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Abstract DNA methylation (DNAm) has been found
to show robust and widespread age-related changes
across the genome. DNAm profiles from whole blood
can be used to predict human aging rates with great
accuracy. We sought to test whether DNAm-based pre-
dictions of age are related to phenotypes associated with
type 2 diabetes (T2D), with the goal of identifying risk
factors potentially mediated by DNAm. Our participants
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were 43 women enrolled in the Women’s Health Initia-
tive. We obtained methylation data via the Illumina
450K Methylation array on whole blood samples from
participants at three timepoints, covering on average
16 years per participant. We employed the method and
software of Horvath, which uses DNAm at 353 CpGs to
form a DNAm-based estimate of chronological age. We
then calculated the epigenetic age acceleration, or A,ge,
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at each timepoint. We fit linear mixed models to char-
acterize how A4 contributed to a longitudinal model of
aging and diabetes-related phenotypes and risk factors.
For most participants, A,,. remained constant, indicat-
ing that age acceleration is generally stable over time.
We found that A,,. associated with body mass index
(p = 0.0012), waist circumference (p = 0.033), and
fasting glucose (p = 0.0073), with the relationship with
BMI maintaining significance after correction for mul-
tiple testing. Replication in a larger cohort of 157 WHI
participants spanning 3 years was unsuccessful, possi-
bly due to the shorter time frame covered. Our results
suggest that DNAm has the potential to act as a mediator
between aging and diabetes-related phenotypes, or al-
ternatively, may serve as a biomarker of these
phenotypes.

Keywords Aging - diabetes - DNA methylation - BMI -
biomarker - biological age

Introduction

Worldwide, the population aged 65 years and older is
growing rapidly, with a 150% expansion projected over
the next few decades (He et al. 2016). Despite these
recent global gains in life expectancy, age-related dis-
ease burden and the incidence of chronic disabilities
remain high (Burch et al. 2014). The healthspan, or
years spent in good health, among the aging population
remains highly variable, with some maintaining good
health throughout their lives while others fall ill
(Kennedy et al. 2014). Age itself is the leading risk
factor for the development of most diseases and condi-
tions that drive morbidity and mortality and contribute
to limited healthspan (Kaeberlein et al. 2015; Kennedy
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et al. 2014). In many countries, age-related diseases like
cardiovascular disease, diabetes, cancer, and neurodegen-
erative disorders are among the predominant health prob-
lems faced by the population (Niccoli and Partridge 2012).

A particularly widespread age-related disease adverse-
ly impacting the healthspan of millions worldwide is type
2 diabetes (T2D), which is now considered a global
epidemic (International Diabetes Federation 2015). Due
to population growth, increased longevity, and urbaniza-
tion (which can promote physical inactivity and an un-
healthy diet) (Hu 2011), the global burden of T2D is
expected to worsen over time as the prevalence increases
from 415 million living with the disease in 2015 to an
estimated 642 million in 2040 (International Diabe-
tes Federation 2015; Shaw et al. 2010). There are many
well-documented risk factors associated with the devel-
opment of T2D, including weight gain (Ford et al. 1997),
high body mass index (BMI) (Chan et al. 1994), high
waist circumference (Koh-Banerjee et al. 2004), ethnicity
(Shai et al. 2006), smoking status (Hu et al. 2001), high
fasting glucose (Nathan et al. 2007), high fasting insulin
(Weyer et al. 2000), and age (Mokdad et al. 2003; Stamler
et al. 1993). Diabetes contributed to approximately 5
million deaths globally in 2015 (International Diabe-
tes Federation 2015) and is itself a risk factor for numer-
ous other comorbidities. Globally, ~ 50% of diabetic
individuals are unaware of their condition, and subse-
quently are unaware of their increased risk of diabetes-
related complications. Thus, a better marker of early T2D
risk could provide mechanistic insights and facilitate
earlier identification of high-risk individuals most likely
to benefit from targeted lifestyle interventions (Interna-
tional Diabetes Federation 2015).

Differential susceptibility to age-related diseases can
be attributed to biological differences between individ-
uals, which work to modify disease risk (reviewed in
Feinberg 2007). Among these biological differences are
epigenetic changes, which arise without changes to the
underlying DNA sequence and have the potential to
modify disease risk through their regulatory influence
on gene expression (Goldberg et al. 2007). Additionally,
because the major risk factors for T2D are lifestyle
factors, such as diet and exercise behavior (Pan et al.
1997), an epigenetic mechanism in which these factors
can modify underlying genetic predisposition to disease
incidence is highly plausible. DNA methylation
(DNAm), the presence of a methyl group on the cyto-
sine within a CpG dinucleotide, is the most studied
epigenetic modification. The robust and genome-wide
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changes to DNAm observed with age make it an ideal
biomarker of aging (Alisch et al. 2012; Bollati et al.
2009; Christensen et al. 2009; Teschendorff et al. 2010;
Xu and Taylor 2014). Biomarkers of aging are indica-
tors of the biological age of an organism that predict its
physiological functioning and disease susceptibility bet-
ter than its chronological age alone (Baker and Sprott
1988; Johnson 2006). Recently, highly accurate bio-
markers of aging have been developed that capitalize
on age-related changes to DNAm at a subset of CpGs
across the genome to predict chronological age
(Hannum et al. 2013; Horvath 2013). The approach of
Horvath (Horvath 2013) uses methylation data from just
353 CpGs to form a multi-tissue, DNAm-based estimate
of chronological age (DNAm age). Using DNAm age as
a measure of biological age, the difference between a
participants’ DNAm age and their chronological age can
be calculated. This measure is termed the participants’
epigenetic age acceleration (A,,.) and may proxy for the
general health or rate of aging of the individual (Horvath
2013). Instances in which the A, term is positive
indicate an epigenetic age that is higher than the partic-
ipant’s chronological age.

Many studies support the hypothesis that epigenetic
A,ge 18 associated with negative health outcomes, in-
cluding increased risk of premature mortality (Chen
et al. 2016; Christiansen et al. 2016; Marioni et al.
2015a; Perna et al. 2016; Zheng et al. 2016), early onset
of age-related disease (Breitling et al. 2016; Levine et al.
2015), and changes in physical and cognitive fitness
(Marioni et al. 2015b). These findings indicate that A,
contributes more predictive information about these
health outcomes than chronological age alone. This is
consistent with the possibility that Aage may be acting to
mediate the health outcome or risk of disease onset, but
also with the possibility that DNAm age may be mark-
ing another biological process that is acting as a medi-
ator. Consistent with the adverse health outcomes asso-
ciated with positive A4, a negative A, can predict
positive outcomes: centenarians in an Italian population
and their offspring tended to have a DNAm age that was
lower than their chronological age (Horvath et al. 2015).
Taken together, these results support that epigenetics
can be important in predicting both negative health
outcomes and healthy aging.

Previous studies (Hidalgo et al. 2014; Nilsson et al.
2014; Ronn and Ling 2015) have reported associations
between site-specific methylation differences and T2D
as well as related phenotypes across several cell types

and tissues. Our study aims to assess the potential of
5mC as a mediator between aging and age-related T2D
risk phenotypes. To model age-related SmC patterns, we
focus on a well-studied methylation-based biomarker of
aging (Horvath 2013) which identified 353 CpG sites as
being the most predictive in modeling chronological
age. We take advantage of a longitudinal study spanning
16 years to (1) characterize the changes to participants’
A,ge Over time, and (2) characterize the contribution of
DNAm age and A, in modeling T2D susceptibility.
Given that many T2D risk factors (including high BMI,
waist circumference, and fasting glucose and insulin
levels) reflect age-related changes, a measure of biolog-
ical aging may help predict which participants are at a
higher risk of T2D incidence throughout the study.
Though we do not have the power to model incidence
of clinical T2D in our sample, the longitudinal nature of
this study allows us to model changes to phenotypes
intermediate between age and disease risk. We will use
the DNAm-based measure of biological age as a proxy
for genome-wide DNAm and other age-related biolog-
ical processes that may underlie age-related disease risk.
We aim to inform future studies by assessing the utility
of genome-wide methylation changes and other biolog-
ical processes as potential mediators between age and
risk factors for and indicators of T2D (subsequently
referred to as “diabetes-related phenotypes”).

Methods
Study population and study design

Participants are a subsample from the 68,132 women
who took part in the Women’s Health Initiative (WHI)
Clinical Trials (CT) Cohort. The WHI was a national
study which sought to investigate interventions and treat-
ments for the prevention and management of common
causes of morbidity and mortality among older women
(The Women’s Health Initiative Study Group 1998). All
WHI participants were post-menopausal women, aged 50
to 79 years at the time of enrollment, with minority
women recruited at the same proportion found in the
US population at the time (Hays et al. 2003). Women in
the WHI were also more likely to be overweight, with
three quarters of the women overweight or obese at the
time of enrollment (Hays et al. 2003).

The study began in 1993 with participants complet-
ing questionnaires detailing their sociodemographic
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information (including their age and race), current
health behaviors (including weekly physical activity
and smoking behavior), and current health status (any
disease diagnosis and medications or supplements cur-
rently prescribed). Participants also attended scheduled
clinic visits in which anthropometric measurements
were assessed, including the following: weight, height,
and waist circumference; from these measures, body
mass index was calculated. Additionally, a 6% minority
oversample of participants had blood drawn during
these clinic visits from which insulin, glucose, triglyc-
eride, and high-density lipoprotein cholesterol concen-
trations were measured and buffy coat was archived.
“Epigenetic Mechanisms of PM-Mediated CVD Risk”
(WHI-EMPC) measured DNAm on a genome-wide
scale using DNA extracted from the archived buffy coat
in a stratified, random sample (N = 2200) of the partic-
ipants who were examined between 1993 and 2001.
Among a subset (N = 200) of the 2200 participants,
WHI-EMPC also measured DNAm in buffy coat ar-
chived at a second timepoint on average 3.3 years later.
Subsequently, a “Longitudinal Study of DNA Methyla-
tion as a Mediator between Age and Cardiovascular
Risk” (AS #534) measured DNAm in buffy coat ar-
chived at the third timepoint, on average 16.1 years after
the first, for a subset (N = 43) of the 200 participants
who were followed up as part of the Long Life Study
(LLS). These 43 participants are included in our study
and described in Table 1.

Data cleaning

Chronological age of the participants was approximated
at each timepoint as participant’s self-reported age at
screening (in years) + 0.5 + number of days between
screening and blood sampling / 365.25. Phenotypic
measures include the following: BMI measured as
weight (kg) divided by the square of height (m?), waist
circumference (cm), fasting glucose (mg/dL), and
fasting insulin (uIU/mL). Homeostasis Model Assess-
ment of Insulin Resistance, termed HOMA-IR, was
calculated using the following equation: Insulin (pU/
mL) x Glucose (mg/dL) / 405 (Yokoyama et al. 2003).
The ratio of plasma triglycerides (mg/dL) to high-
density lipoprotein cholesterol concentration (mg/dL),
termed TG/HDL-C ratio, was calculated (McLaughlin
et al. 2003). Lastly, the triglyceride-glucose index,
termed the TyG index, was calculated using the follow-
ing equation: In[Triglycerides / (Fasting glucose / 2)]

@ Springer

(Simental-Mendia et al. 2008). Both TG/HDL-C and
TyG were included as markers of insulin resistance.
Three unrealistic data points believed to be entered in
error were removed. These included BMI measures
below 15 kg/m?, or above 55 kg/m?; these values were
> 2 SD away from the participant’s mean throughout the
study and were flanked by more moderate values mea-
sured within 4 years. Additionally, a waist measurement
above 150 cm was removed, as it was 1.7 SD from the
participant’s mean and was flanked by more moderate
measurements within 6 years. Phenotypic data collected
from within 30 days of a blood draw were assumed to
approximate data that would have been collected at the
time of the draw. Additionally, several waist circumfer-
ence measurements originally recorded in inches were
converted to centimeters, with 1 in. equivalent to
2.54 cm. Insulin measures at the first and second
timepoints were ascertained using different but similar
methods. All insulin testing for the first timepoint used
the radioimmunoassay (RIA) method. For some partic-
ipants, the second timepoint used an automated ES300
analyzer. Because ES300 and RIA methods gave com-
parable results at insulin levels below 60 pulU/mL, and
because all participants had insulin levels below this
cutoff for the first two timepoints, the insulin results
were combined into a single variable. The method for
measuring insulin concentrations changed again for the
third timepoint with the Roche Elecsys 2010 Immuno-
assay analyzer being used. Measures from the third
timepoint were recorded in picomole/liter and were
converted to micro [U/milliliter, with 6 pmol/L equiva-
lent to 1 ulU/mL (Heinemann 2010). Self-reported
smoking behavior, originally recorded as “Never
Smoked,” “Past Smoker,” and “Current Smoker,” was
recoded to “Never Smoked” and “Smoked” due to only
one participant being classified as a “Current Smoker.”
Alcohol intake, total caloric intake, and family history
of diabetes were self-reported at the start of the study.
Alcohol intake reported was weekly intake of alcoholic
beverages. This includes the number of servings per
weeks of beer, wine, and/or liquor based on a serving
size of 12 oz for beer, 6 oz for wine, and 1.5 oz for liquor.
Entries ranged from 0 to 12.4 drinks per week
(mean = 1.5) with missing data for one participant. Total
caloric intake was reported in kilocalories per day, rang-
ing from 660.1 to 3455.2 (mean = 1487.4) with data
missing for one participant. Participants whose energy
intake estimates suggested that they were not properly
completing the food frequency questionnaire (i.e., those
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Table 1 Demographic and clinical characteristics of study population (N = 43)

Variable Mean +/— SD or percentage
Baseline (SD) Follow-up (SD) LLS (SD) # missing obs.

Chronological age (years) 61.52 (6.94) 65.05 (6.77) 77.48 (6.48) 0
DNAm age (years) 58.05 (8.05) 60.19 (6.93) 72.85 (7.92) 0
Ay (years) —3.47 (4.36) —4.86 (4.47) —4.56 (5.20) 0
BMI (kg/m?) 29.02 (5.23) 29.32 (4.47) 28.34 (5.88) 4
Fasting glucose (mg/dL) 94.88 (8.47) 95.47 (14.22) 100.19 (18.76) 0
Fasting insulin (W[U/mL) 12.00 (5.21) 13.04 (7.58) 18.94 (15.10)* 6
HOMA-IR 2.82(1.23) 3.17(2.37) 5.01 (4.56)* 6
TG/HDL-C ratio 3.09 (1.65) 2.92(1.91) 2.08 (1.19) 1
TyG index 8.85(0.47) 8.84 (0.46) 8.57 (0.49) 0
Waist circumference (cm) 87.64 (12.29) 88.87 (11.55) 89.20 (13.37) 10

#LLS insulin measures were obtained from a different analyzer from the baseline and follow-up measures and units were converted from
picomole/liter to micro IU/milliliter. We observe higher values and standard errors for this measure. These observed differences between

timepoints could reflect a true increase in fasting insulin with age, or could be due to differences in measurement

with daily intake less than 600 kcal or greater than
3500 kcal) were excluded (N = 2) (Patterson et al.
1999). In characterizing family history, participants were
asked: “Did your mother, or father, or full-blooded sis-
ters, full-blooded brothers, daughters, or sons ever have
sugar diabetes or high blood sugar that first appeared as
an adult?” Participants’ responses were as follows: “Yes”
(11 participants), “No” (31 participants), or “Unsure” (1
participants). For the model, participants who answered
either “No” or “Unsure” were combined into “No or
Unsure.” Incident diabetes and incident diabetes treat-
ment occurring within the study period were also char-
acterized as part of the sensitivity analysis. Incident dia-
betes was defined, according to standards set by the
American Diabetes Association (Association 2016), as
anyone who fasted for eight or more hours and has a
glucose measure > 126 mg/dL, or anyone who fasted for
fewer than 8 h and has a glucose measure >200 mg/dL (4
participants). Timepoints occurring after a participant
indicated they were prescribed medication to treat diabe-
tes were considered incident treatment with an antidia-
betic agent (4 participants).

DNA methylation data

DNA was extracted from buffy coat from participants
at each timepoint. DNA (500 ng) was used for the
bisulfite conversion with the EZ-96 DNA Methyla-
tion Kit (Zymo Research, Irvine, CA, USA),

following the manufacturer’s protocol. Once convert-
ed and amplified, DNA (15 puL) was fragmented, and
hybridized to the Infinium HumanMethylation450
Bead Chip (Illumina Inc., CA, USA). DNAm profiles
of > 485,000 cytosine-guanine (CpG) sites were mea-
sured using the Infinium HumanMethylation450
BeadChip at the Northwestern University Genomics
Core Facility in two batches, with the first two
timepoints run as part of WHI-EMPC and the third
run as part of AS #534. DNA methylation was sub-
ject to quality controls: excluding probes targeting
CpG sites on the Y chromosome, probes with detec-
tion p values > 0.01 in > 10% of samples, and
samples with detection p values > 0.01 across in
> 1% of probes; 484,220 CpG sites passed this qual-
ity control step and were eligible for further analysis.
Two control DNA samples on each BeadChip were
used to assess reproducibility, and duplicates from
the first batch were run with the second to account
for batch effects. Methylated (M) and unmethylated
(U) signals were used to compute estimates of the
methylation proportion, 3-values, (f = M/(U + M)).
Next, beta-mixture quantile normalization (BMIQ)
was performed to reduce technical variation and
intra-array bias between differing types of probes
(Teschendorff et al. 2013). Lastly, ComBat, which
employs an empirical Bayes method to adjust for
batch effects, was used to adjust for differences be-
tween the two batches (Leek et al. 2012).
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Measures of DNA methylation age and A,

DNAm age at each timepoint was calculated using the
methylation profiles from 353 CpGs and the R pipeline
detailed in Horvath (2013). The difference between
DNAm predicted age and the chronological age of each
participant at each of the three timepoints, termed “age
acceleration” (A,g.), was calculated at each point.

Testing for association between age and DNA
methylation

Using the R package CpGassoc (Barfield et al. 2012),
we performed an epigenome-wide association study
(EWAS) to test for association between chronological
age and DNAm. For each CpG site, we fit a linear mixed
model that included a random effect for each participant
to account for the repeated measures within participants,
and self-reported ethnicity and Illumina chip and row as
covariates.

Testing for association between A, g
and diabetes-related phenotypes

Phenotypes analyzed included seven diabetes-
related phenotypes: fasting insulin and glucose,
HOMA-IR, BMI, waist circumference, TG/HDL-C
ratio, and TyG index. Using the R package nlme
(Pinheiro et al. 2016), we fit longitudinal, mixed
effect models with the phenotype as the outcome
and a random effect for participants. For each
phenotype, two models were fit: the first regressed
each phenotype on chronological age and relevant
covariates, while the second regressed each pheno-
type on both chronological age and A, in addi-
tion to other covariates. Our goal was to assess
whether the additional term A, associates inde-
pendently with the phenotype, indicating that A,
contributes to our ability to model the phenotype.
Thus, for participant (i) at timepoint (), the fol-
lowing models were fit:
Model 1:

Diabetes—related phenotype;;
= Bo + Bragey + Byethnicity; + Bysmoking;

+ Bufasting hoursi; + v; + €

@ Springer

Model 2:
Diabetes—related phenotype;
= Bo + Bragej + Yhagey; + Brethnicity;
+ Bysmoking; + Byfasting hours + v; + €;;

where A,g,;; represents age acceleration for individu-
al 7 at time j, 1; represents a random effect (individual-
specific error term) for individual i, and ¢;; represents the
error term for individual i and timepoint j. Significance
of the age acceleration coefficient -y in the second model
was taken to suggest that the relationship between chro-
nological age and that phenotype could potentially be
mediated by methylation or a related biological process,
or that A, could serve as a biomarker for this pheno-
type. To adjust for potential confounding, ethnicity,
cigarette smoking, and fasting hours (where relevant)
were included as covariates. Sensitivity analysis were
performed with several well-known T2D risk factors
added individually as covariates, including total energy
expenditure, total caloric intake, alcohol intake, and
family history of diabetes.

Estimation of blood cell proportions based on DNA
methylation

A complication in analysis of whole blood samples in
aging studies is that cell proportions in whole blood
change with age (Fagnoni et al. 2000; Houseman et al.
2012), and different subpopulations of blood cells fea-
ture different methylation patterns (Reinius et al. 2012).
Together, these can confound the relationship between
DNAm and aging, since it is difficult to distinguish
DNAm changes in whole blood with age from DNAm
changes in blood with disease development if the model
does not explicitly account for differences in cell pro-
portions (Adalsteinsson et al. 2012). Houseman’s
regression-based method (Houseman et al. 2012) was
used to estimate the composition of white blood cells in
whole blood using DNAm array data. This tool uses
DNAm data from 500 CpGs found to be most informa-
tive of white blood cell (WBC) type in whole blood. The
tool constrains the sum of the six blood type proportions
(CD4+ helper T cells, CD8+ cytotoxic T cells,
granulocytes, monocytes, natural killer cells, B cells)
to 100%, then fits a regression model to the DNAm data
at the 500 sites. This allows for the estimation of the six
WBC proportions, which were then included as
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covariates in the comparisons of Models 1 and 2, with
granulocyte proportions excluded as the reference
category.

Testing for change in A, over time

A mixed effects model, with the year of the participant’s
clinic visit as a fixed effect and a random effect for
participants, was used to test whether there was signif-
icant change in A, over time.

Results
Sample characteristics

The sample characteristics of our population are detailed
in Table 1. Participants were 43 post-menopausal wom-
en, between 50 and 76 years of age at enrollment, with a
mean age of 61.5 years (sd = 6.9). A plurality of our
sample was non-Hispanic White (41.9%), about a third
were African American (32.6%), and about a quarter
were Hispanic or Latino (25.6%). Self-reported
smoking behavior indicated that 23 participants
(54.8%) were either current or previous smokers; 19
participants report having never smoked (45.2%), while
one participant failed to respond. Longitudinal DNAm
data were available for three timepoints with the second
and third timepoints occurring on average 3.3 and
16.1 years after the first, respectively. At baseline, none
of the participants were being treated for diabetes. The
distributions of the seven diabetes-related phenotypes in
our population are shown in Supplementary Fig. 1.

DNA methylation changes with chronological age

Using DNAm array data, we performed a longitudinal
epigenome-wide association study as proof of concept
that many CpGs display differential methylation associ-
ated with participants’ estimated chronological ages, a
pattern which has been well-established in many other
datasets (e.g., Alisch et al. 2012; Bollati et al. 2009;
Christensen et al. 2009; Teschendorff et al. 2010; Xu
and Taylor 2014). In our data, 232 sites showed signif-
icant changes with age according to the Holm step-
down Bonferroni procedure (p < 1.0E — 7), while
3064 sites were found significant by the Benjamini—
Hochberg procedure (FDR < .05). Top CpGs are listed
in Supplementary Table 1. Supplementary Fig. 2

features a Manhattan plot of p values reflecting the
association between methylation and chronological
age. Our results appear consistent with those reported
by Xu and Taylor (2014), who identified 749 high
confidence age-related CpGs in > 1000 individuals.
Supplementary Fig. 3 demonstrates a high correlation
(r = 0.74) between t-statistics across the two studies.
Additionally, 11 of our significant sites overlap with the
353 CpGs that make up the epigenetic clock (Horvath
2013).

DNA methylation age estimates over time

Participants’ chronological ages show high correlation
with their predicted DNAm ages (» = 0.89) (Fig. 1). The
difference between this predicted age and the chrono-
logical age of each participant at each of the three
timepoints, termed A,g, is calculated at each point.
DNAm age at enrollment ranges from 43.2 to 84.5,
while A, at enrollment ranges from — 12.3 to 9.0.
The median A, value across participants is —4.5. A,ge
is negative for 109 of the 129 measurements (84.5%),
which is consistent with previous reports showing that
women tend to have lower A, than men (Hannum
et al. 2013; Horvath et al. 2016). The average A, at
the first timepoint is — 3.5 (sd = 4.4), — 4.9 (sd =4.5) at
the second timepoint, and — 4.6 (sd = 5.2) at the third
timepoint (Table 1, Supplementary Fig. 4). According to
a Shapiro-Wilk normality test, A, is normally distrib-
uted at timepoints 1 (p = 0.16) and 2 (p = 0.87), but not
timepoint 3 (p = 0.0033). However, with the removal of
a single individual with an extreme A,,, values for
timepoint 3 are consistent with a normal distribution
(p =0.94).

A,ge Is not significantly associated with smoking
status (p = 0.51) in our data. It is also not significantly
associated with chronological age (»=—0.14, p = 0.13)
(Supplementary Fig. 5), though the negative correlation
is consistent with previous reports (Chen et al. 2016;
Christiansen et al. 2016; Marioni et al. 2015b). It does
vary by ethnicity, with the Hispanic/Latino group hav-
ing a smaller A, but this difference is not statistically
significant in our sample (p = 0.39). This observation
agrees with recent findings that Hispanic/Latina women
participating in the WHI study have a lower A, com-
pared to WHI Caucasians (Horvath et al. 2016), though
our study did not have power to detect a significant
difference.
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Within individuals, very little change in A,z is ob-
served over time, suggesting that the value of age
acceleration remains roughly constant over time
among our participants (Fig. 2). On average, A,
showed a 0.041 decrease each year, which does not
differ significantly from a change of zero (p = 0.25)
(Supplementary Fig. 6). To identify individuals
whose A,z changed significantly during the study,
each of the 43 participants’ DNAm age was regressed
on their chronological age. The mean slope of this
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70 80 90
Chronological Age
Fig. 1 Chronological Age (x-axis) vs. DNA methylation Age (y-
axis). Each point shows chronological age and DNAm age for one
participant at one of the three timepoints. The dotted red line

represents the equivalence line, meaning there would be perfect
agreement between the computed DNAm age and the

approximated chronological age. The blue line represents the
regression line obtained from a regression of DNAm age on
chronological age with random effects to account for repeated
measures within subjects. The shaded gray region around the blue
line represents a 95% confidence interval of the regression line

regression was close to 1 (mean = 0.96, SD = 0.29),
suggesting that on average, DNAm age increases at a
similar rate to chronological age. Five participants
(10, 26, 27, 33, and 34) were at least 1.5 standard
deviations from the mean, with slope values of 0.46,
1.41, 0.52, 1.71, and 2.02, respectively. To assess
whether these changes in A, could be influenced
by changes in blood cell proportions, we regressed
each of six estimated cell type proportions onto the
year of the participant’s visit, and found that cell
proportions did not change significantly over the
course of the study (Supplementary Fig. 7).
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1 2 3 4 5 6 7
8 9 10 11 12 13 14

DNA Methylation Age
QIO~NOXO QIO~NOXO QIO~NOXO QO~NOXO QO~NOXO QO~NOXO QO~NOXO

t

50 60 70 80 90
Chronological Age

Fig. 2 Chronological Age (x-axis) vs. DNA methylation Age (y- to the dotted red line indicates little change in A,y within a
axis) for each participant. Each subplot represents one participant; participant over the course of the study, while a black line with a
a solid black line connects the participants’ three measures of A, slope other than 1 would reflect changes in A, over time. Figure 1
across the three timepoints. The dotted red line represents a line of provides a composite view of these data combined across all 43
slope = 1, reflecting perfect agreement between DNAm age and subjects

chronological age. A participant’s black line being nearly parallel

DNAm age acceleration associates with several robustness of our results to inclusion of covariates,
diabetes-related phenotypes we performed sensitivity analyses that added the

following covariates to the model: alcohol intake,
Results from our models of diabetes-related pheno- total caloric intake, family history of diabetes, inci-
types are listed in Table 2. A,,. has a signifi- dent diabetes during follow-up, and incident treat-
cant positive association with fasting glucose ment with antidiabetic agents. Supplementary Ta-
(» = 0.0073), BMI (p = 0.0012), and waist circum- ble 2 shows that the addition of each covariate
ference (p = 0.033). Using a Bonferroni-corrected o produces similar results to our baseline model. Fur-
of 0.0071 to adjust for the seven phenotypes tested, thermore, inclusion of a covariate for participants
the association remains significant for BMI and taking medication for incident diabetes suggests
near-significant for glucose. To assess the that, in addition to A,,. contributing significantly
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Table 2 Multivariate regression analysis of diabetes-related phenotypes on age and biological age acceleration

Phenotype Model 1 Model 2 Model 2

Coefficients on chronological age Coefficients on chronological age Coefficients on Ay

Est. (SE) p value Est. (SE) p value Est. (SE) p value
BMI —0.046 (0.030) 0.13 —0.032 (0.029) 0.27 0.29 (0.087) 0.0012%*
Fasting glucose 0.24 (0.14) 0.081 0.30 (0.13) 0.027 0.97 (0.34) 0.0073
Fasting insulin 0.28 (0.10) 0.0078 0.30 (0.10) 0.0050* 0.26 (0.24) 0.28
HOMA-IR 0.084 (0.028) 0.0043* 0.091 (0.029) 0.0022* 0.089 (0.065) 0.18
TG/HDL-C ratio —0.051 (0.015) 0.0013* —0.048 (0.016) 0.0029* 0.048 (0.040) 0.24
TyG index —0.014 (0.0045) 0.0023* —0.013 (0.0046) 0.0055* 0.021 (0.012) 0.073
Waist circumference 0.10 (0.077) 0.18 0.13 (0.076) 0.082 0.48 (0.22) 0.033

The model includes the following covariates for the 43 participants: ethnicity, smoking history, age, and estimated cell type proportions.
p values marked with an asterisk (*) are significant at our Bonferroni-corrected o of 0.0071

to modeling of BMI, it also contributes significant-
ly (p < .0071) to modeling fasting glucose among
our participants.

Supplementary Fig. 8 reflects measurements of
BMI over the 16-year study period for our partici-
pants. Of the five participants with extreme A,
slope values, three participants (10, 34, and, to a
lesser extent, 27) also had extreme changes in BMI
during the study. This BMI fluctuation could, per-
haps, be linked to changes in DNAm and A,,.. To
test whether the relationship between A,,. and
BMI, fasting glucose, and waist circumference were
driven by these five participants, we removed them
in a sensitivity analysis. Supplementary Table 3
includes the results of this analysis in which it
appears that our findings are driven by the partici-
pants with dynamic A,,., since the effect sizes
decrease substantially upon their removal compared
to the original results in Table 2. This loss of an
association with the removal of the most dynamic
participants suggests that the association may
be driven by within-person changes in A,,.
and BMI, rather than static differences between
individuals.

Replication study in a second WHI subsample

A subset of 200 women from a stratified, random sam-
ple of 2200 WHI-CT participants had two DNAm mea-
surements assessed as part of WHI-EMPC. Our 43
participants with three DNAm timepoints are part of
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this subset of 200; we attempt to replicate our findings
in the remaining 157 participants who had two DNAm
timepoints on average 3.7 years apart. The replication
cohort’s ethnic make-up is fairly similar to our partici-
pants, with 55.4% non-Hispanic, White, 19.6% Black or
African American, 15.92% Hispanic/Latino, 4.46%
Asian or Pacific Islander, 3.18% American Indian or
Alaska Native, and 1.27% Other. Smoking behavior had
a high rate of missingness (85.7% of participants did not
provide data on their smoking habits), and thus was not
included in regression models. The sample characteris-
tics of our replication population are detailed in Supple-
mentary Table 4. The replication cohort mirrored our
finding of female participants having lower DNAm age
than their chronological age (mean A, is — 4.30 years
in our data and — 3.87 in the replication cohort). How-
ever, while the correlation between A, and chronolog-
ical age was not significant in our analysis of 43 partic-
ipants (» = — 0.14, p = 0.13), analysis of this larger
sample yielded a significant negative correlation
(r=-—10.20, p = 3.9E — 6, Supplementary Fig. 9).
Results of the regression of diabetes-related pheno-
types on age and A,,. are shown in Supplementary
Table 5. We found that A, did not contribute signifi-
cantly to models of our seven diabetes-related pheno-
types in our replication group. To test whether the sig-
nificant findings in the original dataset were due to its
longer timespan relative to the replication data, we cen-
sored the original dataset so that only the first two
timepoints were included in the regression. In Supple-
mentary Table 6, we see that the originally reported
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associations with BMI and glucose disappear when only
two timepoints are used, marked by a substantial drop in
the estimated effect size. This suggests that these results
may depend on the ability to observe individual changes
over a sufficiently long time period.

Discussion

This study supports previous findings on the utility of
DNAm-based biomarkers of age in modeling health
outcomes. We analyzed longitudinal DNAm data in
order to capture the relationship between participants’
changes in DNAm age over time and diabetes-related
phenotypes. We found that age acceleration contributes
significantly to models of diabetes-related phenotypes
among our 43 participants. Epigenetic age acceleration
is positively associated with longitudinal changes in
participants’ body mass index. Additionally, epigenetic
age acceleration shows a suggestive association with
longitudinal changes to participants’ glucose, narrowly
missing our Bonferroni cutoff for significance. Glucose
does in fact reach significance in our sensitivity analysis
in which a covariate for incident T2D treatment is
included (p = 0.0054). This indicates that age accelera-
tion may contribute to longitudinal models of fasting
glucose and that more research should be done with a
larger sample. Age acceleration does not appear to sig-
nificantly contribute to longitudinal models of waist
circumference, insulin, HOMA-IR measurements, TG/
HDL-C ratio, or TyG index. These findings give us
leads into which aspects of diabetes-related phenotypes
may feature an important epigenetic component. The
utility of epigenetic-based biomarkers is that they can
offer a more personalized model of an individual’s
health status than age alone, though this may not be true
for all phenotypes. This is evident in the result that A,,e
contributes to models of BMI and fasting glucose but
that chronological age appears to be a better predictor of
fasting insulin, HOMA-IR, TG/HDL-C ratio, and TyG
index.

An intriguing finding is that, for most of our partic-
ipants, a DNAm-based measure of age acceleration
remains stable over the course of the study. This indi-
cates that participants who displayed accelerated biolog-
ical age at the start of the study were likely to display the
same degree of epigenetic age acceleration 16 years
later. The dynamics of A, over time have not been
extensively characterized, but this observed stability of

A,ge OVer time among adults is consistent with findings
in previous longitudinal studies of age acceleration
(Kananen et al. 2016; Marioni et al. 2015b). Addition-
ally, we found that A, exhibits a negative correlation
with chronological age, which is consistent with previ-
ous reports (Chen et al. 2016; Christiansen et al. 2016;
Marioni et al. 2015b). While this relationship was not
significant in our initial sample, it reaches significance
in our larger replication cohort. While this could suggest
a non-linear relationship between DNAm age and chro-
nological age over the life course, A, did not change
significantly over time for the majority of individuals in
our study. Thus, the negative correlation appears to
result from between-individual differences, and may
reflect a selection bias due to biologically “younger”
individuals being more likely to survive to old age
(Christiansen et al. 2016).

A recent study reported that Hispanic/Latinos from
the WHI feature a significantly lower epigenetic age
acceleration compared to Caucasians (Horvath et al.
2016). In our study, Hispanic/Latinos also featured a
lower A4 compared to Caucasians and African Amer-
icans, but this was not significant due to our small
sample size. Additionally, our findings, that A, did
not associate significantly with several diabetes-related
phenotypes, have been corroborated by another study of
A,ge among WHI participants; however, in contrast to
our findings, this study did not find a significant asso-
ciation between A,,. and BMI or glucose (Horvath et al.
2016). Reasons for this difference could lie in our use of
longitudinal data over 16 years, while most previous
studies of epigenetic age acceleration have relied on
cross-sectional data.

A recent publication, which used longitudinal data
from an overlapping set of subjects within the WHI,
observed a significant association of age acceleration
with individual changes in BMI over a 3-year study
period (Quach et al. 2017). Another study, using longi-
tudinal methylation data, found that an increase in the
BMI is significantly associated with an increase in age
acceleration (Nevalainen et al. 2017). These findings
suggest that a longitudinal approach to modeling
diabetes-related phenotypes may allow for the detection
of associations previously not possible with a cross-
sectional study. The increased ability to detect associa-
tion between DNAm and the phenotypes tested can be
attributed to the length of time between repeated mea-
sures. The 3-year study period may explain why our
replication sample, though larger, did not reflect the
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associations between age acceleration and diabetes-
related phenotypes noted in our 16-year study.

Longitudinal studies provide a powerful means to
identify phenotypic changes associated with within-
person changes in DNA methylation, while avoiding
potential confounding due to between-person differences.
Sensitivity analyses revealed that our observed associa-
tion between BMI and A,,. was driven by within-
individual differences in the participants with the most
dynamic A,.. and BMI over the time period studied. We
also noted that A,.. was relatively stable over time for
most individuals. Based on these observations, to maxi-
mize within-person variation in predictors and pheno-
types, future longitudinal studies of DNAm and age-
related phenotypes should strive to focus on the age
ranges that are most dynamic with respect to the pheno-
types of interest, and incorporate the widest possible
study duration within the relevant age range. In addition,
a previous finding that events like menopause can accel-
erate biological aging in blood (Levine et al. 2016) imply
that perhaps studies of DNAm and/or biological aging
could benefit from focusing on post-menopausal women.

Our study had several limitations. Our population of
only post-menopausal women potentially limits the gen-
eralizability of our findings. More research into the
contribution of A, to health outcomes in both men
and women, and in participants across different age
groups is necessary. Furthermore, a disproportionally
high number of participants enrolled in the WHI are
obese, potentially limiting generalizability to non-
obese populations. Additionally, data on smoking be-
havior, alcohol consumption, exercise habits, and eth-
nicity were self-reported and thus could be biased, po-
tentially affecting our results. Data on time spent
exercising per week was unavailable for the third
timepoint, and was thus not included in our models.
Because physical activity is known to protect against
the development of diabetes (Colberg et al. 2010), this
may inflate the importance in the contribution of DNAm
to disease development. Lastly, T2D incidence was
included as a covariate in the sensitivity analysis and
not analyzed as an outcome because only 4 participants
in our study developed T2D over the 16-year time
period—which would limit our power to detect associ-
ations with disease incidence. Because of this limitation,
our focus was on phenotypes associated with the inci-
dence of T2D rather than the incidence itself.

Finally, while our study benefits from a longitudinal
design with DNAm spanning an average of 16 years
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within subjects, the number of subjects is small. Larger
studies will be needed to confirm the associations re-
ported here and to investigate mechanisms underlying
the associations. Our results are consistent with a sce-
nario in which the relationship between age and these
diabetes-related phenotypes may be mediated by
DNAm or a related process. However, much larger
studies are required to tease out causality in the relation-
ship between epigenetic aging rates and phenotypes
associated with diabetes such as high BMI. Recent
cross-sectional publications have used Mendelian ran-
domization approaches to assess causality between
DNAm and obesity from whole blood (Mendelson
et al. 2017; Wahl et al. 2017). Their findings suggest
that the majority of obesity-associated differences in
DNAm patterns may be a result, rather than a cause, of
the development of obesity. Regardless of the direction
of causality, our results and others support the potential
of DNAm and epigenetic factors as candidates to devel-
op biomarkers for diabetes-related phenotypes.

Conclusions

Diabetes is associated with genetic, lifestyle, and envi-
ronmental factors, suggesting that the epigenome may
be important in determining both susceptibility and
progression of the disease. While numerous past studies
have noted small-scale DNAm changes that accompany
diabetes risk and progression, our findings speak to the
utility of genome-wide methylation changes in model-
ing phenotypes associated with diabetes. This contribu-
tion of A,,. in modeling diabetes phenotypes also
speaks to the ability of DNAm to serve as a potential
mediator of the relationship between aging and the
phenotypes associated with age-related disease, or alter-
natively as a biomarker. We believe this pilot study can
inform future studies of DNAm-based biomarkers and
their potential to predict phenotypes associated with
disease.
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