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Abstract: Diabetic retinopathy is a pathology where microvascular circulation abnormalities 

ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. 

Here, we developed a method that automatically detects photoreceptor disruption in mild 

diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical 

coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined 

membership function to assign a defect severity level on each pixel and generate a probability 

map of defect category affiliation. A novel scheme of unsupervised clustering optimization 

allows accurate detection of the affected area. The achieved accuracy, sensitivity and 

specificity were about 90% on a population of thirteen diseased subjects. This method shows 

potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. 

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

Diabetic retinopathy (DR) is a microvascular disease that affects the 35% of the diabetic 

population [1, 2] and can cause rapid vision loss. Abnormal retinal perfusion caused by 

microvascular damage after prolonged periods of high glucose levels can lead to 

photoreceptor cell death or neovascular complications. For this reason, it is interesting to 

study photoreceptor integrity in all stages of this disease. 

Optical coherence tomography (OCT) [3] is a technology based on the phenomenon of 

optical interference that has been extensively used to noninvasively image the retinal layers. 

In cross-sectional OCT images, the main outer-retinal landmarks useful to study 

photoreceptor integrity are four hyper-reflective regions known as external limiting 

membrane (ELM), ellipsoid zone (EZ) [4], interdigitation zone (IZ) [5] and retinal pigment 

epithelium (RPE). The integrity of EZ in particular has been reported to be useful in 

predicting visual outcomes in various retinal conditions [6–8]. Besides being able to provide a 

structural description of the retinal layers thickness and integrity in three dimensions, 

functional additions to OCT such as angiography (OCTA) have been developed in recent 
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years [9]. With the advent of OCTA, depth resolved microvascular imaging of the retina and 

choriocapillaris has been possible, becoming a powerful tool for clinical assessment of DR 

[10] as well as other retinal diseases [11–13]. Since structural OCT and OCTA can be

acquired simultaneously, they are perfectly registered; therefore, OCT can be an important

tool to investigate the anatomic relations between photoreceptor integrity and perfusion.

Clinically, EZ defects can be observed on cross-sectional structural OCT (B-scans) [14]. 

Detection of EZ disruption has been accomplished by thickness maps [15–17], machine 

learning methods [18] and en face OCT [16, 19, 20]. En face projections of the EZ slab can 

provide good contrast for segmentation of healthy and diseased areas as well as potential to 

detect partial or early-stage atrophy. However, segmentation of EZ defect areas on en face 

OCT images has only been achieved manually [21] or in a semi-automated manner [22]. 

EZ disruption is common in numerous retinal diseases, including DR [14]. Although its 

relationship with loss of visual acuity has been studied in diabetic macular edema [23–26], a 

detection algorithm sensitive enough to recognize the partial EZ loss and quantify its area in 

mild DR has represented a segmentation challenge. In this article, we present a fully 

automated algorithm to identify EZ defect on eyes with mild DR from en face OCT images 

with simplified layer segmentation requirements. The method assigns membership 

probabilities to healthy and defect categories on a pixel-level, and quantitatively assesses EZ 

defect area. The severity of EZ disruption is demonstrated by a color-map. This algorithm 

was developed on volumetric scans obtained for OCTA, which acquires structural and 

perfusion information simultaneously. This allows the evaluation of the local relationship 

between EZ defect region and retinal ischemia. 

2. Materials and methods

2.1 Data acquisition 

A total of 13 eyes from participants with mild DR and EZ defect (age: 64 ± 11 years old, 

range: 47-84) and a total of 23 healthy eyes were recruited at the Casey Eye Institute of the 

Oregon Health & Science University (OHSU). From the 23 healthy eyes, 10 were selected as 

the normative reference set used in the algorithm development (see section 2.4.2). The other 

13 healthy eyes were used for assessing the algorithm’s performance. Written informed 

consent was obtained from all participants. The study was approved by an OHSU Institutional 

Review Board protocol and complied with the tenets of the Declaration of Helsinki. 

Macular scans were acquired by a 70-kHz, 840-nm-wavelength spectral-domain OCT 

system (Avanti RTVue-XR, Optovue Inc.). The AngioVue version 2014.1.0.2 software was 

used to acquire OCTA scans. The OCT data covers a macular area of 3 × 3 mm2 with 2 mm 

depth. The digital sampling interval is 10 × 10 × 3 μm3/voxel. In the fast transverse scanning 

direction, 304 A-scans were sampled to form a B-scan. Two repeated B-scans were captured 

at a fixed position before proceeding to the next location. A total of 304 locations in the slow 

transverse direction were sampled to form a 3D data cube. All 608 B-scans in each data cube 

were acquired in 2.9 seconds. Structural OCT data was obtained by averaging the two 

repeated B-scans at the same location. OCTA data was generated from decorrelation of two 

repeated OCT B-scans using the split-spectrum amplitude-decorrelation (SSADA) algorithm 

[27, 28]. Two sets of volumetric data were scanned, one x-fast scan and one y-fast scan, 

registered and merged through an orthogonal registration algorithm (MCTTM) [29]. 

2.2 Algorithm overview 

The flow chart of the developed algorithm is shown in Fig. 1. First, the structural en face 

images were constructed by mean reflectance projection of slabs located at the ELM and EZ 

layers respectively. En face images from two scans acquired in the same visit were registered 

to reduce inter-scan variation. A ratio image of the ELM and EZ en face images was found to 

remove shadowing artifacts from inner retinal vessels, vitreous floaters and pupil vignetting, 
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which can confound the detection of the EZ disruption area. The detection of the EZ defect 

utilized a clustering routine based on a normative ratio image from a set of healthy eyes and a 

redefined fuzzy membership function. Finally, post-processing based on morphological 

operations was applied to accurately delineate the EZ defect. The following three sections 

will describe the process in detail. The algorithm was implemented with custom software 

written in Matlab 2013a release. 

Fig. 1. Flow chart of the ellipsoid zone (EZ) defect detection algorithm. The pre-processing 

step generates a ratio image of registered EZ and external limiting membrane (ELM) en face 

images. The EZ defect detection step first stitches the ratio image under examination to a 

normative ratio image obtained from the healthy control group, then calculates the optimal 

number of clusters by a fuzzy c-means algorithm, removes noise by a median filter and finally 

assigns to each pixel a defect severity degree by a redefined function of membership to the 

defect category. The post-processing step filters out residual noise and generates the final 

defect severity map. 

2.3 Pre-processing 

2.3.1 Identification of EZ boundary location and generation of en face projection 
images 

Using directional graph search algorithm [30], we identified the inner limiting membrane 

(ILM), outer plexiform layer (OPL), the inner boundary of EZ and the Bruch’s membrane in 

the volumetric scans. This algorithm has been successfully applied in the segmentation of 

several pathologies such as exudates, epiretinal membrane, cysts, retinal neovascularization 

and drusen, and its performance has been reported elsewhere [30]. Segmentation of inner 

retinal boundaries is necessary to create en face projections of inner retinal flow while 

segmentation of EZ and Bruch’s membrane is necessary for EZ defect detection. While the 

Bruch’s membrane is not disturbed by the disease and its segmentation by directional graph 

search is a relatively simple task [31], the segmentation of disrupted EZ poses challenges. 

Moreover, in order to detect EZ disruption reliably from an en face image, we need to create a 

thin slab that would contain the EZ, even in areas with local EZ loss without referencing to 

other structures such as RPE, as they introduce variability not necessarily related to EZ status. 

The areas with significant photoreceptor loss, however, have a reduced layer contrast of the 

EZ and the graph search algorithm can fail to identify their boundaries. These regions can be 

identified by thresholding the EZ/Bruch’s membrane thickness map of the whole scan [Fig. 

2(A)] and looking for abnormally thin areas. A theoretical contour of where EZ boundary 

should be was created by substituting pixels below a thickness threshold by the reflection 

with respect to a horizontal line crossing the center of the en face image (red dashed line in 

Fig. 2(B)). If abnormally thin EZ/BM loci were also detected in the pixels located at the 

reflection positions with respect to both a horizontal and a vertical line crossing the center of 

the image, the mean thickness of the whole area outside the abnormally thin area was used to 

correct the EZ segmentation. Finally a median filter of of 5 × 5 pixels was applied to correct 

abrupt changes in the neighborhood of redefined segmentation boundaries and ensure a 

smooth EZ curve across the whole scan [Fig. 2(C)-2(E)]. Then, we created ELM and EZ en 

face images by mean projection of reflectance within 15-um slabs internal and external to the 

smoothed inner boundary of EZ layer [Fig. 3]. The slab thickness was fixed for all subjects as 
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in Refs [18, 32] and was slightly thinner than the value previously reported for the EZ 

thickness of a population of healthy subjects [33], in order to minimize the effect of outliers. 

Fig. 2. Routine for detection of inner boundary of ellipsoid zone (EZ) location slab. Firstly, 

drastic EZ segmentation changes due to large photoreceptor loss are identified by pixels with 

abnormally low value in an EZ/Bruch’s membrane thickness map (A). Then, the reflection of 

the EZ segmentation area is generated with respect to a horizontal line crossing the center of 

the en face image (B) and the EZ location at the pixels below threshold is substituted by the 

pixels in its symmetric reflection. Finally, a median filter is applied to ensure a smooth EZ 

segmentation across the whole scan (C). Representative B-scans are shown before (D) and 

after EZ smoothing (E). As observed in (D), the directional graph search algorithm can 

properly segment the areas with partial EZ loss but not the areas with total EZ loss. 

Fig. 3. Generation of external limiting membrane (ELM) and ellipsoid zone (EZ) en face 

images based on the smoothed EZ inner boundary segmentation . (A) A representative B-scan. 

The red dashed line indicates the smoothed EZ inner boundary. The blue dashed line indicates 

the boundary position of the slab used to generate the EZ en face image in (B). The yellow 

dashed line indicates the boundary position of the slab used to generate the ELM en face image 

in (C). 

2.3.2 Registration and merging of two scans 

The ELM and EZ en face images were registered with those of a second scan from the same 

visit in order to reduce inter-scan variation due to differences in signal strength. To recognize 

the affine transformations that optimize the overlap between en face images of different 

scans, maximum projection angiograms of the inner retinal flow (between ILM and OPL) 

were computed and registered first. Then, the same transformation was applied to en face 
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ELM and EZ images of the second scan. Finally, each pair of overlapping images was merged 

by averaging. 

2.3.3 Ratio image 

Vessels, vitreous floaters, retinal exudate/hemorrhage and pupil vignetting cause shadowing 

artifacts on both EZ and ELM en face images, observed as low reflectance objects, hindering 

the accurate detection of the EZ defect. Since the artifacts exist on both adjacent slabs, and 

assuming same signal attenuation, shadows may be eliminated by obtaining a ratio of en face 

images [Fig. 4]. A normalized ratio image was acquired by Eq. (1): 

 
2

N

R R

R
R

 



 (1) 

where R is ratio image before normalization, 
R is its mean value and

R is the standard 

deviation. 

 

Fig. 4. Illustration of the reduced signal variation on the ratio image. (A) Ellipsoid zone (EZ) 

en face image. (B) Ratio image. The suppression of shadowing artifacts is shown in the red 

boxes. 

2.4 Detection of EZ defect 

After artifact correction, the intensity of the EZ defect in the normalized ratio image is 

generally lower than the healthy area. The more serious the defect, the lower the region 

intensity [Fig. 5(A)]. However, the low contrast between defect and healthy areas makes it 

difficult to define its boundaries [Fig. 5]. Based on these observations, rather than attempting 

to find hard boundaries, the pixels contained in the defect area can be classified by using 

fuzzy membership, in which the membership value represents the degree of certainty of each 

pixel’s belonging to the defect category. In this study, a clustering optimization and a 

redefined fuzzy membership methods were introduced and implemented. 

In image processing by fuzzy logic, grayscale sets can be divided into a number of 

clusters, each with a centroid value used by membership functions to determine the belonging 

degree of pixels to certain categories. In the case of EZ disruption, histogram analysis of the 

en face ratio images defined above would not help in determining the number of clusters in 

which the signal could be distributed, a common feature of biomedical images. To overcome 

this problem, we have developed a fuzzy c-means method that iteratively corrects the 

membership of pixels into healthy and defective categories by optimizing the number of 

clusters, until the pixels in a normative ratio image corresponding to a control group with 

healthy EZ has defect membership equal to zero. Next, we will introduce the rationale for the 

iterative cluster number detection, redefinition of the membership function and cleanup 

routine by post-processing. 
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Fig. 5. Different damage degree of the ellipsoid zone (EZ) observed on a ratio en face image 

(A) and a representative B-scan (B). The yellow arrow represents the more severely damaged 

EZ area; the orange arrow represent the healthy EZ area; the blue arrow represents the slightly 

damaged EZ area. 

2.4.1 Fuzzy membership 

In this step, a redefined fuzzy membership method was used to derive the degree of affiliation 

of ratio image pixels to the “defect” category. A fuzzy c-means algorithm was first applied to 

determine the threshold corresponding to each category, which is then used to evaluate the 

membership. Fuzzy c-means is a clustering algorithm that classifies a data set with n 

members  , 1,2...jR j n  into C fuzzy categories by minimizing a fuzzy c-means objective 

function J with respect to membership u  [Eq. (2)]:  
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where 
ij i jd c R   is the distance between the ith cluster center 

ic and the jth data point jR , 

and m is the fuzzy weighting index [34], in this study m = 2. 

The necessary condition for the Eq. (2) to reach its minimum is: 
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where K is the number of clusters. After this step, the thresholds ic and memberships iju were 

obtained. However, the values stored in variable iju represent the degree of membership with 

respect of the center of the cluster, which is actually undesirable to describe the severity of 

EZ defect. In the cluster corresponding to the defect pixels category, the pixels with lowest 

intensity on ratio images should have the largest degree of membership, i.e. the largest degree 

of damage, however they don’t because they are not the closest values to the grayscale value 

of the cluster centroid. To represent the results in a clinically significant manner, we redefined 

the membership function to the defect category using only the centroids 1 2,c c  in Eq. (5): 
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where M is the new membership image,  1,2j  , R represents the ratio image and the 

statements between brackets equal 1 if the statement is true, otherwise equal 0. By this 

function, all pixels in the remaining clusters  3,4...i K  have 2jR c and zero membership 

to the defect category, while pixels with 1jR c  have maximum membership. 

It should be noted that the number of clusters to distribute the set of pixel intensities of the 

ratio image is unknown. We formulated a solution by which an iterative process was used to 

identify the optimal number of clusters for each image (section 2.4.2) and then the thresholds 

c1, c2 corresponding to the clusters with the lowest-valued grayscale centroids were used in 

the calculation of M. 

2.4.2 Identification of the number of clusters 

We devised an iterative routine to automatically determine the cluster number for each scan 

under analysis by minimizing the EZ defect detected on a normative ratio image obtained 

from a set of healthy eyes [Fig. 6]. First, ten scans were randomly chosen from the control 

group. The ratio images represented in Fig. 2 were generated for each scan and their average 

was used as normative ratio image. Then, upon processing a new scan, the normative ratio 

image was stitched at the bottom of the ratio image under inspection, forming a matrix of 608 

× 304 pixels [Fig. 7(A)]. As observed, the upper half of the new image contains an unknown 

damaged area while the bottom part represents intact EZ area. The initial clustering number 

was set to 2 and an iterative routine calculated the membership of pixels in the whole image 

for increasing clustering numbers until the bottom half showed an EZ defect area equal to 

zero [Fig. 7(B)]. Peripheral noise was removed at each iteration by a 10 × 10 pixels median 

filter applied on the membership map. The maximum allowed number of iterations was set to 

30, given that convergence is not guaranteed. This upper limit was significantly greater than 

the maximum number of iterations needed for convergence of the population of DR subjects 

(see Section 3). 

 

Fig. 6. Iterating routine that calculates the optimal number of clusters to divide the en face ratio 

data. FCM – Fuzzy c-means. 
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Fig. 7. Generation of a defect severity map. (A) The ratio image from a mild diabetic 

retinpathy scan with an ellipsoid zone (EZ) defect (upper half) is stitched to the normative ratio 

image obtained from a control group of ten healthy subjects (bottom half). (B) Fuzzy c-means 

with corrected membership function is applied on image (A) for progressively larger cluster 

numbers until the bottom half shows a detected area equal to zero. (C) The upper half of image 

(B) showing the detected EZ defect region, corrupted by peripheral noise. (D) is the defect 

severity map after cleanup by a median filter. 

2.5 Post-processing 

Morphological processing was performed on the filtered membership map to remove the 

abnormally isolated regions with an area of less than 100 pixels. 

2.6 Evaluation metrics 

Two experienced, masked certified graders (ZW and FR) qualitatively examined B-scan 

images. Grading was performed two times to assess intra-observer and inter-observer 

variability. The number of clusters and the defect area detected were assessed for healthy and 

DR subjects [Fig. 8]. Because the boundaries of EZ defects are not well defined, it is difficult 

for a grader to accurately delineate them in a single B-scan. To make the grading easier, 

reliable and still retain good accuracy we regrouped each volumetric data set into 152 

subgroups, each consisting of 51 × 8 neighboring A-scans [Fig. 9]. After examining the cross-

sectional images of each subgroup, the grader determines whether an EZ defect exists. 

Manual grading variability was evaluated by the coefficient of variation of the number of 

subgroups identified on B-scans as EZ defect. Additionally, manual versus automated EZ 

defect segmentation based on the en face ratio images rather than B-scans was also evaluated. 

The ratio image on each eye was divided into polar sectors centered on the fovea [Fig. 10], 

dividing the image into 20 angular slices. The grader identified the slices suspicious of EZ 

defect. 

Accuracy, sensitivity, specificity [35] and Dice similarity coefficient [36] were used to 

compare the automated result with manual grading. 

The statistical significance of the defect area difference between the populations of 

healthy and DR subjects was assessed by a one-sample t-test. 

The performance of an alternative EZ loss detection method based on thresholding the 

thickness map generated from the results of the automated layer segmentation on B-scans 

without corrections were also compared to manual grading results. 

3. Results 

The required number of iterations (which is equivalent to the number of clusters) varied for 

each eye, and it was larger for healthy subjects (mean ± standard deviation: 26 ± 4) than for 

DR subjects (mean ± standard deviation: 5 ± 2) [Fig. 8(A)]. The iterative cluster optimization 

routine converged for all of the DR subjects analyzed and was inversely correlated to the 
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defect area. The DR subjects with the smallest defect area (subjects # 5, 6 and 8 in Fig. 8(B)) 

needed the highest number of clusters to converge [Fig. 8(A)], but were still distant from the 

group of healthy subjects and the upper limit of allowed iterations. While the routine had to 

be interrupted upon reaching 30 iterations for six healthy subjects, the defect area was 

negligible compared to DR subjects (ADR = 1.81 ± 1.17 mm2, AHealthy = 0.01 ± 0.01 mm2, 

p<0.001). 

 

Fig. 8. Comparison of the number of clusters (A) and defect area (B) found for the mild 

diabetic retinopathy (DR) and healthy groups upon either convergence of the iterative cluster 

optimization routine or reaching the maximum allowed number of iterations. Defect area is 

given in mm2. 

The EZ defect area detected automatically was compared to expert grading of B-scans 

[Fig. 9] and ratio images [Fig. 10]. Inter-observer variability was 10.4% and intra-observer 

variability was 9.4% for grader ZW and 8.5% for grader FR. The proposed algorithm agreed 

very well with manual grading of B-scans and en face images [Table 1]. The performance of 

an alternative EZ loss detection method based on thresholding of the thickness map generated 

from the layer segmentation results was also evaluated [Table 2]. Performance of the fuzzy 

logic method was comparable to a previous method based on machine learning to detect EZ 

loss in ocular trauma [18] and Dice similarity to manual grading was better than a semi-

automated segmentation method for EZ loss detection in retinal telangiectasia based on en 

face OCT [22]. 

 

Fig. 9. Comparison of detection of ellipsoid zone (EZ) defect area between the automated 

algorithm and manual grading on B-scans in five representative diabetic retinpathy (DR) cases. 

The top row shows the ratio images, the middle row shows the EZ defect area extracted by the 

proposed algorithm. The bottom row shows the comparison of automatic detection with B-scan 

manual grading. The red area represents the subgroups where the EZ defect was identified 

correctly by both the algorithm and the grader. The light blue area represents the EZ defect 

subgroups detected by manual grading. The dark blue area was the healthy area detected by the 

manual grader. The yellow area represents the subgroups identified by the algorithm only. 
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Fig. 10. Comparison of detection of ellipsoid zone (EZ) defect area between the automated 

algorithm and manual grading on ratio image. The top row shows the ratio images. The second 

row shows the manual grading results. Annular regions with EZ defect (red) were 

differentiated from regions with healthy EZ (green). The bottom row shows the EZ defect area 

extracted by the fuzzy logic algorithm. DR – Diabetic retinopathy. 

 

Table 1. Performance of the proposed algorithm evaluated by manual grading of B-scans 

and ratio images* 

 
Accuracy Sensitivity Specificity Dice similarity 

B-scan 0.91 ± 0.06 0.92 ± 0.08 0.87 ± 0.13 0.88 ± 0.07 

Ratio image 0.89 ± 0.09 0.91 ± 0.10 0.89 ± 0.17 0.90 ± 0.09 

* Mean ± standard deviation 

Table 2. Performance of the EZ loss detection algorithm based on thresholding of 

thickness maps generated from layer segmentation results, evaluated by manual grading 

of B-scans and ratio images* 

 
Accuracy Sensitivity Specificity Dice similarity 

B-scan 0.83 ± 0.10 0.53 ± 0.27 0.97 ± 0.03 0.63 ± 0.25 

Ratio image 0.84 ± 0.13 0.73 ± 0.30 0.89 ± 0.28 0.79 ± 0.24 

* Mean ± standard deviation 

We were also interested in investigating the relationship between EZ defect and deep 

capillary plexus (DCP) integrity. The DCP angiogram was generated by the maximum 

projection flow within the outer plexiform layer. A projection-resolved OCTA algorithm was 

applied to prevent shadow artifacts cast by superficial flow onto deeper layers [37, 38]. We 

observed that the region affected by EZ disruption co-localized very well with areas of 

reduced capillary perfusion [Fig. 11]. 
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Fig. 11. Relationship between ellipsoid zone (EZ) defect area and the area with microvascular 

abnormalities. The top row shows the ratio images. The middle row shows the deep capillary 

plexus. The yellow boxes indicate areas of reduced capillary perfusion. The bottom row shows 

the EZ defect area extracted by the proposed algorithm. DCP – Deep capillary plexus. 

4. Discussion and conclusion 

We have introduced a novel algorithm for automatic detection of EZ defect in DR and 

identified EZ defect area with a 0.91 detection accuracy and 0.92 sensitivity compared to 

manual grading. The method relies on the approximate localization of the EZ and ELM slabs 

and processes the ratio of their mean projections. Classification into defect and healthy tissue 

categories is performed by a fuzzy c-means scheme with a redefined membership function 

that assigns to every pixel a probability of affiliation to the defect category. 

Previous studies quantifying EZ defect regions have strongly relied on accurate 

segmentation of EZ slab boundaries, either because they need to generate thickness maps [16, 

17, 20] or features used to feed a machine learning classifier [18]. Numerous approaches to 

solve the problem of delineating layer boundaries in OCT of pathological retinas have been 

developed successfully, encompassing methods based on directional graph search [30], 

machine learning and auto-context [39], kernel regression [40] and deep learning [41]. Some 

pathologies that might appear in advanced stages of DR such as subretinal or intra-retinal 

fluid pose segmentation challenges in B-scans due to their irregular and unpredictable shapes, 

but not due to insufficient contrast with surrounding tissue. Contrarily, photoreceptors in mild 

DR could be either partially lost, preserving some hyper-reflectivity of the EZ layer [42], or 

displaced on the inner portion and intact on the distal portion [20], in which case EZ 

reflectivity is only moderately reduced. In any case, it is challenging to accurately mark 

partial EZ defect on B-scans in early stages of DR. The method proposed here based on en 

face OCT was sensitive to partial EZ loss, as observed by comparing the area detected in the 

case of Fig. 9 (DR4) with the representative B-scan shown in Fig. 5(B) and the case of Fig. 

9(DR1) with the representative B-scan shown in Fig. 2(D). Moreover, this method is robust to 

small segmentation inaccuracies. At the same time, en face OCT requires image processing 

techniques that deal with the numerous confounding shadow artifacts unrelated to the atrophy 

[21, 22, 43–45], such as the large vessel shadow inaccurately segmented in [Fig. 9 (DR3)]. 

A distinguishing feature of this algorithm is the incorporation of an iterative routine to 

calculate the optimal number of clusters needed to distribute the set of pixel intensities. 
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Generally, the task of unsupervised learning an unknown number of clusters is a recurrent 

challenge in fuzzy c-means image processing applications [46], especially in biomedical 

imaging due to the high prevalence of noise and artifacts. If clusters are too few, the 

algorithm would assign an artificially large area to the EZ defect, and vice versa, if clusters 

are too many, some pixels in the EZ defect area would be lost. Numerous methods have been 

proposed to solve this issue, such as evaluation of clustering quality by a validity index [47] 

based on either the degree of separation [48, 49] or the ratio between separation and 

compactness [50]; finding density peaks [51] and hybrid solutions [52]; but ultimately the 

optimal clustering method is highly dependent on the application. In our algorithm, we have 

implemented a novel clustering method that optimizes a compound image formed by the 

retina under scrutiny stitched to a reference from healthy retinas with characteristics known a 

priori, attaining a high sensitivity and specificity of EZ defect area. 

In order to remove the vessel and image artifacts from the EZ en face image we used the 

ratio between the mean projection reflectance of adjacent slabs. To successfully remove 

artifacts without affecting the EZ disruption area, both images need to show the shadows but 

only one of them should be affected by the disease. The ELM was selected as background to 

compute the ratio image because it is located at the boundary of the retina and the 

photodetectors, and early stages of the disease have little effect there, as opposed to the EZ of 

the photoreceptors. Even in the cases where there is simultaneous loss of ELM and EZ layers, 

EZ loss could be identified from the ratio image, because in the area of healthy tissue ELM is 

never as bright as the EZ layer. Most of the vessels and image artifacts could be removed in 

the ratio operation, however, there were occasions in which large vessels casting a very dark 

shadow could not be removed entirely, but these cases were rare and easily distinguishable, so 

they would have little effect on the judgment of EZ disruption. 

Besides detecting the EZ defect area, we also represented EZ loss severity by color-coded 

maps. Conventional fuzzy c-means assigns the highest membership to the values close to the 

centroid of clusters. However, in our application, where the intention is to represent the 

severity of the EZ disruption, it is desirable to assign highest membership to the values near 

the lowest boundary of the cluster representing EZ damage. For this reason, we have used 

fuzzy c-means to find the centroid of clusters but redefined the membership function to the 

one in Eq. (5) in order to ensure that membership maps have a reasonable clinical 

interpretation. 

EZ disruption is a gradual process on which boundaries are vague and difficult to define. 

Also, the EZ slab has varying reflectivity [32] and additional factors such as low signal 

quality can make it harder for the grader to manually segment the boundaries of defect 

regions. For this reason, in order to evaluate the method’s accuracy we compared the EZ 

defect segmentation to a rough approximation of the manually segmented area rather than the 

exact area overlap. The cases shown in Fig. 9 and Fig. 10 seem to overlap reasonably with the 

area apparent to a human grader. 

In summary, we developed an automated algorithm to detect partial and total 

photoreceptor loss by evaluating EZ defect areas in en face OCT images of early DR. The 

method incorporates two novel features: a redefined fuzzy c-means membership function that 

allowed truly representing disruption severity and an unsupervised automatic clustering 

routine that permitted accurate mapping of the defect area. The areas affected by EZ 

disruption appear to exhibit a relationship with capillary perfusion loss in the deep vascular 

plexus, suggesting a great potential for evaluation of disease evolution using both OCT and 

OCTA information. 
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