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Abstract

Purpose—To introduce and evaluate a fully automated renal segmentation technique for 

glomerular filtration rate (GFR) assessment in children.

Methods—An image segmentation method based on iterative graph cuts (GrabCut) was modified 

to work on time-resolved 3D dynamic contrast enhanced MRI datasets. A random forest classifier 

was trained to further segment the renal tissue into cortex, medulla and the collecting system. The 

algorithm was tested on 26 subjects and the segmentation results were compared to the manually 

drawn segmentation maps using the F1-score metric. A two-compartment model was used to 

estimate the GFR of each subject using both automatically and manually generated segmentation 

maps.

Results—Segmentation maps generated automatically showed high similarity to the manually 

drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using 

whole-kidney segmentation maps from the automatic method were highly correlated (Spearman 

ρ=0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the 

automatic method was 2.98±0.66% with an average segmentation time of 45 seconds per patient.

Conclusion—The automatic segmentation method performs as well as the manual segmentation 

for GFR estimation and reduces the segmentation time from several hours to 45 seconds.
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Introduction

Chronic kidney disease (CKD), a disease causing gradual loss of kidney function, affects 26 

million patients in the US alone (1). Although CKD has a lower prevalence rate among 
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children (1.5 to 3 per 1,000,000), they are particularly vulnerable to the complications 

caused by this disease such as growth retardation, renal osteodystrophy, and anemia (2). 

Although initially asymptomatic, CKD can lead to kidney failure, if left undetected or 

untreated, which necessitates dialysis and eventually a kidney transplant. Progression of 

CKD to end-stage renal failure can be prevented by early detection and treatment. CKD in 

children is primarily caused by obstructive uropathy, vesicoureteral reflux, and congenital 

anomalies that can be diagnosed by renal ultrasound (3). However, reduced kidney function 

can still be observed in the absence of anatomical anomalies. Magnetic resonance imaging 

(MRI) provides a more comprehensive anatomical and functional assessment of kidneys, 

which is often needed to diagnose CKD. Unlike computed tomography (CT) and nuclear 

scintigraphy, MRI is particularly attractive for pediatric urography as no ionizing radiation is 

involved.

In the last decade, dynamic contrast enhanced MRI (DCE-MRI) techniques have been used 

to visualize the renal contrast uptake dynamics and to measure quantitative metrics of renal 

function such as renal transit time and split renal function (4–6). In DCE-MRI, a patient is 

administered a gadolinium-based contrast agent intravenously and the in-vivo distribution of 

the contrast agent is observed by taking a series of T1-weighted MR images over time. The 

qualitative analysis of these time-resolved MR images helps detection of obstructive and 

congenital abnormalities, whereas quantitative analysis helps in the assessment of renal 

function. Pharmacokinetic models have been developed (7–10) to extend the quantitative 

analysis of DCE-MRI by estimating the glomerular filtration rate (GFR), a primary indicator 

of renal function used for diagnosing chronic kidney disease. In addition to the high spatial 

resolution requirement for obtaining diagnostic quality images, tracer kinetics modeling 

requires DCE-MRI images to have a high temporal resolution (11). Several MRI sequences 

that can achieve high spatiotemporal resolution needed for quantitative MR urography have 

been developed (12–19). Some of these sequences have been used in clinical studies for 

GFR estimation such as TWIST (19), DISCO (20) and stack-of-stars (21). Recently, a free-

breathing 3D DCE-MRI sequence based on radially ordered Cartesian k-space sampling, 

VDRad (Variable Density sampling and Radial view-ordering) (13), was demonstrated for 

renal dynamic imaging in children using a low-rank constrained reconstruction method (22).

The pharmacokinetic models used for GFR estimation require signal intensity-time curves of 

the kidneys, which can be obtained from the DCE-MRI data using renal segmentation maps. 

Manual segmentation of the kidneys can take several hours (23) and often requires trained 

personnel increasing the overall cost of quantitative analysis. Usually, image segmentation is 

performed on static images using image-processing techniques. In DCE-MRI, the volumetric 

images have a temporal dimension that can be leveraged in segmentation. Several techniques 

have been developed to automate the renal segmentation process using information from 

spatial only (23–26) and temporal only (27–31) domains. Several techniques have utilized 

both spatial and temporal domains (32–34) to perform renal segmentation. Some of these 

techniques (32,34) have been demonstrated on a small number of datasets successfully 

however their performance on a larger population is unknown. Only one study (23), with 22 

clinical datasets, has reported the automatic segmentation performance in terms of GFR 

estimates. However, it is limited to the spatial information only and requires manual 

intervention to select seed regions for segmentation.
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In this study, we present an automatic renal segmentation method based on computer vision 

and machine learning. The novel approach utilizes both spatial and temporal domains to 

achieve full kidney and renal cortex segmentation. We demonstrate the method in a clinical 

application by obtaining renal segmentation maps and estimating the single-kidney GFR 

using a 2-compartment model (10). The results are compared to the GFR estimates obtained 

from manually drawn segmentation maps.

METHODS

Overview of Automatic Segmentation

The goal of the proposed method is to create renal segmentation maps for pharmacokinetic 

analysis. The segmentation process is performed in two steps as visualized in Fig. 1. The 

first step uses image processing and computer vision methods to automatically locate the 

kidneys in the abdominal image and segment out the renal parenchyma as a whole. The 

second step uses machine learning to classify the kidney voxels as cortex, medulla or 

collecting system.

Automatic Segmentation of Renal Parenchyma

In DCE-MRI, different tissues often show different enhancement characteristics (Fig. 2). 

Tissues that enhance due to the perfusion of contrast-rich blood such as liver, spleen and 

renal cortex show an increase in the signal intensity within the first 30s of the bolus arrival 

followed by a steady decrease in the following temporal phases. Renal medulla, on the other 

hand, has a steady increase in signal intensity between 30s and 120s due to the accumulation 

of contrast agent in the renal tubules. In addition to this accumulation due to continuous 

filtration of the blood, the renal medulla contains the loop of Henle where the contrast agent 

concentration is increased due to reabsorption of water. These features give the renal 

medulla a unique intensity-time curve distinguishing it from other tissues (Fig. 2). A similar 

argument can be made for the collecting system as it enhances at a much later stage.

The following scoring metric (Eq. (4)) was used to locate the medulla in the abdominal 

images (Fig. 3a).

[1]

[2]

[3]
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[4]

where SI(t) is the signal intensity at time t and  is the pre-contrast signal scaled to 0–1 

range. The bolus arrival time (t = 0) is automatically detected from the DCE-MRI dataset as 

the time point when a total signal increase (across the whole image) of 5% is observed over 

the baseline. The first multiplication term in the enhancement score (Eq. (1)) rewards the 

tissues that enhance after the first minute and penalizes the tissues with a signal decrease in 

the same period. The second multiplication term eliminates the tissues that do not show 

enhancement in the first minute. The spatiotemporal score (Eq. (2)) is used for evaluating 

the surrounding tissues based on their enhancement rates. For each voxel the time-to-90% 

enhancement above the pre-contrast signal level is calculated and the dynamic range is 

scaled to 0–1 range to create the scaled time-to-90% enhancement maps (T9̂0%). Then, 

spatial grayscale closing operation (●) is performed on the reversed map (1 − T ̂90%) using a 

cube-shaped structuring element (SE) with side length of dctx. The cortical thickness 

parameter (dctx) is chosen as 11 mm, the maximum cortical thickness reported in the 

literature (35). The closing operation is performed in two steps: dilation and erosion. In the 

dilation step, each voxel in the map takes on the maximum value observed in their 

neighborhood defined by the structuring element. In the erosion step, which is performed on 

the output of the dilation, each voxel takes on the minimum value within the same 

neighborhood. The closing operation is used to close the spatial gaps of low score (e.g. 

medulla) within high score regions of the map (e.g. cortex). Hence, the spatiotemporal score 

of the medullary regions depends on the speed of cortical enhancement. A high 

spatiotemporal score indicates a voxel surrounded (within dctx radius) by neighboring voxels 

that peak in the early phases. These voxels are typically medullary voxels as they are nearly 

surrounded by renal cortex, which reaches its peak level at a much earlier time-point and 

receive a higher 1 − T̂90% weight. Pre-contrast score (Eq. (3)) is used for penalizing the 

voxels that have high signal intensity in the pre-contrast phase such as fat tissue.

A bounding box was calculated for each kidney using the following steps. First, the medulla 

score maps (Fig. 3a) were thresholded using Otsu’s method (36) to reveal the medulla 

clusters (Fig. 3b). Then, the clusters within one cortical thickness (dctx) distance in all 

directions were grouped together (Fig. 3c). Finally, a binary dilation operation was 

performed to expand the medulla clusters by one cortical thickness (dctx) in all directions 

(Fig. 3d) and the 3D convex hull was calculated (Fig. 3e) to obtain a bounding box around 

each kidney (Fig. 3f).

We developed a modification of GrabCut (37) to apply it to DCE-MRI data. The developed 

algorithm was used to extract the renal tissue from the bounding box defined in the previous 

step. The GrabCut algorithm uses iterative graph cuts to extract the foreground object from 

an RGB image given a loosely drawn bounding box around the foreground object. In a 

typical graph cut segmentation (38), some regions of background and foreground object 

have to be labeled by an expert. In the recent GrabCut algorithm (37), anything outside the 

bounding box is considered “background” and the region inside is considered “unknown.” 

The “unknown” region is labeled as “possible foreground” and “possible background” 
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through iterative graph cuts where the pixel-to-pixel smoothness term is based on the 

Euclidian distance in the color space. In order to apply this method to the DCE-MRI data, 

we have modified the GrabCut implementation available in OpenCV to apply the 

smoothness term in a 3D neighborhood. This modification allowed the use of 3D images 

with three channels (RGB). The temporal dimension of DCE-MRI datasets often has more 

than three temporal phases. The temporal phases of the dataset were reduced to three 

channels using principal component analysis (PCA) and mapped to RGB channels (Fig. 4). 

The output of the PCA reduction was a 3D-RGB image (3 spatial and 1 color dimensions) 

where different colors represent different signal-time curve principal components. The 

modified GrabCut algorithm was applied to the PCA reduced datasets using the renal 

bounding boxes to obtain the segmentation map of the renal parenchyma (Fig. 5).

Automatic Segmentation of Renal Cortex

The renal voxels detected by the GrabCut algorithm in the previous step were classified as 

cortex, medulla and the collecting system using machine learning. A random forest classifier 

was trained using 10,000 randomly selected renal voxels from 11 datasets with manually 

labeled ground truth segmentation maps.

Each voxel was represented by 7 features:

• Signal intensity (SI) at t = 0,30,60,90,120,150 seconds

• Depth of voxel within renal tissue (determined from the whole-kidney mask 

obtained from GrabCut)

In order to reduce inter-subject variability, each signal intensity feature was whitened by 

removing the mean feature value of all voxels and dividing by the standard deviation of all 

voxels that belong to the same subject. After whitening, the distribution of the voxels for 

each feature was centered on zero with a standard deviation of one. This led to voxels being 

evaluated based on their relative signal intensity with respect to the other voxels in the same 

subject. The feature selection process and evaluation of feature effectiveness can be found in 

the supporting document (Supporting Table S1).

Hyper-parameters of the classifier were determined from the training set using a grid search 

with 5-fold cross-validation. The trained random forest classifier was tested on 915,000 

kidney voxels that are not included in training dataset. The classification performance of the 

random forest model was compared to the SVM and AdaBoost (with decision tree) models 

using a small sample set of 10,000 randomly chosen voxels with a 50% train-test split.

Evaluation of Segmentation Maps

The segmentation maps obtained from the automatic segmentation algorithm were compared 

to the manually obtained segmentation maps by using F1-score, the harmonic mean of 

precision (positive predictive value) and recall (true positive rate or sensitivity) (Eq. (5)).
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[5]

The F1-score metric is in the range [0, 1] where a complete overlap between the true 

segmentation map (manual segmentation) and the predicted segmentation map (automatic 

segmentation) corresponds to an F1 score of 1.0 and a complete mismatch corresponds to a 

score of 0.

Pharmacokinetic Analysis

Glomerular filtration rate (GFR) estimation using compartmental models requires an arterial 

input function (AIF) and the concentration–time curves of the contrast agent within a region 

of interest (ROI) encompassing kidneys. The ROI needed for subject-specific AIF 

calculation is obtained by manual selection of arterial voxels in the common iliac artery right 

below the aortic bifurcation. The renal ROIs are obtained by both manual and automatic 

segmentation of kidneys.

Contrast agent concentration within each voxel (Cvoxel) is calculated using Eq. (6). The T1 

value of the voxel is estimated from the measured signal (SIvoxel) using the steady state 

spoiled gradient (SPGR) signal model described in Eq. (7).

[6]

[7]

where r1 is the relaxivity of gadolinium, T1(0) is the pre-contrast T1 value of the tissue, TR 
is the repetition time and θ is the flip angle. The scaling constant S0 is calculated for each 

voxel by solving Eq. (7) at time zero using the pre-contrast T1 values. The repetition time 

and flip angle are obtained from the data acquisition protocol. The rest of the parameters are 

assumed to be r1 = 4.5 (mMs)−1, T1(0) = 1.9 s for blood, and T1(0) = 1.2 s for kidney tissue 

as reported in literature (39, 40).

The concentration in kidney (Ckidney) and the arteries (Cartery ) are obtained by averaging the 

voxel concentrations (Cvoxel) within the corresponding renal and arterial ROIs. A hematocrit 

correction is applied to the arterial concentration to get the contrast agent concentration in 

the plasma using Eq. (8).

[8]
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A large vessel hematocrit (Hctlarge) value of 0.41 is used for the hematocrit correction of 

arterial concentration (10).

The average concentration within the kidney ROI (Ckidney) is modeled using a 2-

compartment model (10). The model assumes that the kidney tissue is made of two 

compartments, an arterial and a tubular compartment. The model uses the AIF and the 

measured kidney concentration to calculate the transfer coefficient (ktrans) between these two 

compartments, which is proportional to the filtration rate. Only the first 90s of the 

concentration-time curves is used in the fitting to guarantee that the contrast agent does not 

leave the ROI as assumed by the model (10). Single-kidney GFR is calculated from the ktrans 

estimates using Eq. (9).

[9]

where Vkidney is the total kidney volume.

Study Design

With Institutional Review Board approval and waived consent, we retrospectively identified 

three different groups of datasets with different protocols that were suitable for automatic 

renal segmentation. All clinical scans were performed on a 3T MR750 scanner (GE 

Healthcare, Waukesha, WI) using a 32-channel torso coil.

Group 1—This group consists of 11 consecutive pediatric subjects clinically referred for 

contrast-enhanced MRI. The acquisition protocol with fast contrast injection used in this 

group was the same as the protocol used in the vast majority of our abdominal DCE-MRI 

exams. A single dose 0.03 mL/kg gadobutrol contrast was diluted in saline to a volume of 10 

mL and power injected intravenously at a rate of 1 mL/s followed by 20-mL saline flush at 

the same rate. Acquisitions were performed using respiratory navigated VDRad (13) with fat 

saturation: TR=3.3 ms, FA=15°, ±100kHz bandwidth, matrix=192×180, FOV=320×256 

mm, thickness=2.4 mm, 80 slices, 36 temporal phases, 3s temporal resolution and 6.2× 

acceleration. Images were reconstructed using a low-rank method based on ESPIRiT 

compressed sensing and parallel imaging (22).

Group 2—This group consists of 11 consecutive pediatric subjects clinically referred for 

contrast enhanced MRI. This dataset was acquired with the same protocol as Group 1 but the 

contrast injection rate was slowed down for renal functional studies. A single dose 0.03 

mL/kg gadobutrol contrast was diluted in saline to a volume of 10 mL and power injected 

intravenously at a rate of 0.3 mL/s followed by 20-mL saline flush at the same rate. 

Acquisitions were performed using respiratory navigated VDRad (13) with fat suppression: 

50 temporal phases, and 7s temporal resolution. Images were reconstructed using the same 

low-rank method (22).

Group 3—This group consists of four consecutive pediatric subjects clinically referred for 

contrast enhanced MRI. The acquisition technique of this dataset uses a different sampling 
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method and a different method of obtaining fat suppression than Groups 1 and 2. The 

contrast agent dose and injection rate were the same as Group 2. Acquisitions were 

performed using respiratory triggered DISCO (16) with parameters: TR=3.9 ms FA=12°, 

±167kHz bandwidth, matrix=256×200, FOV=280×280 mm, thickness=2.6 mm, 34 slices, 35 

temporal phases, 12s temporal resolution and 2.5× Autocalibrating Reconstruction for 

Cartesian (ARC) acceleration. In this dataset, the fat-water separation is obtained using 2-

point Dixon technique.

In total, this study has 26 subjects with an average kidney volume of 113±11.6 mL. Four 

cases of hydronephrosis, two cases of unilateral renal hypoplasia, and one case of renal 

ectopia were observed in the dataset. From the DCE-MRI datasets, 45 kidneys (7 subjects 

had only a single kidney – 5 right and 2 left) were manually segmented by a trained post-

processing technologist. The segmentation maps generated by the automatic method were 

compared to the manually segmented ROIs using precision and recall metrics as well as F1-

score.

In this study, the pharmacokinetic analysis was performed on the renal parenchyma. The 

segmentation maps generated by manual and automatic segmentation were used to calculate 

the single-kidney glomerular filtration rates GFRmanual and GFRauto respectively. Single-

kidney GFR estimates from the automatic segmentation maps are compared to the GFR 

estimates from the manual segmentation using the GFR estimation errors (Eq. (10)) and the 

right kidney split functions (Eq. (11)).

[10]

[11]

The robustness of the segmentation algorithm with respect to the cortical thickness 

parameter was evaluated on group 1 subjects. Automatic segmentations were performed for 

cortical thickness parameters (dctx) between 1 mm and 14 mm for each subject. The 

resulting renal segmentation maps were compared to the manual segmentation maps to 

obtain an average F1-score for each assumed cortical thickness.

Processing Time

Running time of the automated algorithm was obtained on an Apple MacBook Pro with 2.7 

GHz dual-core processor and 16GB memory running OS X. All processing was done using 

Python and C++ libraries. The run time was calculated by running the algorithm on 11 

datasets from group 1 and averaging the time it takes to compute the segmentation masks. 

The data loading time was excluded from the calculations. The datasets used for timing each 

had a 192 × 180 × 100 matrix with 36 temporal phases.
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RESULTS

Image Acquisition

An example of the DCE-MRI dataset acquired using respiratory navigated VDRad at 7s 

temporal resolution is shown in Fig. 6. The butterfly navigation incorporated into VDRad 

resulted in diagnostic quality images with no apparent respiration-induced artifacts. The 

temporal resolution of the acquisition was high enough to capture the cortical enhancement 

phase of the contrast update (Fig. 6b) as well as the arterial enhancement phase (Fig. 6c). 

Manually drawn segmentation maps of the kidneys are shown in Fig. 6f.

Automatic Renal Segmentation

Some examples of the automated renal segmentation are shown in Fig. 7 and additional 

examples can be seen in Supporting Figure S1. The performance of the automatic 

segmentation for each subject can be seen in Table 1. All subjects considered, the automatic 

renal segmentation method had a mean precision of 0.95±0.006, a mean recall of 

0.92±0.020, and a mean F1 score of 0.93±0.012 on the whole kidney. On the renal cortex 

maps, a mean precision of 0.85±0.011, a mean recall of 0.88±0.012 and a mean F1 score of 

0.86±0.006 were observed. Over all 45 kidneys, mean (± standard error) kidney volume was 

113±11.6 mL and mean cortical volume was 71±6.6 mL both obtained from manually drawn 

segmentation maps. Using the random forest classifier, mean volumetric estimation error 

and its standard error in renal cortex was 9.63±1.7 mL. The random forest classifier showed 

similar performance to the SVM classifier with radial basis functions and better performance 

compared to the AdaBoost classifier with decision trees. In the small dataset of 10,000 

randomly chosen voxels, random forest classifier had an F1-score of 0.88 (precision=0.85, 

recall=0.91), the SVM classifier had an F1-score of 0.87 (precision=0.85, recall=0.90), and 

the AdaBoost had an F1-score of 0.85 (precision=0.82, recall=0.88).

In subjects 14 and 18, the algorithm failed to detect one of the kidneys completely. One of 

the kidneys missed, the left kidney of subject 14, was relatively large (total kidney volume = 

134 mL) due to hydronephrosis and did not show detectable medullary enhancement (Fig. 

8a). In the other failed case, the right kidney of subject 18 was very small (total kidney 

volume = 3 mL) and did not show detectable medullary enhancement either (Fig. 8b). 

Another interesting case where the algorithm detected a kidney but failed to segment some 

parts was the right kidney of subject 20 (Fig. 8c). In this case, the section that was missed 

did not show significant medullary enhancement, and the kidney was in an unusual location 

in the pelvis.

Pharmacokinetic Analysis

Single-kidney GFR estimations using the automatic method, GFRauto, and the manual 

method, GFRman, are compared in Fig. 9a. These two sets had a Spearman’s rank correlation 

coefficient ρ=0.99 (p<0.001). Mean absolute GFR estimation error of the automatic method 

was 2.98±0.66%. Right kidney split function calculated from GFRauto and GFRman were 

compared in Fig. 9b. Spearman’s ρ=0.99 (p<0.001) was observed in the split function 

measurements.
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In the subjects where automatic segmentation failed to detect one of the kidneys, right 

kidney split functions calculated from automatic and manual segmentation maps were 1.00 

(auto) and 0.80 (manual) for subject 14, and 0.00 (auto) and 0.02 (manual) for subject 18 

(Table 1). These two subjects also had the highest skew in the manual split function 

compared to all other subjects with two kidneys.

Cortical Thickness Parameter

The results of the robustness test on the cortical thickness parameter (dctx) are shown in 

Supporting Figure S2. The segmentation performance was not sensitive to the choice of 

cortical thickness between 5 mm and 11 mm. However, the algorithm starts to break down 

when dctx drops below 5 mm due to low recall (i.e. missing some parts of the kidneys). 

Setting dctx above 11 mm caused low precision (i.e. more false positives) in the automatic 

segmentation maps.

Processing Time

Average processing time to obtain the renal parenchyma masks using the computer vision 

algorithm was 42 seconds per patient. The classification of the voxels using the support 

vector machine took an additional 3 seconds per patient on average. The expected run time 

of the full algorithm to obtain cortex, medulla and collecting system masks was 45 seconds/

patient.

DISCUSSION

The results show that whole-kidney segmentation maps generated automatically are similar 

to the manually drawn counterparts in terms of both coverage (i.e. high sensitivity and 

precision) and GFR estimates. Segmentation of renal cortex on the other hand shows higher 

discrepancy between automatic and manual methods both in terms of volume and coverage. 

Visual inspection of the segmentation maps shows that higher discrepancy was caused by 

mislabeling in the cortex medulla interface. This is an expected result due to partial volume 

effects in the MR images. The cortical volume discrepancy between the SVM labeling and 

the ground truth labeling across all kidneys was 9.66±1.7 mL. This result was considered 

acceptable since the cortical volume discrepancy between the labeling of two human experts 

was reported as 16.3 mL in a previous study (33). Although the average renal cortex value 

was not reported in (33), if we assume a typical adult kidney volume of 178 mL (41) and a 

cortex-to-total volume ratio similar to our subjects (71 mL / 113 mL), we can estimate the 

average adult renal cortex volume of 112 mL. Under these assumptions, percent cortical 

volume discrepancy between two human experts in (33) can be estimated as 15% (16.3 mL / 

112 mL). This value is very similar to the percent cortical volume discrepancy of 14% (9.66 

mL / 71 mL) observed in our automatic segmentation method.

The automatic segmentation method proposed in this paper achieved comparable 

segmentation results to some of the published methods. Cuingned et al. (24) have 

demonstrated a fully automatic segmentation method for renal segmentation of CT images 

from 89 subjects. The authors report 80% success rate (Dice > 0.90) and 6% failure rate 

(Dice < 0.65) using dice coefficient (same as F1-score) as a metric. Using the same criteria, 
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our algorithm achieves 88% success rate and 4% failure rate. The advantage of our method 

was the use of both spatial and temporal features as opposed to using the spatial features 

only. Tang et al. (32) proposed a fully automatic segmentation algorithm based on the 

analysis of MRI time-intensity curves using PCA and demonstrated the application in a 

pediatric subject. The cortical segmentation performance was reported using the arithmetic 

mean of recall and precision as 0.66 for one kidney and 0.71 for the other kidney. Our 

average cortical segmentation performance using the same arithmetic mean was 0.87 over all 

kidneys. Another MR renography segmentation method using a semi-automatic 

segmentation technique based on graph cuts was proposed by Rusinek et al. (23). The 

algorithm requires manual intervention to select seed regions in the renal cortex and 

medulla. The average GFR estimation discrepancy over 22 clinical datasets was reported as 

13.5% and the segmentation time was 20 minutes per kidney. In our application, the GFR 

estimation error was 2.98% over 26 clinical datasets. However, the pharmacokinetic models 

used in these studies were different and the discrepancy cannot be attributed solely to the 

segmentation performance. In addition, our sample size of 26 subjects is limited and a 

bigger study with more subjects is needed to evaluate the actual clinical performance of our 

algorithm. We are currently working on acquiring more datasets by deploying the automatic 

segmentation algorithm to our hospital.

The single-kidney and total-GFR estimates in this study were obtained by performing 2-

compartment analysis on the full-kidney segmentation maps. Some compartmental models 

used for GFR estimation need ROIs of both cortex and medulla whereas some models only 

require the ROIs of either cortex or the whole kidney (42). Although our algorithm performs 

on par with the experts for cortical segmentation, use of the cortical ROIs with the 2-

compartment model is not desirable as the model depends on the ROI volume directly. In 

our study, the average cortical volume was 71.1 mL. A discrepancy of 9.66 mL in the cortex 

medulla interface, where the tissues are contributing to the filtration, could potentially cause 

a GFR estimation error of 14%. For this reason, we decided to use the whole-kidney ROI in 

our GFR analysis instead of the renal cortex ROIs. A similar approach was taken by Tofts et 

al. (10) by including renal parenchyma in the analysis. They showed that as the size of the 

cortical ROI grows to include the whole kidney, the GFR estimates also grow up until a 

point and then reach a plateau once the ROIs fully include the renal parenchyma. This means 

using an ROI that does not fully include the renal parenchyma may underestimate the GFR, 

however, selecting a larger ROI does not cause overestimation. In addition, using a large 

ROI enables us to include more time points (90s) in our analysis because the 2-compartment 

model assumes that the contrast never leaves the ROI (10).

Some of the parameters used in automatic segmentation, such as the radius of the 

neighborhood for grouping medulla clusters and expanding them to cover the cortex, were 

based on the maximum cortical thickness of 11mm reported in (35). In order for this 

algorithm to work, the actual cortical thickness should not exceed 11 mm and medulla 

clusters should be within 11 mm edge-to-edge distance from each other. Supporting Figure 

S2 shows the automatic segmentation performance under different assumed cortical 

thickness (dctx) values. When the cortical thickness parameter is below 5 mm, there is a 

significant drop in the automatic segmentation performance as our assumption of the actual 

cortical thickness being less than the cortical thickness parameter (dctx) is no longer true. In 
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addition to these spatial constraints, the kidneys have to be functioning for the automatic 

segmentation as the initial detection of medulla regions rely on the accumulation of the 

contrast agent in the tissues. The GrabCut segmentation also depends on functional 

enhancement of the renal tissues as the unique signal-time curves of the renal voxels are 

mapped on to the color space through PCA.

In the case of anatomical anomalies, where the medulla clusters are more than one cortical 

thickness apart, the algorithm may fail to label the kidneys correctly. Hence, a visual 

inspection of the segmentation maps by a radiologist or a trained post-processing 

technologist is required to identify the failed segmentations. There are three possible reasons 

for the automatic segmentation to fail. The first one is failing to detect the bounding box 

around a kidney automatically. These failed cases may be segmented again by running the 

GrabCut algorithm using a manually drawn bounding box of the problematic kidney. This is 

still faster than full manual segmentation because the operator has to define only a loose 

bounding box. The second possible reason for a segmentation to fail is that some parts of the 

kidney look very similar to the background under PCA mapping (i.e. the signal-time curves 

are more like non-kidney tissues). These cases require the operator to manually identify the 

seed regions for a graph cut segmentation. The user-assisted GrabCut segmentation is 

described in (37) and the amount of manual work should be less than using a standard graph 

cut technique (23). The third reason is if there is very little or no filtration in the kidneys and 

the PCA fails to map renal tissues to unique colors. Segmentation of these cases is difficult 

and manual segmentation may be required. However, if the main goal is to measure the 

GFR, these non-functional kidneys do not contribute to the GFR as much as the functioning 

kidney and the estimation error due to missing the non-functional kidney would be very low. 

An example of this can be seen in Fig. 8. Table 1 shows the recall performance of the 

automated segmentation of subject 14 (Fig. 8a) as 0.51, meaning almost half of the true 

kidney labels are missed (because the left kidney was not detected.) However, the GFR 

estimation error on this subject is only 17.30% (Table 1). The automated algorithm missed 

this kidney because it did not show much enhancement in the medulla or collecting system.

The proposed segmentation method may be used on datasets acquired using different 

protocols however additional preprocessing steps, such as image registration may be 

required. We have demonstrated the technique on three different datasets. The datasets from 

group 1 were acquired using VDRad with a fast bolus injection (1 mL/s). The group 2 

datasets were also acquired using VDRad but with a slow bolus injection (0.3 mL/s). The 

group 3 datasets were acquired using DISCO with a slow bolus injection (0.3 mL/s). Image 

registration was not performed in this study as the reconstructions from groups 1 and 2 were 

soft-gated for respiratory motion using butterfly navigation data and no apparent motion was 

observed between different temporal frames. Similarly, group 3 acquisitions were 

respiratory-triggered and no apparent motion of the kidneys was observed.

The automatic detection of renal bounding boxes is application specific. However, the 

GrabCut algorithm with PCA mapping can be used for segmentation of time-resolved 

medical images outside the renal application. Similarly, the machine learning approach to 

classify voxels can be adapted to other areas like detection of tumors based on the temporal 
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features. The source code of the automatic segmentation algorithm is publicly available on 

GitHub (https://github.com/umityoruk/renal-segmentation.git).

During the development of the algorithm, we tried to perform full renal segmentation by 

classifying voxels using only temporal features. An SVM was trained to perform a binary 

classification, kidney vs. other, on each voxel of the DCE-MRI dataset. This approach failed 

to yield good segmentation maps due to high inter-subject variance in temporal features (i.e. 

signal-time curves may appear different between two subjects due to differences in contrast 

injection speed, heart rate, age, etc.). Alternatively, we tried to locate the kidneys in the 

abdominal space by first detecting the renal cortex. This task proved challenging for certain 

datasets where the cortical enhancement looked very similar to the neighboring tissues such 

as liver and spleen (Supporting Figure S3). Hence, we decided to target medullary voxels 

where the signal continues to increase between 30 and 90 seconds following the contrast 

arrival. The advantage of our current approach is that we mainly constrained our scoring to 

the amount of contrast accumulation in a voxel, which is expected in medulla and the 

collecting system, and defined a new threshold for each subject (Otsu’s threshold) instead of 

using a single global cut-off for all subjects. Any signal delays or intensity differences 

between subjects do not affect the classification. The PCA mapping before the GrabCut 

segmentation is also trained and applied on each subject individually instead of training 

using the whole dataset. Since PCA maximizes the variance in the projected space, the 

voxels with different time-intensity curves appear different in color no matter what other 

subjects’ time-intensity curves look like, making the GrabCut segmentation easier. Hence, 

the proposed algorithm is more robust to inter-subject differences than just using an SVM.

In conclusion, we have developed a new technique to automatically segment kidneys from 

the DCE-MRI data using computer vision and machine learning. Specifically, we have 

developed a heuristic approach to locating kidneys using the medulla as a target (i.e. medulla 

score map), modified the GrabCut algorithm to work in 3D, applied the GrabCut algorithm 

to the time resolved MRI data using PCA dimensionality reduction, and trained a random 

forest classifier for renal cortex segmentation. We have used this new technique with a 2-

compartment model to estimate GFR in pediatric patients and showed that the results are 

nearly identical to the GFR estimates obtained using a manual segmentation technique while 

reducing the segmentation time from several hours to 45 seconds per patient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Automatic segmentation overview. First, kidneys are located in the abdominal images using 

computer vision techniques. Then, each kidney voxel is classified as cortex, medulla or 

collecting system using machine-learning methods.
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FIG. 2. 
Signal-time curves of the renal tissues and the neighboring organs. Medulla signal keeps 

increasing in the 60–90s interval due to the accumulation of contrast agent in the renal 

tubules.
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FIG. 3. 
Detection of renal bounding boxes. (a) Distribution of medulla scores in the abdominal 

image. The scores are whitened by removing the mean and normalizing the standard 

deviation. The values are the number of standard deviations from the mean score. (b) Scores 

above the Otsu threshold overlaid on the anatomical image. Clusters within a maximum 

cortical thickness distance from each other grouped together under the same color. (c) 

Medulla groups are dilated by the maximum cortical thickness to cover the renal 

parenchyma. (d) 3D convex hulls of the dilated medulla groups are calculated to create renal 

bounding boxes.
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FIG. 4. 
Basis functions (eigenvectors) corresponding to the highest three eigenvalues are calculated 

from the subjects signal-time curves. Each voxel’s signal-time curve can be represented as a 

linear combination of basis functions. The coefficients are assigned to RGB color channels 

to create the PCA map.
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FIG. 5. 
Flowchart of the automated segmentation process. (a) Input to the algorithm is the time 

resolved 3D DCE-MRI dataset. (b) Renal bounding box calculated using the steps described 

in Fig 3. (c) PCA is applied to the DCE-MRI dataset along the time axis to reduce it to 3 

channels represented as RGB. The resulting image has no temporal phases however it still 

has temporal information (i.e. different colors map to different signal-time curves). (d) 

Output of the renal parenchyma segmentation using GrabCut. (e) Output of the voxel level 

SVM classifier for segmentation of renal cortex (blue), medulla (yellow) and the collecting 

system (red).
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FIG. 6. 
Renal pre-contrast (a) and post-contrast (b, d, e) phases captured by 7s temporal resolution 

VDRAD acquisition. (c) The arterial phase can be observed in the maximum intensity 

projection (MIP) image. Manually drawn segmentation map (f) is used as the ground truth 

labeling of the renal voxels.
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FIG. 7. 
The automatic segmentation results of two subjects. On each half, the leftmost column is a 

selected temporal phase of the DCE-MRI image, the middle column is the output of the 

automatic segmentation algorithm and the rightmost column is the manual segmentation 

map (i.e. ground truth). Extended version of this graph can be seen in Supporting Figure S1.
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FIG. 8. 
Some examples of the failed segmentation cases. Arrows point to the kidneys the algorithm 

could not properly segment. (a) Subject 14 left kidney during excretory phase do not have 

visible medulla. (b) Subject 18 right kidney is too small to observe any structure. The 

coronal slice with the largest right kidney cross-section is shown in the figure. (c) Subject 20 

right kidney during excretory phase does not have contrast accumulation in the lower half.
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FIG. 9. 
(a) Comparison of total GFR values obtained from manual segmentation maps vs automatic 

segmentation for all 26 subjects. (b) Right kidney split function comparison of the automatic 

and manual methods for all 26 subjects.
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