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Abstract
The emergence of new strains of Magnaporthe oryzae (M. oryzae) is associated with recurrent failure of resistance response 
mediated by single resistance (R) gene in rice. Therefore, stacking or combining of multiple R genes could improve the 
durability of resistance against multiple strains of M. oryzae. To achieve this, in the present study, intragenic stacking of rice 
blast resistance orthologue genes Pi54 and Pi54rh was performed through co-transformation approach. Both these genes 
were expressed under the control of independent promoters and blast susceptible indica rice line IET17021 was used for 
transformation. The highly virulent M. oryzae strain Mo-ei-ger1 that could knock down most of the major single blast R genes 
including Pi54 and exhibiting 89% virulence spectrum was used for phenotypic analysis. The stacked transgenic IET17021 
lines (Pi54 + Pi54rh) have shown complete resistance to Mo-ei-ger1 strain in comparison to non-transgenic lines. These 
two R gene stacked indica transgenic lines could serves as a novel germplasm for rice blast resistance breeding programmes.
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Introduction

Rice blast caused by the fungus Magnaporthe oryzae is 
one of the major diseases affecting rice cultivation all over 
the world (Talbot 2003). It results in substantial loss in rice 
grain production, which is equivalent to feeding 60 million 
people annually (Nalley et al. 2016). Virulent M. oryzae 
isolate creates havoc on susceptible rice lines therefore; 

options for breeders is to manipulate the rice plant by iden-
tifying and deploying blast resistance lines (Bevitori and 
Ghini 2014). Flor (1971) gave gene for gene hypothesis 
which states that every resistance (R) gene in the plant has 
a corresponding avirulence (Avr) gene in the pathogen, if 
the interaction between R- Avr is incompatible there will be 
no disease and it would lead to resistance response in plant, 
but if the interaction is compatible it leads to susceptible 
reaction. Around 102 rice blast R genes have been identified 
and out of that 28 have been cloned and characterized (Xiao 
et al. 2016; Kumari et al. 2017). However, the high muta-
tion rate in M. oryzae, largely due to transposon activity, 
repetitive genome, and high selection pressure in its genome 
which often leads to an emergence of new strains resulting 
in an easy breakdown of single R gene mediated resistance 
response in rice (Valent and Khang 2010; Singh et al. 2014). 
Therefore, deployment of multiple R genes having overlap-
ping pattern of resistance has been considered as a suitable 
approach to improve resistance against rice blast (Dai et al. 
2010; Brunner et al. 2010; Xiao et al. 2016). Stacking of 
multiple R genes either through transgenic or backcross 
breeding acts as a buffer against breakdown of one or the 
other gene mediated resistance (Douglas and Halpin 2010). 
Combining of multiple alleles or orthologues of R genes 
might weaken the selection pressure on respective pathogen 
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(Brunner et al. 2010; Fukuoka et al. 2015). This approach 
has been used successfully in rice to develop blast resistance 
lines with multiple R genes against M. oryzae using molecu-
lar breeding (Fukuoka et al. 2015; Tanweer et al. 2015; Xiao 
et al. 2016).

The major rice blast resistance gene Pi54 was cloned 
from indica rice line Tetep and imparts broad spectrum 
resistance to multiple stains of M. oryzae (Sharma et al. 
2002, 2005a, b; Rai et al. 2011). Transcriptome analysis of 
rice has revealed that Pi54 mediated incompatible interac-
tion with M. oryzae triggers upregulation of various defense 
related genes (Gupta et al. 2012). Subsequently, two ortho-
logues of Pi54; Pi54rh and Pi54of have been cloned and 
characterized from wild rice Oryza rhizomatis and Oryza 
officinalis, respectively (Das et al. 2012; Devanna et al. 
2014). Allele mining for Pi54 also identified more promis-
ing alleles with better blast resistance (Kumari et al. 2013; 
Thakur et al. 2015; Vasudevan et al. 2015). Previous studies 
have indicated that the cloned Pi54 orthologues have vary-
ing, but overlapping spectra of resistance against different 
strains of M. oryzae (Das et al. 2012; Devanna et al. 2014). 
Therefore, the objectives of the present study were (1) stack-
ing of Pi54 and Pi54rh through genetic co-transformation 
in blast susceptible indica rice line IET17021, (2) molecular 
characterization of putative stacked transgenic lines and (3) 
functional analysis of stacked transgenic lines.

Materials and methods

Plant varieties and fungal culture

Seeds of indica rice cv. IET17021 used for stacking of Pi54 
and Pi54rh were kindly provided by Dr. A. K. Singh, Divi-
sion of Genetics, IARI, New Delhi, India. Other rice lines; 
TP309, TP8.3 and Tetep were available with the correspond-
ing author. The M. oryzae isolate Mo-ei-ger1, monogenic 
and susceptible LTH rice lines used in the present study were 
available with Dr. G. Prakash, Division of Plant Pathology, 
IARI, New Delhi. List of primers used during this study is 
given in Supplementary Table 1.

Genetic transformation of rice line IET17021

The rice transformation vector pRTV2 (Fig. 1), with stacked 
blast resistance orthologue genes Pi54 and Pi54rh was pre-
viously developed and also used for genetic transformation 
of blast susceptible japonica rice line TP309 (Kumari et al. 
2017). In the present study, pRTV2 plasmid construct was 
used for genetic transformation of indica rice line IET17021. 
The rice line IET17021 is a high yielding indica rice cultivar 
with extra-long slender aromatic grains and is susceptible to 
M. oryzae. In the present study, scutellar calli derived from 

the mature embryos of IET17021 seeds were used for trans-
formation following standard protocol (Sanford et al. 1987). 
After the transformation calli were subjected to selection 
on hygromycin (50 mg/l) containing MS medium for three 
cycles of 15 days each. Hygromycin resistant healthy calli 
were selected and further subjected to regeneration and root-
ing by following standard protocol (Rai et al. 2011). Finally, 
hardened and healthy rice seedlings were transferred to 
growth chamber having controlled conditions suitable for 
rice.

Molecular analysis of putative transgenic plants

The putative transgenic plants as well as the non-transgenic 
(NT) IET17021 plants were subjected to molecular analysis 
using PCR, CAPS marker and Southern blot analysis using 
genomic DNA isolation by modified CTAB method (Mur-
ray and Thompson 1980). For PCR analysis, we used prim-
ers specific to hygromycin resistance (hptII) gene (HYG-F, 
HYG-R), those to amplify DNA fragment consisting 35S 
promoter and Pi54rh DNA (CVS-F1, PIR-R2) and for Pi54 
gene (T7F, Pi54R1) (Supplementary Table 1). DNA of 
pRTV2 plasmid construct (10 ng) with hptII-Pi54-Pi54rh 
fragments was used as a positive control and for a nega-
tive control genomic DNA from NT-IET17021 was used. 
PCR positive plants were further used for Southern blot 
hybridization by following standard protocol (Sambrook 
et al. 1989). Genomic DNA (15 μg) from transgenic and 
NT-IET17021 plants was restriction digested with SacII 
for Southern blot analysis and resolved in an agarose gel 
(1%). The separated DNA was then transferred to HyBond 
nylon membrane (N + Amersham Pharmacia, UK) through 

Fig. 1   Schematic representation of plant transformation vector having 
rice blast resistance genes Pi54 and Pi54rh 
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capillary blotting. For hybridisation, single probe specific 
to CaMV35S promoter and Pi54rh gene region was PCR 
amplified using CVSF1 and PIRR2 primers. This probe was 
labelled using Digoxigenin (DIG) preparation kit (Roche 
Applied Science, Germany) according to the manufacturer’s 
guidelines. Pre-hybridization, hybridization, immunological 
detection and blot development was performed following the 
standard protocol (Sambrook et al. 1989).

Pathotyping of M. oryzae strain Mo‑ei‑ger1

Magnaporthe oryzae isolate Mo-ei-ger1 was originally col-
lected from Gerua Kamrup, Assam, India. The pathotype 
or virulence spectrum of Mo-ei-ger1 was analyzed before 

using it for screening of the two gene stacked transgenic 
plants. Rice monogenic lines harbouring 27 single blast R 
genes along with blast susceptible rice lines LTH and PB1 
(Table 1) were challenged with M. oryzae isolate Mo-ei-ger1 
following the standard phenotyping protocol described by 
Sharma et al. (2002). Plants inoculated with gelatine (0.2%) 
only were taken as mock controls and the whole experiment 
was proceeded under controlled growth conditions. The dis-
ease reaction was recorded 7-day post inoculation (dpi) of 
M. oryzae (Table 1). Pathotyping study also included indica 
rice line Tetep, from where Pi54 gene was originally cloned 
using map based cloning approach (Sharma et al. 2005a, b). 
Tetep is also the source of other major blast resistance genes 
like; Pita, Pi1 (t), Pi4a(t), Pi4b(t), Pi3(t), Pi-kh (Inukai et al. 
1994; Jia et al. 2003; Xu et al. 2008).

Functional analysis of stacked indica transgenic rice 
lines

The PCR positive and Southern blot confirmed stacked 
transgenic plants were selected and subjected to phenotypic 
evaluation against blast isolate Mo-ei-ger1. Fifteen days old 
stacked indica transgenic rice seedlings as well as wild type 
non-transgenic (NT) IET17021 plants were challenged with 
M. oryzae strain Mo-ei-ger1 following the standard protocol 
described by Sharma et al. (2002). The disease response was 
observed and the data were recorded 7 dpi using 0–5 dis-
ease rating scale (Bonman et al. 1986). The non-transformed 
(NT) IET17021 was highly susceptible to Mo-ei-ger1 and 
visible symptoms showing half of the leaf blades damaged 
by enlarged lesions.

Results

Genetic transformation of rice line IET17021 
and their molecular analysis

Six putative transgenic IET17021 plants were raised ini-
tially from more than hundreds of calli. Various stages of 
transformation of IET17021 are given in Fig. 2. Finally 
we could able to harvest seeds from only four independent 
transformants IET-1, IET-18, IET-20 and IET-23. Molecular 
analysis using PCR amplification confirmed the presence of 
transgene in these four putative transgenic lines (Fig. 3a–c). 
The CAPS (Cleaved Amplified Polymorphic Sequence) 
marker analysis of PCR positive putative transgenic plants 
further confirmed the presence of Pi54 along with pRTV2 
gene cassette (Supplementary Figure 1a, b). Further analy-
sis of these four transgenic plants using Southern blot con-
firmed the integration of the gene cassette (Supplementary 
Figure 2). We did not find PCR and Southern hybridization 
positive product in the NT-IET17021 plants.

Table 1   Virulence analysis of Magnaporthe oryzae isolate

S = Disease reaction scale 4–5 type
R = Disease reaction scale 0–3 type

Gene Mo-ei- ger1

Pi-1 S
Pi-11(t) S
Pi-12 (t) S
Pi-19 S
Pi-20 R
Pi-3 S
Pi-5 (t) S
Pi-7 (t) S
Pi-9 S
Pi-a S
Pi-b S
Pi-i S
Pi-k S
Pi-kh S
Pi-km S
Pi-kp S
Pi-kS S
Pi-sh S
Pi-t S
Pi-ta (Pi-4)* S
Pita- CP1 S
Pi-ta2-PI R
Pita2-Re R
Pi-z S
Pi-z5 (Pi-2) S
Pi-zt S
Pi54 S
TETEP R
LTH S
PB1 S
Genotypes susceptible 24
% virulence 89
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Phenotypic evaluation of stacked indica transgenic 
lines

Magnaporthe oryzae isolate Mo-ei-ger1 used for virulence 
analysis could knock down 24 of the 27 single blast R genes 
including Pi54. The overall virulence spectrum of this strain 
was 89% (Table 1). Mo-ei-ger1, however, was non virulent 
on rice line Tetep, from where Pi54 was originally cloned 
using map based cloning approach. Tetep is also the source 

of other major rice blast resistance genes. As expected, both 
the susceptible controls, LTH and PB1 showed compatible 
reaction while major R genes Pi-20, Pi-ta2-PI, and Pita2-Re 
shown incompatible interaction (Table 1). However, Mo-ei-
ger1 showed incompatible interaction with Pi54rh contain-
ing transgenic line (TP8.3) and a compatible interaction with 
blast susceptible rice line TP309. The typical blast symp-
toms on TP309 included disease reaction lesions of type 4 
and 5 on Bonman disease reaction scale (Supplementary 

Fig. 2   Transformation of indica rice variety IET17021 with two gene construct pRTV2. a Calli in Ist selection; b calli in 2nd selection; c calli in 
3rd selection; d, e regenerated calli; f putative transgenic plants grown at National Phytotron facility

Fig. 3   Molecular analysis of putative transgenic plants. a Lane 1:1 kb 
ladder; lanes 2–6: amplified product of putative transformants using 
hygromycin specific primer; lane 7: amplified product of two gene 
construct; lane 8: NT-IET17021 wild type; lane 9: no template con-
trol; b lane 1:1  kb ladder; lanes 2–5: amplified product of putative 
transformants using caMv35S + Pirh specific primer; lane 6: ampli-

fied product of two gene construct; lane 7: NT-IET17021 wild type; 
lane 8: no template control; c lane 1: 1 kb ladder; lanes 2–5: amplified 
product of putative transformants using Pi54 specific primer; lane 6: 
amplified product of two gene construct; lane 7: NT-IET17021 wild 
type; lane 8: no template control
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Figure 3). Further, all the four Pi54-Pi54rh stacked trans-
genic indica rice lines; IET-1, IET-18, IET-20 and IET23 
displayed resistant response against the Mo-ei-ger1 infection 
in comparison to non-transgenic (NT) IET17021. However, 
among the four transgenic lines, IET-23 was completely 
resistant, whereas other three lines displayed hyper sensi-
tive (HR) response (Fig. 4).

Discussion

Blast disease is one of the major biotic stresses of rice crop. 
Considering the economic and environmental benefits of 
R gene mediated resistance of rice blast disease, identifi-
cation and cloning of novel R genes is indispensable for 
tackling the constantly evolving blast pathogen M. oryzae 
(Wang et al. 2010). Attempts have also been made to tap 
the natural allelic variations of these R genes (Kumari et al. 
2013; Thakur et al. 2015; Vasudevan et al. 2015; Leung 

et  al. 2015). However, a single R gene hardly provides 
durable resistance as the emergence of diverse strains of 
M. oryzae might escape this resistance leading to resistance 
breakdown. Therefore, various attempts are being made to 
“stack” multiple R genes in a single genetic background as 
this would make it difficult for the pathogen to evade multi-
ple resistance genes simultaneously (Salomon et al. 2012). 
Wu et al. (2015) analysed the effective combination pattern 
of multiple blast R genes or their alleles and found that bet-
ter combination of multiple genes or alleles could provide 
more dynamic and durable blast resistance in rice. They 
also concluded that pyramiding of alleles of major blast R 
genes could be used as an effective strategy with stronger 
functional complementary and broad spectrum resistance. 
It could also create new source of resistant germplasm for 
enhanced blast resistance breeding in rice. Though pyramid-
ing of multiple blast R genes and their alleles using molecu-
lar breeding has been successfully used in rice but there are 
no reports on stacking of multiple major rice blast R genes 
or alleles using co-transformation approach in an indica rice 
line (Xiao et al. 2016; Fukuoka et al. 2015; Khanna et al. 
2015; Das and Rao 2015; Luo et al. 2017). Most of the stud-
ies used marker assisted selection (MAS) for crop improve-
ment and MAS is found to be associated with linkage drag. 
Linkage drag could be addressed by single step co-transfor-
mation of multiple R genes (Zhu et al. 2012). Recently stack-
ing of Pi54 and Pi54rh genes in blast susceptible japonica 
rice TP309 through this approach was found to enhance 
the resistance response against blast disease (Kumari et al. 
2017). Similarly, stacking of genes coding for polyproteins 
in an indica rice enhanced the resistance behaviour against 
M. oryzae (Jha and Chattoo 2009). Therefore, the aim of 
the current study was to raise the transgenic indica rice 
lines overexpressing stacked blast resistance orthologue 
genes Pi54 and Pi54rh to enhance the durability of resist-
ance against rice blast pathogen through co-transformation 
approach. PCR and Southern blot analysis confirmed the 
transgenic plants and all the four plants were showing the 
same banding pattern in Southern blot. Similar Southern 
blotting pattern among different transgenic rice lines was 
reported in an earlier study overexpressing Cry2ax1 gene 
to improve resistance against rice leaffolder disease. They 
further observed that the expression level of transgene varied 
among the lines with same banding pattern (Manikandan 
et al. 2016).

All the four stacked transgenic rice lines showed incom-
patible interaction with M. oryzae, but among them IET-23 
was providing better resistance response than the rest. This 
variation in resistance response can be attributed to posi-
tion effect of transgene integration site. The position effect 
leading to differential levels of gene expression has been 
well documented in many crops including Arabidopsis (De 
Bolle et al. 2003).

Fig. 4   Comparative phenotypic analysis: phenotyping of non-trans-
genic IET17021 line using Mo-ei-ger1 stains of M. oryzae displayed 
disease reaction of type 5 category, whereas transgenic IET-1, IET-
18 and IET-20 showed type 1 category reaction. However, the phe-
notypic response of transgenic line IET-23 displayed complete resist-
ance
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Therefore, in the present study we analyse the effective-
ness of combining orthologue genes Pi54 and Pi54rh in 
the genetic background of blast susceptible indica rice line 
IET17021 in comparatively short duration through co-trans-
formation. Stacking of these orthologue genes improved the 
resistance response of transgenic lines against M. oryzae in 
comparison to non-transgenic control plants. Additionally, 
the novel genetic resources generated in this study could 
be an important material for rice blast resistance breeding 
programmes.
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