

bias, SE, and RMS values were computed. Table 8 shows the results for the parameters of 

interest γ1 and γ2.

Compared to results using diagonal covariance, the Bayesian Lasso method applied to Ψ 
results in smaller values in BIAS and RMS in the SEM regression parameters, suggesting 

that the Bayesian estimates of the γ’s are more accurate than those estimated by SEM with 

the diagonal Ψ. The simulation result here is not meant to fully capture the patterns of bias 

in SEM due to a violation of the diagonal error covariance assumption, but rather to 

illustrate the potential effects of the propagation of biases to other parts of the SEM and the 

reduction in propagation bias when the residual covariance is properly modeled.

Discussion

Whether using EFA or CFA, the goal of factor analysis is to explain the covariances between 

multiple observed variables by means of a small and known number of underlying latent 

variables, or factors (Bollen, 1989). From a purist point of view, the ideal factor structure for 

CFA would be one in which each measurement is loaded on only one factor, and the factors 

completely explain away the covariation in the measurements — i.e., the factors are 

independent and no correlated residual errors exist in the measurements. This kind of “ideal” 

CFA may not exist in reality, and if it does, a price has to be paid in terms of sacrifice of 

validity. The items written for attaining an ideal factor structure would likely be highly 

restrictive and lead to a construct that is too narrow to meaningfully function in practice —a 

phenomenon referred to by Ip (2010) as the validity-versus-dimensionality dilemma (the 

number of factors signifies the dimension of the model).
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The dilemma can be examined by going back to a fundamental question: how do factor 

analytic models capture covariation amongst measured variables? In the current factor 

analysis literature, there is, in fact, more than one mechanism that can be utilized to explain 

measurement covariation. Three mechanisms have been identified: (C1) latent factors, (C2) 

correlation between factors, and (C3) correlated residual error terms. For the ease of 

discussion, we call these covariation mechanisms. The mechanism C2 is routinely 

implemented in CFA, and its presence actually implies that observed variables that belong to 

different factors are conditionally correlated given the factors. See also Fabrigar et al. (1999) 

for a discussion of oblique versus orthogonal factors. Thus a purist would not have included 

C2 in the CFA. In this sense, there is nothing magical about C3, although its inclusion in the 

CFA often creates more controversy than its counterpart C2. From a purist view, C1 is the 

only signal and the other mechanisms should not happen — the noise component should be 

entirely captured by the variance of the error component. A more realistic view is that C1 is 

a signal as per the researcher’s specification (based on theory), but noise does appear in 

various forms, including C2 and C3.

Modification Index and Implementation

Examining the MI procedure in Mplus as an example can illuminate how the covariation 

mechanisms, especially the way in which C3 is handled in practice. Under the maximum 

likelihood framework, Mplus first fits a CFA with diagonal residual covariance matrix Ψ to 

the data and identifies a set of candidates for modification by applying a threshold to the MIs 

of all estimated pairwise residual covariances. In the analysis of the emotion data, Mplus 

produced 90 residual covariances of which the MI values were greater than the prescribed 

threshold value of 3.84. The number of residual covariances identified by PMM is 

substantially higher than that identified by the Bayesian Lasso procedure. If the PMM 

approach is to be fully implemented, one would begin with the largest MI of the 90 residual 

covariances, add the corresponding covariance term to the CFA, rerun the model, and 

examine the chi-squared test statistic. Rerunning the model is necessary because changing in 

a single parameter in a model could affect other parts of the solution (MacCallum, 

Roznowski, & Necowitz, 1992). The procedure thus has to be repeated many times, leading 

to a long series of modifications to the initial CFA model. While it is generally suggested 

that modifications should be used sparingly (MacCallum, 1995), no standard or guideline 

exists for choosing the number of modifications — only that the number probably should not 

be as high as 90 as our real data example suggested. Adding to the complexity of finding a 

rule for stopping model modification is the fact that adding off-diagonal entries to a positive 

definite covariance matrix may make it non-positive definite, a technical and highly 

challenging issue (Pourahmadi, 2011) in covariance estimation that cannot be satisfactorily 

solved by directly manipulating individual off-diagonal elements. Adding to the list of 

procedure woes is the incremental test statistic for MI, which is not exactly distributed as χ2 

with one degree of freedom when the statistic is based on a post-hoc model modification 

(Bentler, 2007). It is possible that the deviation is not substantial. However, it is not at all 

clear when the chi-squared distribution is a good approximation. As pointed out by Lu, 

Chow and Loken (2016), no sampling distribution is currently available for the purpose of 

quantifying the uncertainties associated with MIs, and model complexity is not explicitly 

accounted for in the use of MIs.
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Post-Hoc Modification versus the Bayesian Lasso

The practical implementation of PMM described above makes it clear that researchers can, 

or are at least tempted to, selectively report incremental MI statistics that support their 

desired model. Researchers, of course, can be encouraged to provide justification of added 

parameters based on theory (MacCallum, 1995). However, as asked by Steiger (1990) in a 

rhetorical question regarding the PMM approach: “What percentage of researchers would 

ever find themselves unable to think up a theoretical justification for freeing a parameter?” If 

one assumes that the answer is near zero, as Steiger did, it means that different researchers 

could report different CFA models of different fit indices even when they apply the same 

method to the same data, which is an unflattering situation that is not beneficial to the 

scientific enterprise of psychology (Jackson, Gillapsy, & Purc-Stephenson, 2009).

The residual covariance matrix reveals important information about the quality of the CFA. 

Unfortunately, the matrix is often underreported in the literature. From our own experience 

with secondary data analysis, we suspect many studies using CFA contained substantial 

numbers of residual covariances that were either not carefully examined and ignored, or not 

reported. Unlike other goodness-of-fit indexes, the failure to report on residual covariance is 

often overlooked in the review process of CFA studies. McDonald & Ho (2002) encouraged 

SEM researchers to publish a correlation matrix and discrepancies as well as goodness of fit 

indexes “so that readers can exercise independent and critical judgment.” We believe that the 

same can be said about residual covariance.

From the covariation mechanism perspective, PMM represents a half-hearted effort that 

attempts to “fix” the lack of fit problem using a questionable covariance matrix modification 

technique, a questionable test statistic, and questionable tactics to achieve model parsimony. 

There are often “rules” and cautionary remarks about making minor tweaks using MIs, 

which are more or less reflections of the ad-hoc nature of the procedure and the ambiguity 

regarding what is considered a minor adjustment and sufficiently good fit. Indeed, the issue 

of false discovery of spurious residual covariance in PMM is technically challenging, partly 

because of the iterative nature of PMM. It was suggested that the temptation of tweaking 

more MIs of even better fit should be resisted because (a) overuse of modifications violates 

the purpose of CFA of precise theoretical propositions and the goal of parsimony, and (b) 

MIs are likely to include model improvement suggestions that are specific to the sample 

being examined (Bowen, 2014; Bowen & Guo, 2011). These are good points, but these 

concerns are precisely the reason modern statistics exist. Specifically, modern statistical 

techniques which appropriately penalizes overfitting to the sample data, have been 

extensively developed to address such problems. The Bayesian covariance Lasso CFA offers 

such a solution that has many practical and technical benefits and should be considered to be 

included into a quantitative psychologist’s toolbox.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

1. Gibbs sampler for Bayesian Covariance Lasso CFA

The Gibbs sampler used for the Bayesian covariance Lasso CFA model is better described as 

a block Gibbs sampler because a group of parameters can be simultaneously simulated from 

a multivariate conditional distribution. Let Y = (y1, ⋯, yn) be the observed data and Ω = (ω1,

…,ωn) be the matrices of latent factors. The details of the block Gibbs sampler which is 

implemented by iteratively simulating observations from the full conditional distributions 

are provided as follows:

1. Generate Ω from p(Ω|Y,μ,Λ,Φ, Ψ);

2. Generate Λ from p(Λ|Y,Ω,μ,Φ, Ψ);

3. Generate Φ from p(Φ|Y,Ω,μ,Λ, Ψ);

4. Generate μ from p(μ|Y,Ω,Φ,Λ, Ψ);

5. Generate Σ from p(Σ|Y,Ω,μ,Λ,Φ, τ, λ) and compute Ψ = Σ−1.

Except for p(Σ|Y,Ω,μ,Λ,Φ, τ, λ), the other conditional distributions are standard densities 

including the normal and inverse-Wishart distributions. Simulating observations from these 

standard distributions is generally straightforward and efficient. The details for both the 

standard and non-standard conditional distributions are given in Supplementary Materials 

Section 1 on the journal website. 39

2. Proof of Positive Definiteness of the Inverse Covariance Matrix Σ

Theorem

Suppose we start with a positive definite current value of Σ and sample from the Gibbs 
procedure described in Appendix 1. It is guaranteed that the positive definite constraint on Σ 
is maintained at all subsequent iterations.

Proof

Following the iterative block Gibbs sampler described in Appendix 1 and the specific 

conditional distributions in the Supplementary Materials Section 1 on the journal website, 

assume that at iteration t the value of Σ(t) is positive definite. Therefore all of the leading 

principal minors of Σ(t) are positive and so are all its diagonal elements.

Define

(A1)

where σkk is the kth diagonal element of Σ, σk = (σk1, ⋯, σk,k−1, σk,k+1, ⋯, σkp)T is the 

vector of all off-diagonal elements of the kth column, and Σ−kk is the (p − 1) × (p − 1) 
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matrix resulting from deleting the kth row and kth column from Σ. After updating the kth 

column , we only need to prove that  is positive and |Σ(t+1)| is positive.

Because  is positive definite, its inverse  is also positive definite, so there 

exists a unique lower triangular matrix L with real and strictly positive diagonal elements, 

such that . For γ simulated from the prior distribution Gamma(αλ0, βλ0), 

the element 

since .

To complete the proof, observe that  and γ > 0, 

.
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Figure 1. 
Probability density function of double exponential with three different values of λ: 1.0 

(solid), 0.5 (dot-dash) and 0.25 (long-dash).
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Figure 2. 
Model Structure in Simulation Studies 1–3.
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Figure 3. 
z-values for the 5-factor CFA model with a covariance Lasso prior (o), the 5-factor CFA 

model with diagonal Ψ (◇), and the 6-factor CFA model with diagonal Ψ (*) fitted to the 

emotion data. The z-value is calculated for each pair of the 28 emotion items.
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Figure 4. 
Model Structure in Simulation Study 5.
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Table 4

Identified Emotion Factors and Emotion Descriptors.

Emotions in the Consumption Emotions Set Emotions in Lu et al.’s paper Emotions in 6-factor model

Positive emotions:

Joy: Happy; Joyful; Pleased
Love: Loving; Sentimental; Warmhearted
Optimism: Optimistic; Encouraged; Hopeful
Contentment: Contented; Fulfilled
Peacefulness: Calm; Peaceful;
Romantic love: Sexy; Romantic; Passionate
Excitement: Excited; Thrilled; Enthusiastic
Surprise: Surprised; Amazed; Astonished

Happy/Joyful: Happy; Joyful; Elated; 
Amused; Loving; Sentimental; Warm-
hearted; Optimistic; Encouraged; Hopeful; 
Fulfilled; Accomplished
Peaceful: Calm; Peaceful; Serene; Contented

Joyful: Joyful; Elated; Amused; Loving; 
Sentimental; Warm-hearted; Optimistic; 
Encouraged; Hopeful;
Contented: Contented; Fulfilled; 
Accomplished
Peaceful: Calm; Peaceful; Serene

Negative emotions:

Sadness: Depressed; Sad; Miserable
Anger: Frustrated; Angry; Irritated
Worry: Nervous; Worried; Tense
Shame: Embarrassed; Ashamed; Humiliated
Envy: Envious; Jealous
Discontent: Unfulfilled; Discontented
Loneliness: Lonely; Homesick
Fear: Scared; Afraid; Panicky
Others: Guilty; Proud; Eager; Relieved

Angry: Depressed; Sad; Miserable; 
Frustrated; Angry; Annoyed
Worried: Nervous; Worried; Tense
Ashamed: Embarrassed; Ashamed; Guilty

Angry: Depressed; Sad; Miserable; Angry; 
Happy
Worried: Frustrated; Annoyed; Nervous; 
Worried; Tense
Ashamed: Embarrassed; Ashamed; Guilty
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Table 5

Bayesian Estimates (Est) of the Unknown Parameters in Λ, Φ, the Diagonal Elements in Ψ, and Their 

Corresponding 95% HPD Intervals in Real Data

Item Est of λ HPD of λ Est of ψkk HPD of ψkk

1.Joyful 1.000* - 0.497 (0.349, 0.641)

2.Happy 0.780 (0.583, 0.963) 0.670 (0.487, 0.859)

3.Elated 0.840 (0.623, 1.055) 0.648 (0.497, 0.819)

4.Amused 0.735 (0.523, 0.942) 0.728 (0.547, 0.907)

5.Optimistic 1.067 (0.848, 1.303) 0.423 (0.289, 0.561)

6.Hopeful 1.056 (0.822, 1.309) 0.436 (0.304, 0.582)

7.Encouraged 1.038 (0.803, 1.270) 0.457 (0.324, 0.594)

8.Fulfilled 0.972 (0.758, 1.186) 0.518 (0.371, 0.678)

9.Accomplished 0.967 (0.755, 1.190) 0.526 (0.384, 0.681)

10.Warm-hearted 1.102 (0.876, 1.337) 0.410 (0.289, 0.548)

11.Loving 1.020 (0.792, 1.255) 0.490 (0.356, 0.638)

12.Sentimental 0.758 (0.540, 0.995) 0.722 (0.554, 0.908)

13.Serene 1.000* - 0.338 (0.227, 0.469)

14.Calm 0.925 (0.756, 1.101) 0.441 (0.307, 0.590)

15.Peaceful 0.998 (0.844, 1.168) 0.336 (0.211, 0.473)

16.Contented 0.774 (0.579, 0.989) 0.610 (0.433, 0.797)

17.Frustrated 1.000* - 0.338 (0.210, 0.465)

18.Annoyed 0.984 (0.830, 1.131) 0.373 (0.240, 0.511)

19.Angry 0.718 (0.533, 0.917) 0.631 (0.471, 0.810)

20.Miserable 0.635 (0.424, 0.877) 0.684 (0.491, 0.886)

21.Sad 0.573 (0.374, 0.779) 0.734 (0.540, 0.935)

22.Depressed 0.763 (0.566, 0.975) 0.583 (0.405, 0.764)

23.Ashamed 1.000* - 0.462 (0.270, 0.659)

24.Guilty 0.840 (0.551, 1.135) 0.595 (0.384, 0.818)

25.Embarrassed 0.694 (0.413, 0.973) 0.707 (0.492, 0.940)

26.Nervous 1.000* - 0.277 (0.188, 0.374)

27.Tense 1.001 (0.860, 1.137) 0.241 (0.157, 0.339)

28.Worried 0.951 (0.818, 1.082) 0.302 (0.202, 0.407)

Par Est HPD

ϕ11 0.547 (0.367, 0.742)

ϕ22 0.688 (0.478, 0.897)

ϕ33 0.719 (0.522, 0.933)

ϕ44 0.610 (0.388, 0.851)

ϕ55 0.782 (0.585, 1.013)

ϕ21 0.403 (0.265, 0.538)

ϕ31 −0.143 (−0.252, −0.036)

ϕ32 −0.264 (−0.398, −0.136)

Psychol Methods. Author manuscript; available in PMC 2018 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pan et al. Page 38

Par Est HPD

ϕ41 −0.068 (−0.173, 0.042)

ϕ42 −0.145 (−0.275, −0.017)

ϕ43 0.330 (0.193, 0.470)

ϕ51 −0.135 (−0.252, −0.022)

ϕ52 −0.250 (−0.382, −0.118)

ϕ53 0.622 (0.459, 0.796)

ϕ54 0.379 (0.232, 0.536)

Note: The items with asterisks are fixed to identify the scale of the latent factor. PE-general: items 1–12; PE-peacefulness: items 13–16; NE-
general: items 17–22; NE-shame: items 23–25; NE-worry: items 26–28.
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Table 6

The Significant Residual Covariance Estimates (Est) and Their Corresponding 95% HPD Intervals in Real 

Data

Residual Covariance Est HPD

Joyful with Happy 0.157 (0.030, 0.296)

Happy with Amused 0.140 (0.004, 0.270)

Happy with Sentimental −0.123 (−0.234, −0.008)

Happy with Contented 0.130 (0.006, 0.260)

Happy with Miserable −0.162 (−0.280, −0.043)

Happy with Sad −0.266 (−0.401, −0.132)

Happy with Depressed −0.200 (−0.323, −0.073)

Elated with Amused 0.160 (0.038, 0.298)

Optimistic with Hopeful 0.121 (0.009, 0.232)

Optimistic with Guilty −0.111 (−0.217, −0.015)

Hopeful with Encouraged 0.112 (0.010, 0.226)

Fulfilled with Accomplished 0.198 (0.078, 0.330)

Fulfilled with Contented 0.163 (0.048, 0.284)

Fulfilled with Sad −0.108 (−0.222, −0.002)

Accomplished with Loving −0.093 (−0.186, −0.009)

Accomplished with Contented 0.128 (0.020, 0.241)

Loving with Frustrated 0.086 (0.001, 0.169)

Sentimental with Sad 0.176 (0.050, 0.298)

Contented with Sad −0.159 (−0.287, −0.045)

Annoyed with Depressed −0.098 (−0.193, −0.009)

Angry with Miserable 0.245 (0.087, 0.392)

Angry with Sad 0.139 (0.008, 0.284)

Angry with Embarrassed 0.222 (0.093, 0.359)

Miserable with Sad 0.304 (0.140, 0.476)

Miserable with Depressed 0.180 (0.034, 0.337)

Miserable with Embarrassed 0.224 (0.090, 0.365)

Sad with Depressed 0.226 (0.070, 0.383)

Sad with Worried 0.112 (0.007, 0.237)

Guilty with Embarrassed 0.227 (0.047, 0.409)
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