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The Lower Devonian Rhynie chert formed as silica sinter entombed an early

terrestrial ecosystem. Silica sinter precipitates only from water flowing from

alkali-chloride hot springs and geysers, the surface expression of crustal-

scale geothermal systems that form low-sulfidation mineral deposits in the

shallow subsurface. Active alkali-chloride hot springs at Yellowstone National

Park create a suite of geothermally influenced environments; vent pools, sinter

aprons, run-off streams, supra-apron terrace pools and geothermal wetlands

that are habitats for modern hot-spring ecosystems. The plant-rich chert,

which makes Rhynie internationally famous, probably formed in low-

temperature environments at the margins of a sinter apron where frequent

flooding by geothermal water and less frequent flooding by river waters cre-

ated ephemeral to permanent wetland conditions. Here, the plants and

associated microbes and animals would be immersed in waters with elevated

temperature, brackish salinity, high pH and a cocktail of phytotoxic elements

which created stresses that the fossil ecosystem must have tolerated. The

environment excluded coeval mesophytic plants, creating a low-diversity

hot-spring flora. Comparison with Yellowstone suggests the Rhynie plants

were preadapted to their environment by life in more common and wide-

spread environments with elevated salinity and pH such as coastal marshes,

salt lakes, estuaries and saline seeps.

This article is part of a discussion meeting issue ‘The Rhynie cherts: our

earliest terrestrial ecosystem revisited’.
1. Introduction
The Rhynie chert of Aberdeenshire, Scotland, preserves the earliest and most

detailed picture of a terrestrial ecosystem yet discovered. The Rhynie biota, which

comprises abundant and diverse microbes (bacteria, micro-algae, fungi, protists)

vascular plants, macro-algae and aquatic and terrestrial animals, was entombed

as silica-rich waters flowed from hot-spring vent pools into surrounding terrestrial

and aquatic habitats during the Lower Devonian (e.g. [1]). The various elements of

the ecosystem were preserved in exquisite detail as the silica mineral opal-A (now

transformed by diagenetic processes to the rock chert) precipitated from the cooling

hot-spring waters. External surfaces of organisms immersed in the hot-spring

waters became encrusted in opal-A precipitate (known as silica sinter). This

formed a relatively robust and structurally stable matrix, while dissolved silica per-

meated their tissues and cells prior to opal-A precipitation at the cellular level by the

process of silica permineralization (e.g. [2,3]). The exceptional preservation at

Rhynie was possible because the local ecosystem was most commonly fossilized

where it lived in a ‘geological-instant’ without any transport-induced damage

and frequently prior even to the onset of substantial cell and tissue decay.
(a) Regional setting and tectonic framework of the Rhynie chert
Hot-spring chert deposits are not a common feature of the rock record (e.g. [4])

as their formation requires a quite specific set of geological conditions to be met.
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Hot springs are the surface expression of crustal geothermal

and/or hydrothermal circulation systems (e.g. [5]). These

are created where waters in the subsurface interact with

bodies of hot rock or magma setting up large-scale circulation

cells that transport/redistribute heat via convection of fluids

through porous rocks or along major fracture pathways such

as faults. The distribution of hot-spring areas worldwide

indicates that geothermal systems are most common in

areas where plate tectonic processes such as subduction,

mountain building and rifting lead to elevated crustal temp-

eratures, magma generation and volcanism (e.g. [6]).

Scotland in the Devonian period conforms to this basic

spatial model of geothermal system distribution (e.g. [7–9]).

During the Early Devonian, Britain lay on the southern

margins of the palaeocontinent Laurussia (also known as

Euramerica and the Old Red Continent) in a semi-arid to

arid zone 30–208 south of the equator. Laurussia had recently

formed by collisional/compressional plate tectonic processes

(subduction and mountain building) during the preceding

Ordovician and Silurian periods that were related to the

closure of the Iapetus Ocean during the Caledonian Orogeny

(e.g. [10]). Britain was largely terrestrial (e.g. [11]) comprising

an upland core, the Caledonian Mountains (Scotland, north-

ern England, central and north Wales), lowland coastal

plains (south Wales, southern Britain) and shallow shelf

seas (southwest Britain).

During the Late Silurian to Early Devonian following the

peak of mountain building and regional metamorphism

related to the Caledonian Orogeny the uplifted orogenic

belt became topographically unstable. Largely compressional

tectonic forces were superseded by orogenic collapse and

transpressional/transtensional forces (e.g. [8,12,13]) that led

to widespread left-lateral strike-slip faulting and localized

extensional faulting that promoted basin formation and crus-

tal thinning. Rhynie, which occurs in the Grampian

Highlands of Scotland, lay in an intermountain setting to

the southeast of the most elevated upland regions of the

collapsing and eroding orogen. Crustal thinning due to trans-

tensional and extensional forces lead to elevated crustal heat

flow and ultimately to plutonism and magmatism. Silurian to

Devonian post-orogenic granites intruded into the Grampian

Highlands Terrane (e.g. in western and central Aberdeen-

shire) between ca 415 and 408 Ma [9,14,15] provide one

potential heat source for the Rhynie geothermal system [8].

An alternative heat source is the basaltic-andesitic tuffs and

lavas (dated at 411.5+ 1.3 Ma by Parry et al. [15]) intercalated

with the Lower Devonian sediments below the chert bearing

rocks of the Rhynie basin. These presumably flowed from a

geographically close-by vent or fissure linked to a subsurface

magma chamber. A date of 407.6+2.2 Ma obtained by ana-

lysing adularia (a potassium (K) feldspar) precipitated in a

subsurface vein of the Rhynie geothermal system [16] pro-

vides a direct estimate of the age of the geothermal and hot

spring activity at Rhynie.

Based on palynological work [17–20] the Rhynie cherts

and the sediments that contain them have been assigned to

a single-spore biozone, the polygonalis–emsiensis Sporomorph

Assemblage Biozone (PE zone), which indicates hot-spring

activity occurred in the early (but not earliest) Pragian to ear-

liest Emsian stages of the Early Devonian. Recent revisions of

the ICS Chronostratigraphic Chart [21] place the base of the

Pragian at 410.8+2.8 Ma and the base of the Emsian at

407.6+2.6 Ma. Within errors, all the latest age estimates for
the Rhynie cherts fall within the internationally defined age

range of the polygonalis–emsiensis Biozone.

Water input to the Rhynie geothermal system came from

dominantly meteoric (rainwater) sources (evidenced by d18O

ratios of fossiliferous chert samples) with a lesser component

derived from magmatic fluids/gasses [8,22]. Recharge areas

presumably lay in the uplands beyond the Rhynie Basin.

Despite the arid to semi-arid regional climate evidenced by

caliche formation in the Rhynie and adjacent Turrif basins

(e.g. [23,24]) and lacustrine evaporite deposits on the adjacent

Northern Highlands Terrane [25] the Rhynie sedimentary

sequence is dominated by water-lain clastic sediments (flu-

vial sands/silts and overbank floodplain muds, lacustrine

shales etc.) indicating that pluvial conditions were a

common feature of the region’s climate during the period

of basin filling (e.g. [8,12,13]).

Ascent of fluid from subsurface geothermal convection

cells to Earth’s surface is promoted by extensional tectonics.

The Rhynie Basin, a NE–SW orientated half-graben or pull-

apart structure with a fault-bounded NW margin formed as

a response to the local extensional tectonic regime. Fluid

up-flow was focused on the basin margin fault, which

acted as a conduit for deep geothermal fluids migrating

from SE to NW (e.g. [8,22]). This caused the localization of

hot-spring activity adjacent to the NW basin margin at

Rhynie and at a related but geographically separate hot-

spring centre at Windyfield [26]. The local extensional

regime was sufficiently long lived to allow the deposition

of ca 1500 m of Lower Devonian sediments in the northern

part of the Rhynie Basin [13].

The maximum duration of geothermal activity at Rhynie is

constrained by the length of the polygonalis–emsiensis Sporo-

morph Assemblage Biozone, which is a ca 4 million year-long

interval. However, surface hot-spring activity (represented by

the Rhynie chert Unit and slightly younger Windyfield cherts)

has only been recorded towards the top of the Rhynie Basin stra-

tigraphy in the Dryden Flags Formation [13] suggesting that a

considerable time had elapsed prior to the onset of hot-spring

activity. Comparison with other younger geothermal circulation

systems and hot-spring areas suggests that they can be active on

the scale of tens of thousands to hundreds of thousands of years.

The Yellowstone National Park, USA, geothermal system

appears to have been active for approximately 500 kyr [27]

with sinter deposits [28] and alteration minerals [29] and silica

cemented sediments [30,31] created by geothermal activity

during the last interglacial period (between ca 150–45 kyr ago)

recorded from widespread locations. Active thermal features

in Yellowstone [32,33] and in Iceland [34] appear to have

formed only since the last deglaciation (ca 12–11 ka). Rates

of sinter accretion recorded from modern geothermal areas

including Yellowstone [33,35–39], New Zealand [40,41] and

Iceland [42] seldom exceed 10 cm per year, with rates of 1–

5 cm per year being more typical. At comparable accretion

rates the 10–20 cm thick chert beds commonly recorded at

Rhynie (e.g. [43–45]) would have been created on yearly to

decadal timescales rather than days or weeks.
2. From rocks to palaeoenvironments and
habitats

The discoverer of the Rhynie locality, Dr William Mackie,

explored the area while preparing a geological map published
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in 1913 [46]. Mackie collected a variety of samples of cherty

rocks from the area between 1910 and 1912. Some he discov-

ered to contain clasts of altered volcanic rocks. Others were

sandstones cemented with silica. These rocks are now inter-

preted as hydrothermally altered and silicified igneous rocks

and silicified Devonian sandstones (e.g. [8,22]). Chert samples,

when sectioned, were often found to contain ‘plant and animal

remains’. These fossiliferous cherts, Mackie hypothesized, had

been formed by the activity of geysers or hot springs during the

declining phases of local volcanism. More recent investiga-

tions of the Rhynie Basin have confirmed Mackie’s initial

interpretation (e.g. [8,12,23]).

(a) Subsurface rocks—the plumbing system of the
Rhynie hot springs

Observations of hot springs and geysers worldwide reveal a

bimodal distribution of vent water pH, with many features

containing acid water in the range (pH 2–4) or alkaline waters

(pH 7–9) but few containing waters in the range pH 4–7 [47].

This finding relates to the geothermal circulation systems that

lay in the shallow crust beneath the land surface. Two end

member geothermal system types exist. Where compressional

plate tectonics leads to the creation of subduction zones, thrust

faulting and volcanic arcs, waters flowing to the surface in hot

springs tend to be acidic and rich in dissolved sulphate as

geothermal systems tend to sit above shallow volcanic magma

chambers and fluid chemistry is dominated by acidic volatiles

(e.g. SO2, HSO4 and HCl) being released from magma. Conver-

sely, in regions where extensional tectonics prevail (as is the case

at Rhynie), magma chamber volatiles influence water chemistry

far less and instead geothermal circulation cells carry alkaline

waters rich in dissolved chloride (e.g. [5,6]).

Geothermal circulation cells are responsible for the creation

of significant economic mineral deposits and also, when active,

offer a potential source for renewable geothermal energy. As

such, they have a long history as a research focus. Exploration

geologists searching for economically exploitable gold (Au),

silver (Ag), mercury (Hg) ore deposits have created detailed

conceptual models for the crustal geothermal–hydrothermal

systems that can lead to shallow subsurface vein systems and

surficial deposits (e.g. [48–50]). These are known as epithermal

mineral deposits and, as with the circulation cells, there are two

end member mineral deposit models. Acid sulphate circulation

cells create high sulfidation epithermal deposits, while alkaline

chloride waters create low-sulfidation epithermal deposits.

The ‘plumbing’ system of the Rhynie chert conforms to the

low-sulfidation model (e.g. [8,22]). This has major implications

for the physical and chemical properties of water flowing from

the Rhynie hot-spring vent pools into the preservation environ-

ments of the ecosystem [3,4,51]. Alkali-chloride geothermal

systems typically have topographically elevated recharge

areas where surface waters infiltrate permeable rocks. Because

the waters are cool, they descend into subsurface aquifers.

Here, if they interact with a heat source they become hotter

and more saline and are able to dissolve the rocks through

which they are flowing. Dissolution of silicate minerals of the

country rocks creates a fluid that can liberate and carry

metals (e.g. Au, Ag, Hg, Cu (copper), Zn (zinc), Tl (thallium))

and metalloids (e.g. As (arsenic), Sb (antimony), plus Si

(silicon), sodium (Na), chloride (Cl) and K). The hot and there-

fore buoyant fluids begin to rise in the crust towards the surface

outflow areas of the geothermal system, hot springs and
geysers (e.g. [5,6]). Fluid/rock interactions in the subsurface

lead to distinctive host rock alteration minerals that are diag-

nostic of the geothermal systems alkali-chloride chemistry. At

Rhynie, sediments and lavas exhibit alteration to quartz, adula-

ria, calcite and illitic/chloritic clays. Some of the dissolved

elements (silicon plus metals, metalloids) may precipitate in

the subsurface in vein systems and breccias creating low-

sulfidation mineral deposits. At Rhynie, this mineralization is

concentrated in chert, quartz- and minor carbonate-bearing

breccias and veins. These rocks locally exhibit anomalous

levels of elements including Au, As, Hg, Sb and Tl (e.g. [8,22]).

(b) Surficial rocks—sinters, hot-spring sub-
environments and ecosystem habitats

Observation of active hot-spring areas reveal a second bimod-

ally distributed phenomenon related to pH and the underlying

geothermal system, the presence or absence of silica sinter.

Low-pH, acid-sulphate geothermal areas and individual hot

springs lack sinter aprons while sinter is extremely common

in alkali-chloride hot-spring areas (reviewed by Sillitoe [5]).

Acid-sulphate hot springs tend to precipitate a different, but

again diagnostic suite of minerals such as kaolinite clays and

sulphate minerals of the alunite–jarosite group and native

sulfur (e.g. [5,52]). These diagnostic minerals are largely

absent from cores drilled at Rhynie. Instead cores reveal

stacked sequences of up to 50 or more silica sinter horizons

within relatively short vertical intervals (e.g. [43,44]). Powell

et al. [43], for instance, recorded 52 sinter beds within a 35 m

thick sequence of fluvial and lacustrine sediments in Rhynie

Core 19C. Much of the intervening sediment is cemented by

silica creating cherty sandstones and siltstones. This wide-

spread cementation represents silica precipitation in the

shallow subsurface as alkali-chloride geothermal fluid perco-

lated laterally and vertically through porous sediments (e.g.

[45]). Hence, the Rhynie deep subsurface, shallow subsurface

and sinter depositional areas of the surface environment are

dominated by indicators of alkali-chloride geothermal fluids.

As alkali-chloride geothermal waters flow to the surface,

chloride acts conservatively tending to remain in solution.

This means that, as they flow from vent pools (figure 1a–c),

waters are brackish (oligohaline) in character, containing

ca 1.5 parts per thousand NaCl. Vent waters (typically near

boiling), once erupted, rapidly cool to ambient temperature.

This process decreases the solubility of dissolved silica forcing

supersaturation and rapid precipitation in the form of the

amorphous silica mineral opal-A (e.g. [3,4,51]). The precipi-

tated silica forms geochemical sedimentary rocks, sinters

(figure 1a–c), and encrusts organisms leading to moldic preser-

vation that can faithfully replicate surface morphology and

three-dimensional organization from the micro- (individual

microbial cells) to macro-scale (in modern examples entombing

decimetre diameter tree bases). Silica, which is transported in

solution as monosilicic acid Si(OH)4, also permeates the

organic structure of organisms (figure 1f,g) depositing colloidal

opal-A particles that can create rigid mineral frameworks in

inter- and intracellular sites that stabilize tissues against

collapse (e.g. [2,3]).

Erupted fluids, which may have near neutral pH (7–8),

degas as they flow away from vent pools. The loss of CO and

CO2 forces increases in pH, to in excess of pH 9 (e.g. [3]).

Loss of water by condensation and evaporation can outpace

loss of dissolved elements by mineral precipitation and,
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therefore, while water temperature is falling towards ambient,

salinity, pH, silica supersaturation and concentrations of

remaining dissolved metals and metalloids may be increasing

with distance flowed from vent pools. This presents a set of

stresses which organisms living in and around geothermal

features (figure 1a– f ) must tolerate (e.g. [3,4,51]). As the hot-

spring fluids are a prerequisite for silicification of organisms
in this setting, and because hot-spring fluids come inextricably

linked to abiotic stressors, there is a tendency for hot-spring

fossil assemblages to contain a high proportion of extremo-

philes (figure 1b) related to high temperature environments

(e.g. [53]) and rather specialized organisms tolerant of

milder (but not inconsiderable) physico-chemical stresses

(figure 1c– f ) at lower temperatures (e.g. [4]).



Figure 1. (Overleaf.) Habitats associated with alkali-chloride, sinter-depositing hot springs at Yellowstone National Park. (a) Google Earth satellite image of Big Blue
Hot Spring and associated apron and geothermal wetlands, Elk Park, Norris Geyser Basin, Wyoming (bold letters B – F indicate sites of b – f ). Periphery of image
shows local lodgepole pine (Pinus contorta) dominated forest beyond the influence of geothermal waters. Big Blue vent pool (V ) erupts near-boiling, alkali-chloride,
silica-rich waters via run-off streams colonized by high temperature (HT) microbial mats (orange and dark brown). Water flows onto the accreting and prograding
sinter apron and cools in mid-temperature (MT) microterrace pools (beige) colonized by cyanobacteria and at lower temperatures, chlorophyte algae and higher
plants. Dry apron (DA) surfaces between run-off streams and wet apron areas appear white. The apron margin is fringed laterally and distally by geothermal wetland
(GW) dominated by Eleocharis rostellata. Areas of lodgepole pine invaded by wetland conditions contain dead standing and fallen trunks (LT). Geothermally influ-
enced habitats are delimited distally by dilution as geothermal outflow enters surface waters streams (S). Vegetation diversity and abundance shows a marked
increase from geothermally influenced banks to ‘normal’ banks. (b) Shallow terraces with elevated rimstone edges cause pooling and cooling of run-off providing
habitat for microbial mats. (c) Apron margin pools with sinter substrate colonized by E. rostellata via stolons. Forest fringe beyond the vent pool shows strong
partitioning of the local ecosystem between geothermally influenced and dryland environments. (d ) Geothermal wetland area developed at formerly forested
site with standing but dead lodgepole pines. (e) Distal sinter apron margin with clumps of Triglochin maritimum (seaside arrow grass) in the foreground and
monotypic stands of E. rostellata surrounding a deeper wetland pool containing mats of chlorophyte algae. ( f ) Geothermal wetland surface, living E. rostellata
has fallen stems that are partially silicified. Sediment surface is dominated by silicified ( permineralized) stem fragments. (g) Holocene sub-fossil wetland soil
dominated by E. rostellata stem fragments.
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(c) Water chemistry and physical properties in
geothermally influenced aquatic settings

Recognition that the Rhynie chert is a hot-spring sinter deposit,

the surface expression of a low-sulfidation epithermal deposit

that was created by opaline silica precipitating from alkali-

chloride hot-spring waters, allows us to constrain, with some

certainty, the chemical and physical properties of the hot

spring waters flowing at the surface into areas where silica

sinter (now transformed to chert) accumulated and where the

same waters preserved the local ecosystem by encrustation

and permineralization. Stressed habitats associated with

alkali-chloride sinter depositing springs can be observed at

any of the world’s active geothermal areas allowing physico-

chemical parameters affecting potential fossils to be measured.

Below I provide details for Yellowstone geothermal areas, but

comparable characteristics are reported from other geothermal

areas such as the Taupo Volcanic Zone, New Zealand (e.g.

[4,54–56]), Iceland (e.g. [4,57,58]), El Tatio, Chile (e.g. [59,60])

and East African Rift (e.g. [61,62]). A typical sinter-depositing,

alkali–chloride hot spring has vent fluid approaching boiling

point (70–1008C), with a circum-neutral to alkaline pH

(6.5–8) that contains major elements such as Na (sodium)

(300–450 ppm), Cl (500–650 ppm) and Si (200–750 ppm)

plus a suite of trace elements including heavy metals and met-

alloids (e.g. Au, Ag, Cu, Zn, As, Sb, Hg and Tl). High water

temperature in vent pools limits organisms to extremophile

archaea and bacteria (e.g. [38,53]).

As water erupts from the vent, a number of processes occur

that modify the physical and chemical properties of the fluid.

Vent fluids contain Si concentrations that are close to or

exceed saturation at vent temperature. Outflow from the vent

is accompanied by cooling and evaporation, which increases

saturation further promoting rapid silica precipitation to form

sinter composed of the hydrated, non-crystalline silica mineral

opal-A (SiO2 n. H2O). Precipitation close to vent pools creates

sinter terraces, sheets and aprons (figure 1b) that accrete verti-

cally to form vent mounds (commonly several metres high)

and prograde laterally (figure 1a–e) into surrounding environ-

ments (e.g. [63]). Apron surfaces can develop a variety of

surface features, depending on topography, flow-rates and

eruption style. Typical features include broad low angled sur-

faces where sheet-flow conditions are present and stair-step

terraces with sinter rims that cause ponding of thermal water

forming shallow supra-apron pools (figure 1b). Run-off
channels, again with sinter-rim margins, carry water from

point sources on the vent pool margins (figure 1c) onto apron

surfaces (e.g. [64]). Water temperature in streams and pools is

dictated by distance from vent pool and rates of flow. In prox-

imal areas of the apron, temperature approaches that of vent

fluids but it falls rapidly downstream to the range 65–458C.

The biota of apron pools and streams shows a zonation based

largely on the local temperature gradient. As temperature

drops below ca 708C, filamentous and mat-forming cyanobac-

teria (figure 1b) colonize sinter surfaces (e.g. [53]) and become

fossilized within sinter. Mat-formation and fossilization leads

to internally laminated sinter fabrics. Water in these settings

remains super-saturated with regard to silica despite sinter for-

mation. Salinity and pH, however, both increase as vent water

flows across aprons and cools. Degassing of dissolved CO

and CO2 promoting pH increases, and water volume loss via

condensation and/or evaporation increasing NaCl concen-

tration. Dissolved metals and metalloids co-precipitate with

silica during sinter formation (e.g. [65]); however, measure-

ments of water chemistry in sinter apron pools, run-off

streams, geothermal wetlands and even geothermally influ-

enced stretches of local river systems (e.g. the Firehole and

Gibbon Rivers of Yellowstone) often record metal concentrations

highly elevated above regional norms (e.g. [66]).

At the periphery of sinter apron margins, waters cool suffi-

ciently (to below ca 40–458C) to allow colonization of apron

pools, run-off streams and geothermally influenced wetlands

by higher plants (figure 1c– f ) and aquatic fauna [3,4,51].

Silica remains supersaturated such that it can nucleate on

plant and animal surfaces encrusting immersed organs in opa-

line silica promoting moldic preservation. More importantly in

the context of Rhynie where organs, tissues and cells of the

plants are preserved by silica infilling (permineralization), dis-

solved silica in the form of monosilicic acid (Si(OH)4) can

permeate plant structure and precipitate to form opal-A col-

loids that ‘fix’ plant materials by creating a robust inter- and

intracellular mineral deposit [2,3].

Apron progradation into dryland environments (figure 1d )

is accompanied by flooding of ‘normal’ terrestrial surfaces and

infiltration of subsurface sediments. This leads to death of

elements of the ecosystem unable to tolerate submersion of

their roots and/or the physico-chemical stresses highlighted

above (e.g. [51]). Stress responses, such as wilting, may be vis-

ible in immersed mesophytic plants, but are difficult to detect

in the Rhynie chert. Silicification of local soils and sediments
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(creating silicified palaeosols) and preservation of basal plant

stems and root horizons by silicification are common features

of these areas. Protracted flooding leads to the establishment

of geothermal wetland conditions (figure 1d) and eventually

progradation of the apron-proper across the former area of

dryland [51,67].

(d) Dryland and freshwater settings within thermal
areas

Between periods of hot-spring eruption and on areas of the

sinter apron between pools and channels, dryland environ-

ments are present. These environments create challenges for

plant colonization. Sinter is a relatively hard, monomineralic

chemical sedimentary rock. Rooting is an issue for plants

on the rocky apron surface. Exposed sinter also tends to lack

sufficient humus for higher plants because organic material

incorporated during its formation such as microbial mat is sus-

ceptible to rapid decay on subaerial exposure. Sinter is also

extremely porous and therefore tends to be well drained. This

means that modern dry-aprons tend to be arid, nutrient-poor

and poorly vegetated to barren (e.g. [4,51]). Elevated ground

temperatures also cause colonization problems for plants.

Heated ground with root temperatures in excess of 458C pre-

vents most higher plants surviving leading to moss zones

with recorded soil temperatures of around 658C (e.g. [68,69]).

The lack of vegetation in apron environments means that

aprons have relatively low diversity invertebrate faunas.

In active geothermal areas, ‘normal’ regional mesophytic

vegetation grows in close proximity, even immediately adja-

cent to, geothermally influenced environments (figure 1a,c,d ).

Fallen and transported plant organs (e.g. leaves, needles,

cones and pollen/spores) from these dryland mesophytes

can become incorporated into accreting sinter and evidence

of transport and decay are generally evident (e.g. [3,4]).

Disruption of the plumbing of hot springs and geysers

(vent abandonment) and long periods of geothermal acti-

vity dormancy (plus the presence of other natural surface

depressions) can allow cool water aquatic habitats to develop

in thermal areas. Those dominated by freshwater input

(e.g. rainfall or flooding of local river systems) can support

‘normal’ freshwater aquatic ecosystems within the geothermal

environment (e.g. [70]).

(e) Taphonomic features
In addition to physico-chemical and ecological partitioning of

the geothermal environment, taphonomic partitioning is at

play. This leads to potential preservation biases. If the aquatic

environment is too hot, organic compounds of organisms

tend to be ‘boiled away’ and cellular permineralization is pre-

vented. Replacement of the sites of cell walls and tissues by

silica ensues instead. Dry areas of the environment and

those infrequently flooded by geothermal waters have very

low sinter accretion rates and therefore little opportunity for

encrustation and permineralization of organisms to occur.

Here, oxidation and decay outpace preservation.

Areas that are conducive to preservation by silica perminer-

alization therefore need to be frequently inundated with silica

supersaturated geothermal water at temperatures below

around 458C (e.g. [53]). Two environments in Yellowstone

most frequently meet these requirements, cooler wet regions of

sinter aprons (low-temperature apron pools (figure 1c) and
low-temperature regions of run-off streams (figure 1e))
and geothermally influenced wetlands [4]. Wet areas of sinter

aprons with water temperatures close to 458C can preserve

large areas of microbial mats with distinctive fabrics discussed

below. However, it is in areas of apron/wetland with water

temperature below 458C, where higher plants join the list of colo-

nizing organisms and where geothermally influenced living

biomass is greatest, that present the aerially most extensive

sites of exceptional, permineralization-style preservation. Here,

because geothermal waters are permanently present and water

temperatures are near ambient, preservation potential is extre-

mely high and preservation quality is at its greatest. It is in this

setting that vast numbers of higher plants can be preserved

in situ with vertically orientated aerial organs [3,4,51].

Taphonomy experiments conducted in vent pools and

wet sinter apron surfaces [2] and in geothermal wetlands

[3] indicate that permineralization of higher plants requires

months rather than days to occur and that the notion of

‘instantaneous’ permineralization under conditions pertinent

to most hot-spring settings is unrealistic (e.g. [2,3] cf. [71,72]).

For this reason, wetland plants and aquatic elements of the

fauna are by far the most likely to be preserved in geothermal

environments. Observations of hot-spring deposits ranging in

age from the Late Devonian to present day where ecology of

both hot-spring floras and ‘normal’ floras are known with

some certainty illustrate that the wetland megabias evident

in the broader fossil record also applies to hot-spring ecosys-

tems [4]. In hot-spring environments such as geothermal

wetlands, where preservation potential can be exceptionally

high, taphonomic bias is accompanied by an ecological

bias. This extends beyond a bias to aquatic, emergent-aquatic

and flooding tolerant plants because of the physical and

chemical properties of hot-spring waters [4,73,74].
3. Comparisons of extant environments and
ecosystems with those recorded at Rhynie

Most research activity associated with the Rhynie chert has

focused on the entombed ecosystem and therefore there has

been a collection bias towards fossiliferous chert material.

However, float blocks, trench material and drill-core samples

record a number of chert lithologies which reveal the existence

of vent-pools and sinter aprons (figure 2a), the higher tempera-

ture environments formed in proximal areas of hot-spring or

geyser discharge, plus the lower temperature geothermally

influenced environments represented by plant-rich cherts

(figure 2b,c).

(a) Sinter fabrics and fossils as evidence of geothermal
sub-environments present at Rhynie

The siliceous sinter rocks formed by hot-spring and geyser

activity can be diagnostic of the environment and sub-

environments in which they were created. Studies of Rhynie’s

modern hot-spring analogues, e.g. at Yellowstone National

Park, Wyoming, USA (e.g. [3,4,38,51,53,63,70,75]) and the

Taupo Volcanic Zone, New Zealand (e.g. [40,54,55,76]), plus

younger fossil hot-spring deposits (e.g. [67,77–82]) reveal

that the physical and chemical conditions (water temperature

and availability) plus pH, salinity and phytotoxic dissolved

elements associated with life in and around hot springs,

lead to marked partitioning of the local ecosystem. Because
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Figure 2. Rhynie chert macro-textures. (a) Strongly laminated chert with amygdaloidal cavities and curvy/wavy bedding formed by silicification of microbial mats in
a mid-temperature apron environment. A single unidentifiable plant axis (S) creates a doming of the overlying sinter laminae. (b) Plant-rich chert lens from an apron
pool setting with in situ erect stems of Rhynia that traverse alternations in matrix chert fabric. Dark organic rich horizon at base comprises a thin silicified siltstone
with carbonaceous laminae (SS) and cuticle and spore-rich chert with partially permineralized prostrate axes (OC1). Vertical axes above are surrounded by a silicified
microbial meshwork and wavy mat laminae (MM1). Several vertical axes traverse a second horizon with prostrate axes and organic-rich chert matrix (OC2) extending
into another microbial meshwork and mat horizon (MM2). (c) Distal apron, geothermal wetland chert block with silicified carbonaceous siltstone horizons (SS) at
base and top indicating river flooding. Intervening chert horizon has multiple alternations between dark massive to mottled organic rich chert with prostrate axes
and lighter chert with less organic content and microbial meshwork between vertically orientated axes.
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hot-spring sinters form as elements of the local ecosystem

are immersed by spring waters they contain distinctive

fossil assemblages and biosedimentological fabrics that

‘fingerprint’ the various hot-spring subenvironments.
(b) Vent pools—geyserite
In high temperature vent-pools and in apron settings immedi-

ately adjacent to vents, eukaryotes are all but excluded and

only hyperthermophilic and thermophilic archaea and bacteria

are able to survive. The environment thus has low biomass and

chemical precipitation of opal-A dominates sinter deposition.

Opal-A precipitates as colloids directly from the water

column creating gel-like sediments (e.g. [38,53,83]). Geyserite

is a term used to describe sinter created in the high temperature

(ca 75–1008C) environments within or immediately surround-

ing a geyser or hot-spring vent pool. It forms as surging,

splashing or spraying vent waters alternately wet surfaces

and cool/evaporate to cause opal-A precipitation. The rock is

typically internally laminated with successive laminae that

build up to form distinctive knobby, botryoidal, columnar or

wavy stratiform morphologies similar in appearance to stroma-

tolites (e.g. [83]). Geyserite is extremely rare in the rock record,
in part due to the limited extent of vent pools and increased

likelihood of post deposition erosion of vent mounds, which

commonly sit above active faults. A single block of geyserite

with a botryoidal surface morphology is reported from the

Windyfield locality at Rhynie (e.g. [26]).
(c) Sinter aprons
As vent waters flow out into the surrounding environment

further silica precipitation forms sinter mounds, terraces and

aprons via lateral and vertical accretion. Here, water tempera-

ture can drop sufficiently for bacterial and cyanobacterial mats

to form. Once again, laminated internal fabrics dominate

sinter. Initially, these are finely laminated as in vent pools,

however, the change in mat forming organisms and increase

in biomass alters sinter internal fabrics sufficiently that mid-

and low-temperature apron sinters in the rock record can

generally be differentiated from those formed in proximal

high temperature settings (e.g. [53,67,77–81]).

Mid-temperature apron sinter has wavy-laminated

internal fabrics, often with conspicuous bedding parallel

lenticular voids (‘bubble mats’) that formed as photosynthe-

sizing cyanobacterial mats living in waters between 65 and
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458C with trapped pockets of gasses became silicified (e.g.

[67,79–81]). In mid to low temperature apron settings mat

thickness increases and laminated fabrics give way to thicker

bedded fabrics. Low temperature sinter environments (less

than 458C) are typified by filamentous palisade fabrics, hor-

izons characterized by dense assemblages of filamentous

microbes oriented perpendicular to silica lamination direc-

tion. The fabric results from silicification of Calothrix-type

cyanobacteria (e.g. [53]).

At Rhynie, in contrast with most other fossil hot-spring

deposits thus far discovered (e.g. [67,77–81]), laminated/

bedded apron sinter is poorly represented and to date thick

sinter terrace deposits (which in active and other fossil hot

spring areas may reach up to 10 m in thickness and several

hundred metres diameter) have not been intersected by dril-

ling [45]. One trench (Lyon’s Trench 8A) at Rhynie, which

is potentially the trench located closest to the Rhynie Fault

Zone (see [84, fig. 7]) contained ‘chert with only scanty

plant remains’ but does contain chert blocks with typical

mid-temperature apron fabrics (figure 2a). The Windyfield

chert also contains evidence of apron environments although,

again, these form only a minor sub-environment (e.g. [26]).

Fayers & Trewin [26] interpreted stacked parallel laminated

cherts with microbial laminae that lacked in situ plants to

represent stromatolitic sinter apron deposits, which formed

as silica precipitated from periodic laminar flows of vent

fluid. They considered the environment to have water temp-

eratures below 598C based on the presence of filamentous

photosynthetic bacteria and probable cyanobacteria display-

ing phototactic orientations. Run-off streams containing

brecciated laminated sinter clasts and flowing across sinter

surfaces have been identified at Windyfield but, again,

these are uncommon at Rhynie ([26] cf. [43]). Trewin and

Fayers [26] estimate that the plant-rich cherts of the Rhynie

deposit formed some 200 m from vent sources to the west

associated with the basin margin fault zone. The intervening

ground, given the volume of silica deposited to create the

large numbers of chert beds should hold evidence of signifi-

cant apron deposits. It may be that faulting and erosion have

removed the apron material. Collection bias could also be at

play, as Lyon’s 8A trench was closed when plant-rich cherts

were found to be scarce [84].
(d) Geothermal wetlands
The distal areas of sinter aprons and geothermally influenced

wetlands at the periphery of apron complexes where water

temperature is close to ambient are characterized by diffusely

bedded and mottled sinter that contains abundant higher

plants and evidence of aquatic micro- and macro-flora and

fauna (e.g. [3,4,67,73]). Chlorophyte algae, including filamen-

tous forms, become more common as cyanobacteria numbers

decline (e.g. [3,85]). Observations of unconsolidated wetland

sediment from Yellowstone reveal the presence of fragments

of variably silicified plant tissue and pollen/spores. Other

organisms include (but are not limited to) aquatic crus-

taceans, amoeboid protists, silica scaled heliozoans and

chrysophytes, dinoflagellates, nematodes, diatoms, and coc-

coid, rod-shaped and filamentous microbes. The microbiota

is contained in a sediment dominated by colloidal-dimension

opal-A particles (microspheres), many of which are aggre-

gated around organic material or in the form of floc-like

particles [75,85]. Drying of the wetland surface causes
suspended flocs to collapse and a sinter-like crust forms

above unconsolidated layers of the sediment [3,75]. Flow of

geothermal water across the wetland surface creates sinter

horizons that alternate with wetland horizons.

Higher plants in the wetlands are typically plants that are

emergent aquatics that inhabit shallow water and/or saturated

soils (figure 1c– f ). At Yellowstone the most common geo-

thermal wetland plant, beaked spikerush, Eleocharis rostellata
(Cyperaceae), colonizes wetland surfaces by clonal growth

via stolons (figure 1c) and vegetatively via rhizome fragments

forming widespread, near monospecific stands. The species

can grow on sinter aprons in water temperatures in excess of

408C. In lower temperature regions of the geothermal wet-

lands, large areas of the substrate are occupied by monotypic

stands of the plant. Here, they withstand high pH (often in

excess of pH 9) and elevated salinity (1.5 parts per thousand,

oligohaline-brackish), plus metals and metalloids in solution

that would be at phytotoxic concentrations for most other

plants. The plant is a silicon accumulator in life, biomineraliz-

ing opal-A to create phytoliths that are associated with

epidermal, parenchymatous and sclerenchymatous cells

[2–4,51]. It is a widespread species across North America,

and normally grows in environments with high alkalinity

and elevated salt levels such as coastal marshes, tidally influ-

enced brackish marshes, alkaline fens and, in upland areas of

the Rockies and High Plains, associated with salt lake margins

and saline seeps and meadows. The plant thus appears to be

pre-adapted to the stresses of geothermal wetlands by life in

more widespread stressed environments ([4,51], and see dis-

cussion of pre-adaptation of the Rhynie plants in Wellman

[20]). In favourable growth conditions, the plant can grow to

1.2 m tall, however, geothermal wetland populations exhibit

stunted growth and those plants most frequently inundated

by thermal water seldom exceed 15–20 cm. The geothermal

wetland environment is sufficiently hostile that dryland

mesophyte plant communities are excluded [4,51].

At Rhynie, plant-rich cherts (figure 2b,c) dominate the avail-

able float block collections, trenched sections and drill cores

(e.g. [45]). Sedimentological features of these cherts plus inter-

vening clastic sediments have allowed detailed interpretation

of the palaeoenvironments of plant growth and preservation

(e.g. [12,26,43,45,86–89]).

The broader environment comprised a river system with

sandy levee banks within a floodplain. Breaches of levees

during flood events led to the accumulation of crevasse splay

sediments and deposition of overbank deposits of shale, silt

and sand. This created a number of freshwater influenced shal-

low-water habitats (small lakes, ponds, muddy pools and

small lake deltas), which were ephemeral in nature and subject

to evaporation and drying, evidenced by desiccation cracks.

During drying episodes, these aquatic environments would

have developed into emergent to terrestrial habitats that were

colonized by the Rhynie plants and terrestrial arthropods

such as trigonotarbid spiders (e.g. [26,43,45]). Vegetation

growing beside these waterbodies in ‘normal environments’

was incorporated into the accumulating sediments where

they are occasionally preserved as identifiable compression

fossils and as unidentifiable organic material in carbonaceous

sandstones, siltstones and shales. Several features of the clastic

sediments suggest relatively frequent (sub-decadal) river

flood frequency, a high local water-table and/or dominance

of waterlogged, wetland conditions. These include a lack of

evidence of terrestrial paleosol formation (e.g. vertisols and
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calcretes) that are present in the basin fill sedimentary sequence

above and below the chert bearing unit; the reduced nature of

the sedimentary sequence and the absence of red-beds that

would signify drying and oxidizing conditions; the common

presence of early diagenetic framboidal pyrite (sometimes

observed to be replacing plant material) and preserved (but

compacted and degraded) organic matter in the subsurface

(e.g. [51]). Flooding of surface sediments and/or a high local

geothermal water-table is evidenced by silica-cemented

equivalents of the clastic lithologies above and nodular chert

nucleated on organic material in sandstone units (e.g.

[26,43,45]). A combination of flooding by the local river

system and geothermal system prevented development of

climax terrestrial plant communities and the development of

soil profiles between sedimentation events (e.g. [44,45]).

These observations suggest a relatively wet general setting

for the Rhynie Basin during the period of geothermal activity

beyond the preservation environments represented by the

cherts-proper [51].

The environment of deposition for plant-rich cherts at

Rhynie is hypothesized to be the distal (low-temperature)

margin of a low-angled, low-relief hot-spring outwash apron

where sinter was being deposited and conditions were often

marshy [26,44,45]. Sub-environments that were plant and

animal habitats identified at Rhynie based on sedimentary fab-

rics include shallow, low-temperature pools on the sinter apron

surface (e.g. [90], figure 2b), which were habitat for filamentous

microbes and also the site of growth of Remyophyton delicatum
the gametophyte of Rhynia. Wet sinter apron surfaces were

also colonized by Horneophyton lignieri (e.g. [43]) and Rhynia
(e.g. [90]). Other small pools on the apron surface formed

in depressions with metre-scale diameters and estimated

depths of ca 15 cm (figure 2c). These create lenticular chert

beds that at Rhynie and Windyfield often contain an aquatic

biota, including the charophyte algae Palaeonitella plus

aquatic crustaceans and chytrid fungi (e.g. [26,44,45]). Rhynie

plants preserved in situ in such pools include Horneophyton,

Aglaophyton and Rhynia (e.g. [26,43,45,51]). A relatively frequent

association of draped microbial laminae surrounding in situ,

well-preserved plant axes in these chert beds (figure 2b) pro-

vides evidence of shallow standing geothermal water among

growing plants prior to silicification [45]. In these depressions,

chert lens formation and plant permineralization clearly indi-

cates the presence of silica-rich alkali-chloride geothermal

fluids at least over the scale of several months to a year as this

timescale is required for plant silicification by permineralization

(e.g. [2,3]). This observation does not conflict with often cited

examples of instantaneous ‘preservation’ (cf. permineralization)

recorded at Rhynie such as clouds of sperm cells being ejected

into a silica gel sediment (e.g. [45]). As plant-rich cherts are

those most frequently recovered from the Rhynie deposit and

they make up the majority of chert horizons within cored sec-

tions (e.g. [26,43–45]) distal, low-temperature apron to

geothermally influenced wetland environments appear to

have dominated the Rhynie geothermal landscape.

Avery close lateral and topographic proximity between flu-

vial and lacustrine clastic sedimentary environments and

plant-rich sinter forming geothermal environments is evident

in Rhynie sections (e.g. [26,43–45]). Composite chert beds, a

common occurrence within cores/trenches, comprise alterna-

tions between plant-bearing chert and thin clastic horizons

(often silicified). These indicate sinter apron development

being halted temporarily by incursions of river water,
presumably leading to dilution of dissolved silica to concen-

trations below saturation (e.g. [44]). The environment was,

therefore, close to and, for much of the time, below both the

local ‘freshwater’ and geothermal water table.
4. Were the Rhynie plants specialized?
The plants of geothermally influenced wetlands are usually

outcompeted by mesophytic plants in normal dryland terres-

trial environments. Strong ecosystem partitioning and the

requirement for alkali-chloride, silica-rich geothermal waters

for sinter formation and organism encrustation and perminer-

alization mean that there is a very clear bias towards the

preservation of wetland plants (and other elements of geother-

mal ecosystems) evident in active analogue environments for

the Rhynie chert [3,4,51]. A relatively extensive record of

fossil hot-spring deposits with preserved ecosystems spann-

ing the Holocene to Late Devonian confirm this to be a long-

standing taphonomic bias. Sedimentological and biotic

associations recorded at Rhynie that indicate wetland con-

ditions and growth and preservation of Rhynie plants such

as Horneophyton, Aglaophyton and Rhynia, suggest that this

bias extends back to the embryophyte-dominated hot-spring

ecosystem of Rhynie [4].

The geochemistry of low-sulfidation epithermal systems

and their associated alkali-chloride hot springs mean that

this wetland bias also creates an ecophysiological bias in

the fossil record. Again, this is evident in active thermal

areas and the Holocene to Late Devonian fossil record.

Broadly, fossil hot-spring floras are dominated by genera

tolerant of elevated salinity, high pH and stresses related

to dissolved phytotoxic elements including heavy- and

transition-metals and metalloids [4,51].

The stresses associated with life in geothermally influenced

wetlands are sufficient to prevent mesophytic plants of adja-

cent ‘normal’ terrestrial habitats colonizing environments

conducive to eventual exceptional preservation via silica per-

mineralization. This means that hot-spring floras generally

exhibit low diversity. However, plant endemism and hot-

spring specialization are not a feature evident in active and

fossil hot-spring floras. Instead, they are dominated by plants

pre-adapted to life in hot-spring environments via life in

more widespread, but chemically and physically stressed,

environments such as saline and alkaline seeps, salt marshes

and on metal and metalloid stressed substrates [4].

An implication arising from these observations is that hot-

spring floras are not representative of coeval regional floras

and at best contain a subset of the whole flora. This is probably

true of the Rhynie flora, which, for a hot spring flora, is rela-

tively diverse containing seven species of sporophytes

[4,51,20], but no examples of typical plants of coeval Old Red

Sandstone assemblages.
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