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Plant life cycles underwent fundamental changes during the initial coloniza-

tion of the land in the Early Palaeozoic, shaping the direction of evolution.

Fossils reveal unanticipated diversity, including new variants of meiotic cell

division and leafless gametophytes with mycorrhizal-like symbioses, rhizoids,

vascular tissues and stomata. Exceptional fossils from the 407-Ma Rhynie

chert (Scotland) play a key role in unlocking this diversity. These fossils are

reviewed against progress in our understanding of the plant tree of life and

recent advances in developmental genetics. Combining data from different

sources sheds light on a switch in life cycle that gave rise to the vascular

plants. One crucial step was the establishment of a free-living sporophyte

from one that was an obligate matrotroph borne on the gametophyte. It is pro-

posed that this difficult evolutionary transition was achieved through

expansion of gene expression primarily from the gametophyte to the sporo-

phyte, establishing a now extinct life cycle variant that was more isomorphic

than heteromorphic. These changes also linked for the first time in one devel-

opmental system rhizoids, vascular tissues and stomata, putting in place the

critical components that regulate transpiration and forming a physiological

platform of primary importance to the diversification of vascular plants.

This article is part of a discussion meeting issue ‘The Rhynie cherts: our

earliest terrestrial ecosystem revisited’.
1. Introduction
Life has existed on land for over 2.7 Gyr in the form of communities of bacteria

and archaea inhabiting shallow bodies of freshwater and sediments. Later,

these were joined by simple eukaryotes and sometime during the Late Neoproter-

ozoic or Early Palaeozoic the green algal ancestors of plants [1]. The earliest land

plants were probably simple filamentous organisms [2,3], and their initial diver-

sification was accompanied by the evolution of fundamental organs and tissue

systems, including modes of reproduction and dispersal, axes and stems, vascular

system, diverse rooting structures and later leaves and wood [4–6]. From within

the background consortium of microorganisms there arose mutualistic associ-

ations between plants and fungi [7,8] that were critical to nutrient provision

and to soil formation [9]. These innovations were made possible by radical

changes in life cycle [10–13]. Land plants evolved a biphasic life cycle in which

a haploid gamete producing plant (gametophyte) alternates with a diploid

spore producing plant (sporophyte). In bryophytes, the sporophyte is an obligate

matrotroph existing as a simple stalked capsule that is always borne on and

physiologically tied to the free-living leafy or thalloid gametophyte. This physio-

logical dependence is broken in the basal clades of vascular plants. Here, the two

phases of the life cycle lead independent existences, and thus freed the sporophyte

was able to undergo massive evolutionary development, becoming the most

conspicuous and productive element of terrestrial ecosystems.

The hypothesized shift from obligate matrotrophy was a pivotal event in plant

evolution [6,11,12,14], but it is poorly understood in both mechanistic and eco-

logical terms. Furthermore, although the broad outlines of life cycle evolution

in plants can be inferred from the tree of life [10–13,15], much still remains unclear

or ambiguous. One fundamental issue is that relationships among basal clades of

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0149&domain=pdf&date_stamp=2017-12-18
http://dx.doi.org/10.1098/rstb/373/1739
http://dx.doi.org/10.1098/rstb/373/1739
mailto:p.kenrick@nhm.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-3626-5460


rstb.royalsocietypublishing.org
Phil.Trans

2
land plants are still unsettled and alternative tree topologies

are possible and even plausible [16–21]. Furthermore, the evol-

utionary transitions from one life cycle state to another are

poorly understood. These difficulties are exacerbated by the

ancient nature of the clades, which are isolated and divergent

remnants of over 400 Myr of evolution [4]. To what extent,

therefore, are the life cycles of modern species representative

of those common in early floras? Tantalizing evidence from

fossils hints at greater diversity in the past. Here, I review

this fossil evidence against the background of recent pro-

gress in the plant tree of life and advances in developmental

genetics. Together, these lines of evidence provide insights

into how a major change in life cycle led to the evolution of

the vascular plants.
.R.Soc.B
373:20170149
2. Life cycle evolution—the view from the top
of the tree

(a) Land plants evolved from charophytes with
haplontic life cycles

The ground-breaking early cladistic analysis of green algae and

bryophytes published by Mishler & Churchill in 1985 [22] did

much to clarify thinking around life cycle evolution in early

land plants (e.g. antithetic versus homologous theories) [13],

and subsequent molecular phylogenetic treatments have

further improved and constrained evolutionary scenarios

[10,12,13,15], but many uncertainties remain. Land plants

(embryophytes) are a monophyletic group that belongs to the

green plant clade Streptophyta [23]. Their closest relatives are

the charophycean algae. This is predominantly a freshwater

group with some inhabiting moist terrestrial habitats and a

few secondarily adapted to brackish or alkaline waters. Phylo-

genetic studies indicate that the closest relatives of land plants

are to be found among the ‘higher charophytes’ (i.e. Coleochae-

tophyceae, Charophyceae s.str., Zygnematophyceae), and

various sister groups have been proposed [3,24–26]. Recently,

approaches based on phylotranscriptomics [17] and on whole

plastid genomes [18] found robust support for a sister group

relationship between land plants and Zygnematophyceae.

This distinctive class of algae comprises some 4000 living

species of coccoid, filamentous and colonial forms that lack a

flagellate stage and that reproduce sexually by conjugation

[27]. Molecular studies, therefore, point to a single origin of

land plants from freshwater or perhaps terrestrial algae [2,28].

One can infer from the morphology of living charophytes

that the last common ancestor (LCA) of land plants and

higher charophytes was an alga probably with branched

filaments and oogamous reproduction [2]. It shared various

distinctive cellular features (e.g. plasmodesmata, phragmo-

plast, core cell wall polysaccharides), physiological and

metabolic systems (e.g. type of photorespiration, phytochrome

system), and similarities in spermatogenesis and male gamete

ultrastructure with the charophytes [20,22,29–31]. Less certain

is that it might already have been archegoniate, possessing

multicellular gametangia (antheridia, archegonia) of the type

in Charophyceae s.str. [10]. Land plants, therefore, evolved

from organisms with a haplontic life cycle, which is one in

which mitosis and development happen only in the haploid

phase. They inherited key cellular and metabolic features

from streptophyte green algae, but they evolved most of their

fundamental organs and tissue systems on land.
(b) Phylogenetic uncertainty leads to ambiguity in
tracing the early evolution of the land plant life
cycle

The tree of life clearly implies that the transition to land

involved a shift from an ancestral haplontic life cycle to a hap-

loid–diploid one, which was present in the LCA of land plants.

In haploid–diploid life cycles mitosis and development

happen in both haploid and diploid phases, giving rise to

gametophytes and sporophytes respectively (figure 1). The

nature of this original or primitive life cycle (ur-life cycle)

and how it subsequently evolved is less certain, which is due

in part to conflicting phylogenetic evidence. Early phylogen-

etic studies based on comparative morphology found

bryophytes to be a paraphyletic group, with liverworts sister

to all other land plants and mosses sister to the vascular

plants [22]. Subsequent studies focusing mainly on molecular

data recovered almost every possible alternative tree topology,

which is not to say that every one is equally plausible. Increas-

ing the amount of molecular data through genomics [18] and

transcriptomics [17] and critical evaluation of the methods

and systematic biases [16,18] are beginning to clarify some of

the strengths and weaknesses of alternative topologies, but

they have not yet provided an unambiguous answer. Based

on reanalysis of molecular data from two previous studies

Cox et al. [16] concluded that the prevailing hypothesis of

full bryophyte paraphyly to vascular plants, and especially

the sister group relationship between vascular plants and

hornworts [18,32], is likely an artefact of convergent base

composition induced by synonymous substitutions. A recent

phylotranscriptomics analysis [17] recovered three different

primary hypotheses: all grouped liverworts with mosses,

which is a feature of some morphological datasets [20], but dif-

fered in the relationships of hornworts and vascular plants.

Analysis of whole plastid genomes also recovered a liver-

wort–moss clade, once third codons were removed or the

nucleotides converted to amino acids [18]. At present there

seems to be insufficient grounds to reject with confidence any

of these hypotheses [16,17]. Phylogenetic analyses, therefore,

do not yet provide an unambiguous framework for tracing

life cycle evolution among basal land plants, but they do

impose some constraints.

(c) Leading hypothesis proposes that the ur-life cycle of
land plants was haploid – diploid with obligate
matrotrophic sporophytes

In most phylogenetic analyses the bryophytes emerge as a

paraphyletic group (figure 2). This led to the development of

the prevailing view that the ur-life cycle in the LCA of land

plants was bryophyte-like [11,12]. This is consistent with

F. O. Bower’s antithetic theory of the origin of the alternation

of generations, which postulated that the first sporophytes

evolved from matrotrophic zygotes through the interpolation

of somatic cell divisions prior to meiosis, thus creating a

simple matrotrophic sporophyte that was little more than

a capsule within which spores developed [13,33]. Within this

bryophyte paraphyly paradigm, the relative phylogenetic

placement of liverworts, hornworts and mosses also has impli-

cations for inferring details of the ur-life cycle and the shift to

independent sporophytes in the lineage leading to the vascular

plants [22]. Ligrone et al. [12] proposed that the ur-life cycle
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Figure 1. Diagrammatic representation of haplontic and haploid – diploid life
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possessed a free-living gametophyte that had bifurcating,

leafless, radially symmetrical axes bearing unicellular rhizoids

and mucilage papillae. Vascular tissues if present were simple

tubular cells with perforate walls. The sporophytes were obli-

gate matrotrophs of the gametophyte, comprising foot, short

seta and sporangium. Alternative phylogenetic models of

bryophyte paraphyly might have other implications for

specific features of archetypes [3], but they would still all

infer that the ur-life cycle had obligate matrotrophic sporo-

phytes and that there was a transition to free-living ones in

the vascular plants.
(d) Alternative phylogenies can imply other modes
of life cycle evolution

Arguably the most radical alternative hypothesis of relation-

ships among land plants is the finding of bryophyte

monophyly in some analyses (figure 2) [16]. If this is correct,

it would necessitate a complete revision of our understanding

of early life cycle evolution. It could reopen the door to hypoth-

eses of the type proposed by Stebbins & Hill [34], which

postulated the form of the ancestral life cycle, the mechanism

by which it evolved, and the means by which the modern vas-

cular plant and bryophyte life cycles diverged. In the Stebbins

& Hill model the ur-life cycle was envisaged as isomorphic,

with independent gametophyte and sporophyte phases

(figure 2). Plant bodies were simple, possibly a little more
complex than the charophycean alga Coleochaete. An attractive

aspect of this hypothesis is that it proposed a mechanism for

the evolution of the sporophyte from an ancestral haplontic

life cycle and an ecological argument for how it became estab-

lished and how the bryophyte and vascular plant life cycles

subsequently diverged. Adaptations to life on land evolved

first in the gametophyte and were later expressed in the sporo-

phyte through insertion of a somatic phase between zygote

formation and meiosis. Bryophyte and vascular plant life

cycles were thought to have diverged as different ecological

strategies for coping with life on land, opening the door to

exploiting seasonal variation or differences in microhabitat at

a local scale. Stebbins & Hill’s is not the only plausible model

of life cycle evolution compatible with bryophyte monophyly

(figure 2). Nevertheless, this hypothesis has very different evol-

utionary implications. Because independent gametophyte and

sporophyte phases already existed in the hypothetical ur-life

cycle, under this model obligate matrotrophy becomes a

derived characteristic of bryophytes.
3. Life cycles preserved in the rocks
The potential of the fossil record to shed light on early life cycle

evolution has long been acknowledged, but until recently it was

rightly judged to be of quite limited value [34]. First, there are

preservation and collector biases. The first emergent land

plants derived from charophycean algae were small, simple

organisms lacking the more robust tissues of their modern rela-

tives [2]. Therefore, they are both difficult to recognize as fossils

and vulnerable during the fossilization process. Second, there

are biases in the rock record meaning that the freshwater terres-

trial sediments in which these organisms lived are rare during

the critical Ordovician and Silurian Periods [4,34]. However,

recent research demonstrates that discovering such environ-

ments although challenging is possible [1,35–37]. Third, the

nature and affinities of some common Silurian and Devonian

fossils that are potentially relevant remain enigmatic (e.g.

Spongiophyton, Orestovia, Protosalvinia, Parka) [38,39]. Despite

these difficulties, fossil evidence is now providing insights

into life cycle variants in the earliest land-colonizing plants [40].

(a) The packaging of the products of meiosis was more
diverse in early plants

The early record of dispersed spores includes forms with con-

spicuous trilete marks that first appeared in the upper part of

the Ordovician Period (figure 3g–i) [41]. These are typical of

the vascular plants and some bryophytes, where the trilete

mark is indicative of meiosis. Preceding and overlapping with

these is an extinct class of spores known as cryptospores (Ordo-

vician–Devonian) (figure 3a–f) [42–45]. These were much

more diverse, taking the form of alete monads and other

types that were dispersed as tetrads and dyads, some of

which were enveloped in a second wall layer [40]. Even

though the affinities of most cryptospores are obscure, some

are now known to be produced by minute land plants that

possessed a combination of features not found together in

living species [46–50]. Their fossilized remains are highly frag-

mentary [40], so many aspects of their overall morphology,

biology and affinity still remain unclear. The cryptospore

producers (termed cryptophytes) are thought to belong to a

grade of organization that encompassed elements possibly of
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Figure 2. Outline tree topologies showing aspects of conflict among phylo-
genies of basal land plants and some key events in life cycle evolution
discussed. (a) Full bryophyte paraphyly to vascular plants. (b) Bryophyte
monophyly. Key events discussed in text (arrows on left) occur in same
sequence and equivalent points on both trees. *Two arrows on right of
lower tree indicate key points argued in the Stebbins & Hill hypothesis of
life cycle evolution [34].
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Figure 3. Fossil spores showing the diversity of the products of meiosis in
early land floras. (a – f ) Cryptospores from the Upper Ordovician (ca 450
Ma) of Oman. (a) Monad. (b) Dyad. (c) Tetrad. (d ) Monad enclosed in an
envelope. (e) Dyad enclosed in an envelope. ( f ) Tetrad enclosed in an envel-
ope. (g) Unornamented trilete from the Lower Devonian (ca 415 Ma) of the
Anglo-Welsh Basin. (h – i) Ornamented trilete from the Lower Devonian
Rhynie chert (ca 407 Ma). Spores ca 20 – 30 mm diameter. First published
in [4] (courtesy Charles Wellman). (Online version in colour.)
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the land plant stem group or stem group members of the bryo-

phytes and the vascular plants [5,40]. Today, obligate tetrads

are found only in a handful of living hepatics, including

Riccia, Sphaerocarpos and Cryptothallus; dyads (figure 3b,e) are

not a product of normal meiosis. The fossil record of crypto-

spores, therefore, testifies to a far greater versatility in the

ways that the products of meiosis were packaged among

ancient embryophytes, but the forces driving this diversity

and ultimately curtailing it remain obscure. At a mechanistic

level these differences can be attributed to changes in the

timing of sporopollenin deposition during meiotic cell division

[40,51]. The abundance of spore dyads in the early fossil record

raises the possibility that these rather than tetrads were the prin-

cipal products of meiosis in the archetypical land plants [40].
(b) New life cycle variants in the 407-Ma Rhynie chert
Whereas fossil spores provide insights into the diversity of

meiosis in early land floras, and where found inside sporangia

tantalizing glimpses of the sporophyte phase of the life cycle,

the earliest evidence for whole-life cycles comes from the

Rhynie chert locality near Aberdeen (Scotland). The Rhynie

chert was discovered in 1912 and key elements of the flora

were described in a ground-breaking series of papers pub-

lished between 1917 and 1921 [52,53]. The plant bearing

cherts formed in a geothermal wetland in which plants grew

on or close to sinter surfaces where they were fossilized in

silica by outwash from a hot spring system [54–58]. The site

is exceptional because of the quality of the preservation, the

faithful capturing of intimate associations among elements of

the biota, and all in close proximity to the actual habitats in

which they flourished. The vascular plants originally
documented were all interpreted as sporophytes. These were

small with simple bifurcating axes and most were leafless

and rootless (figure 4). Axes in contact with the ground were

rhizomatous or bulbous bearing rhizoids. Direct evidence for

gametophytes was lacking. Reflecting on this, Kidston &

Lang [59] and later Bower [33] concluded that the absence of

evidence of gametophytes implied that they must have been

even simpler and less robust than the sporophytes. Others dis-

agreed. One influential alternative interpretation held that the

rhizomes were in fact gametophytes from which upright

aerial sporophytes developed [60]; however, key evidence for

the gametophytic status was disputed [61,62]. Although this

interpretation did not receive universal acceptance, it drew

attention to the possibility that the two phases of the life

cycle might have strongly resembled one another.

This idea was later borne out in a series of works by

Remy et al. [63] (reviewed in [64]), which provided compelling

evidence for gametophytes, including the key observation

of well-preserved archegonia and antheridia. The essential

stages of the life cycles are now known for four of the six species

of land plant [62,65]. The simple axes bearing the gametangia

were upright and cylindrical with a central strand of vascular

tissues, a cortex and an epidermis with stomata and rhizoids

at the base [62,63]. The gametophytes were, therefore, free-

living. Two distinct size categories are known. Remyophyton
and Lyonophyton were tiny plants, significantly smaller than

their corresponding sporophytes (Rhynia and Aglaophyton).

Remyophyton had upright cylindrical axes (10–20 mm long)

that typically were unbranched, and that bore embedded arche-

gonia (figure 5a). In larger specimens, antheridia were borne on

peltate to bowl-shaped apices. Remyophyton grew in dense
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Figure 4. Two Rhynie chert sporophytes reconstructed. (a,b) Aglaophyton
majus: (a) habit (ca 15 cm tall) and (b) detail of sporangia with one on
left cut away to reveal inner spore cavity. (c,d) Horneophyton lignieri: (c)
habit (ca 10 cm tall) and (d ) detail of sporangia with one on left cut
away to reveal inner spore cavity (s) and columella (c). Adapted from draw-
ings by Pollyanna Lidmark first published in [19].

(a)

(b) (c)

Figure 5. Gametophytes and gametangiophores ancient and modern. (a) A
reconstruction of mature male and female Remyophyton delicatum gameto-
phytes. The antheridia are generally borne on shorter axes and the
archegonia on longer ones. The substrate has been omitted to reveal the pro-
tocorms and rhizoids. Scale bar, 2 mm. Reproduced by permission of the
Royal Society of Edinburgh from [62]. (b) Reconstruction of Lyonophyton
rhyniense gametangiophore and short part of subtending axis. Antheridia
borne on upper surface of cup. First published in [64]. Scale bar, 2 mm.
(c) Illustration of subterranean gametophyte of living Lycopodium annotinum.
Gametangia (not shown) borne on upper surface of convoluted disc. Scale
bar, ca 2 mm. First published in [66].
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stands a few centimetres in diameter containing hundreds of

gametangiophores arising from globular rhizoid-bearing

bases. Plants of Lyonophyton developed fleshy protocorms,

from which several gametangiophores arose. Archegonio-

phores bifurcated, whereas antheridiophores were

unbranched. The tips were slightly expanded with shallow

central depressions (figures 5b, 6). Plants were small, growing

to a height of about 2 cm. The second category of gameto-

phytes, Langiophyton and Kidstonophyton, were larger plants.

Although their overall growth form is still incompletely

known they are thought to be comparable in size but still

somewhat smaller than their corresponding sporophytes

(Horneophyton and Nothia). Their upright axes were also

cylindrical, and they contained massive conducting tissues.

Antheridia and archegonia were borne on well-developed pel-

tate to bowl-shaped apices [62,63]. In general, the gametangia

were larger than those of modern vascular plants [63]. Gameto-

phytes were seemingly dioecious [63,65], but one cannot rule

out the possibility of gender diphasy. It is unclear whether

the sporophytes were cosexual or dioecious [65]. These fossils,

therefore, demonstrate the existence of a completely new life

cycle variant in land plants. Its unique and key defining feature

is that the gametophyte and sporophyte are indistinguishable

histologically, except for the presence of either gametangia or

sporangia. The two parts of the life cycle bore a much greater

degree of similarity than is found among living species.
(c) The gametophyte phase is under-recorded
in early fossil floras

Exceptional cellular preservation in the Rhynie chert enabled

the identification of gametangia, leading finally to the recog-

nition of the gametophyte generation. However, in most

Late Silurian and Early Devonian sites fossils are less well pre-

served, typically taking the form of thin coalified films

(figure 7) [38]. Frequently, epidermal features are preserved

as cuticles and the more robust internal tissues in minerals,

but cellular level detail of gametangia is only likely to survive

under the most exceptional conditions [62]. Other cues are

required to recognize gametophytes, and evidence from the

Rhynie chert suggests several possible lines of enquiry. First,

in several species the most distinctive feature is the gametan-

giophore itself. This developed through expansion of the

apex into a rimmed disc or cup-like structure up to 1 cm in

diameter (figures 5b, 6a) [63]. Such features could be preserved

as compressions. Second, although gametangia are small and

their cellular structure unlikely to survive fossilization, their

outlines and position might also be conserved as compression

features. Moreover, we would anticipate observing such
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Figure 6. Fossilized gametangiophore of Lyonophyton rhyniense from the
Rhynie chert. (a) Longitudinal section through a cup-shaped gametangio-
phore bearing two visible antheridia on the upper surface (arrows). The
subtending axis contains a central strand of vascular tissues. Scale bar,
1 mm. (b) Longitudinal section through a spherical antheridium. Scale bar,
100 mm. (c) Sperm cells inside antheridium. Scale bar, 30 mm. (d ) Arche-
gonium in longitudinal section showing neck, neck canal and egg
chamber. Scale bar, 30 mm. Reproduced by permission of the Royal Society
of Edinburgh from [62].

(a) (c)

(d )

(b)

(e)

( f )

(g)

Figure 7. Putative fossil gametophytes and sporophytes preserved as thin
coalified films (Early Devonian). (a – c) Sciadophyton (Germany). (a) Basal
regions of several plants with leafless axes radiating from a central point.
Scale bar, 1 cm. (b) Upper surface of disc-shaped terminal gametangiophore.
Scale bar, 0.5 cm. (c) Details of upper surface of gametangiophore with small
circular mounds (arrows) interpreted as gametangia. Scale bar, 1 mm.
(d ) Cooksonia paranensis (Brazil) sporophyte with trumpet-shaped apices
interpreted as sporangia. Scale bar, ca 2 mm. First published in [67]. (e,f )
Pisa37 (Brazil). First published in [68]. (e) Gametangiophore with flared
apex. Scale bar, 2 mm. ( f ) Details of apex with small rounded to elongate
bodies (arrows) interpreted as gametangia. Scale bar, 1 mm. (g) Pertonella
sp. (Brazil) with flared apices (interpreted as sporangia) bearing small pro-
jections. Scale bar, 0.5 mm. First published in [69]. Images d, e, f, g
courtesy of Philippe Gerrienne.
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features on the putative gametangiophores [63,64]. Third, over-

all size might also provide clues. In several species the

gametophyte is significantly smaller than the sporophyte,

and in one it is known to grow in dense stands [62]. Even the

larger gametophytes are thought to be somewhat smaller

than corresponding sporophytes, but rigorous comparative

study is lacking. Finally, differences in ploidy between sporo-

phyte and gametophyte should manifest itself as differences

in cell volume [70]. Guard cell length of stomata, a widely

used proxy in plants for genome size [71], might, therefore,

provide an additional means of distinguishing the two

phases of the life cycle. Palaeobotanical works overwhelmingly

document sporophytes because of their often distinctive spor-

angia, but at most sites there are abundant additional remains

that are less readily attributable. These represent a pool of

potentially gametophytic or sporophytic materials. Gameto-

phytes have gone unrecognized partly because they resemble

sporophytes and partly owing to their diagnostic features

being more subtle. The gametophyte was, therefore, probably

much more prominent in these early environments than the

written record suggests.

(d) Gametophytes are known from other geological
sites

Unequivocal fossil evidence of gametophytes at sites other

than the Rhynie chert is sparse. The most compelling examples

are named Sciadophyton, and occur widely in sediments of the

Early Devonian [72,73]. These take the form of distinctive coa-

lified compressions of narrow, leafless axes (approx. 2.0–

2.6 mm wide; greater than 9 cm long) that diverge from a cen-

tral point like the spokes of a wheel (figure 7a). Axes bifurcate

infrequently. In specimens that are partly mineralized, a
vascular strand of simple helically thickened tracheids

(S-type cells) was observed [74]. Each branch terminates in a

shallow cup (approx. 3.5–15.0 mm wide; figure 7b) with a

weakly lobed margin bearing oval to circular bodies (approx.

0.20–0.55 mm wide; figure 7c) on the upper surface. The oval

bodies are typically smaller and denser at the margins and

larger and less dense towards the middle. Fossils of Sciadophy-
ton can exceed 9 cm in length. Other fossils, named

Calyculiphyton, from the Early Devonian of Germany, possess

a different mode of branching [63,75]. The axes are similarly

leafless (1.0–2.0 mm wide) but with strong main leader and

subordinate laterals in helical arrangement. Each branch termi-

nates in a shallow cup (1.9–8.4 mm wide) with lobed or entire

margins bearing centrally located, superficial, clavate to circu-

lar bodies (ca 0.6 mm diameter) on the upper surface. Plants of

Calyculiphyton would have exceeded 20 cm in length. These

fossils are remarkably similar to some of the larger gameto-

phytes from the Rhynie chert. In particular, the cup-shaped

gametangiophores are comparable in shape, size, and position.

Furthermore, the circular or clavate bodies borne on the upper

surface are similar to antheridia. So, even though the histology

of the putative gametangia of Sciadophyton and Calyculiphyton
is not preserved, the combination of other features makes a

compelling case for gametophytes.

(e) Life cycle phases can be misattributed
The gametangiophores of Sciadophyton are quite distinctive,

making them easily recognizable in compression floras at
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many sites. More recently documented fossils from the Rhynie

chert show that the gametangiophores of another species were

not nearly so distinctive, and they were a lot smaller (Remyo-
phyton; figure 5a) [62]. Could such structures be observed in

coalified materials? One recent example from the Lower Devo-

nian of Brazil indicates that they can (figure 7e,f ) [68]. This is a

fragment of putative gametangiophore with a truncate end

measuring 6 mm in width. Minute peg-like to clavate protru-

sions emerging from the end are plausible gametangia.

Careful observations of small coalified fossils could yield

further information on the gametophyte generation in early

floras.

Some forms of gametangiophore converge on sporangia

in shape and size, meaning that they can be difficult to

distinguish, opening up the possibility of mistaking gameto-

phyte for sporophyte and vice versa. Examples of fossils of

ambiguous nature include some attributed to Cooksonia from

the Lower Devonian of Eifel, Germany [76]. These particular

specimens possess numerous 4 cm long bifurcating axes arising

from a central point. Each terminates in an expanded head inter-

preted as a sporangium, implying that it was a sporophyte.

Alternatively, this fossil could equally plausibly be reinter-

preted as a gametophyte [77]. The putative sporangia are

highly variable in shape, with the better developed ones resem-

bling cup-shaped gametangiophores. Furthermore, spores—a

diagnostic feature of sporangia—were not observed. Here, fea-

tures originally interpreted as sporangia might in fact be

gametangiophores fossilized at different developmental stages.

Within the current circumscription of the genus Cooksonia
[67], some fossil are undoubtedly sporophytes because

spores have been observed in situ. Others with flared, trum-

pet-shaped ends might plausibly represent a more or less

isomorphic gametophyte phase. One of these is Cooksonia
paranensis from the Early Devonian of Brazil [69]. This was inter-

preted as a sporophyte that developed from a minute thalloid

gametophyte [77]. Bifurcating axes (0.3 mm–1.1 mm wide)

with flared ends (0.58 mm–3.84 mm wide) (sporophyte;

figure 7d) developed from a small carbonized layer at the base

of the plant (thalloid gametophytes). No plausible gametangia

were identified and no spores or dehiscence feature were

observed [67]. A fossil such as this could be reinterpreted as a

gametophyte bearing trumpet-shaped gametangiophores simi-

lar to those of the Rhynie chert gametophytes (e.g. Lyonophyton;

figure 6a).

Other fossils present similar difficulties of interpretation.

Specimens attributed to Pertonella from the same site as

C. paranensis are fragments (less than 8.0 mm long) of

minute bifurcating axis (0.8–1.2 mm wide) with flared, trum-

pet-shaped ends (figure 7g) [69]. These bear minute

projections (approx. 0.25 mm width/length) with rounded

or truncated tops. The fossil was interpreted as a sporophyte,

but no spores were recovered. It could plausibly be reinter-

preted as a gametophyte resembling the Rhynie chert

gametophyte Remyophyton (figure 5a) [62]. The projections

might be the compressed remains of archegonia, which in

Remyophyton are distributed on and below the slightly flared

apices. None of the above reinterpretations of fossils originally

described as sporophytes is certain. Attention is drawn to these

examples simply to make the point that other plausible

interpretations are open. There is a tendency in the literature

always to presume sporophytic status, which becomes less

tenable with our developing understanding of the Rhynie

chert life cycles.
4. Origin of the vascular plant life cycle
(a) The problem of the matrotrophic sporophyte
The significance of these discoveries for our understanding of

the early evolution of life cycles in land plants hinges on deter-

mining the relative position of the fossils in the plant tree of life.

Phylogenetic analyses place Rhynie chert plants including

Rhynia, Aglaophyton and Horneophyton in the vascular plant

stem group [19,21,77,78] (figure 2). Although the sporophyte

generation of fossils attributed to Sciadophyton still remains

speculative [64], some of the gametophytes are known to pos-

sess distinctive tracheids similar to those of Rhynia (S-type),

also strongly indicating vascular plant stem group. Other fos-

sils are still too poorly characterized to place with assurance

into the plant tree of life. Calyculiphyton is potentially highly

significant because its overall habit is more indicative of the

extinct zosterophylls, hinting at possible affinities within

the vascular plant crown group. The new life cycle variants

that are known in sufficient detail are, therefore, more

closely related to the vascular plants than to the bryophytes.

Furthermore, it is likely that this relationship holds under

either scenario of monophyletic or paraphyletic bryophytes

(figure 2). The life cycle of the LCA of the vascular plants,

therefore, possessed free-living, leafless gametophyte and

sporophyte. Where known, the fossils show that the gameto-

phyte is smaller than its associated sporophyte [68], but both

phases possessed similar tissue systems and general growth

architecture. The key evolutionary step in the origin of the

vascular plants was the transition of the sporophyte from obli-

gate matrotrophy in the ur-life cycle to free-living status

[6,11,12,14] (figure 2). Intuitively, this seems to be the most dif-

ficult of evolutionary steps. How does a typically tiny, poorly

equipped, parasitic phase of the life cycle manage to complete

the transition to self-supporting autotroph?

(b) Shifts in genome expression between life cycle
phases release the sporophyte and initiate the
process of transpiration

An answer to the problem was foreseen in 1980 by Stebbins &

Hill in a different context [34]. They faced a similar challenge

explaining the origin of the sporophyte generation in develop-

ing their hypothesis of the land plant ur-life cycle. To put it in

modern terms, the answer is likely to lie in the recruitment of

ancient genes and gene regulatory networks (GRNs) from the

more developed and already autotrophic gametophyte, and

now there is a growing body of corroborating evidence from

the molecular developmental genetics of moss (Physcomitrella
patens) and angiosperm (Arabidopsis thaliana) model organisms

[79,80]. Significantly, two recent well-documented examples

involve tissue systems related to rooting and water conduction,

which are key functions in a free-living plant. Rhizoid and

protonemal development in moss gametophytes and root

hair development in vascular plant sporophytes share an

ancient GRN kernel employing common ROOT HAIR DEFEC-

TIVE SIX-LIKE (RSL) Class I and Class II transcription factors

and LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL)

genes [80–82]. Thus, cells involved in anchorage and nutrient

acquisition use the same basic genetic programme in both

gametophyte and sporophyte. Hydroid development in the

moss gametophyte and xylem development in the vascular

plant sporophyte are regulated by the same group of
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Figure 8. Origin of the vascular plant life cycle. The sporophyte in the last
common ancestor (LCA) of land plants is an obligate matrotroph. The free-
living sporophyte of the LCA of the vascular plants evolved by an expansion
of gene expression such that the gametophyte body plan, already capable of
free-living autotrophic existence, was substantially expressed in the sporo-
phyte. S, sporangium; G, gametangiophore.
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transcription factors, indicating that these systems too are hom-

ologous developmentally [83]. Furthermore, polar auxin

transport—a key regulator of sporophyte development in flow-

ering plants—is now known to be essential to the patterning of

development in both phases of the moss life cycle [84,85]. These

discoveries in plant developmental genetics are consistent with

the life cycle variants in early fossils, which imply that similar

gene expression profiles and auxin-mediated regulation of

tissue differentiation operated in both haploid and diploid

phases of their life cycles.

The problem of the transition from obligate matrotrophic

sporophyte to free-living one might, therefore, have been

solved by the gametophyte. Key modes of development and

functionality that enabled independent autotrophic existence

(e.g. apical meristem, axial growth form, water transport,

anchoring and absorption) evolved first in the gametophyte

and were later expressed in the sporophyte enabling it to

become free-living too. In the fossils similar histology in both

phases of the life cycle indicates that this did not happen in a

piecemeal fashion. More likely, the sporophyte of the vascular

plants evolved by wholesale co-option of those aspects of the

gametophyte developmental programme that enabled it to

live and grow as an independent organism. In other words,

during the evolution of the vascular plant life cycle there was

a transitional phase in which the gametophyte body plan

was substantially expressed in the sporophyte (figure 8). This

need not have resulted in a precisely isomorphic phenotype,

but it furnished the sporophyte with a sufficient phenotype

to live freely.

Substantial changes in life cycle of the type envisaged here

would also have major structural and physiological consequen-

ces. Whereas rhizoids and primitive vascular system probably

evolved in the gametophyte [12], stomata are thought to have

originated in the matrotrophic sporophyte to facilitate spore dis-

charge through capsule desiccation, only later acquiring a role in

the regulation of gaseous exchange [86,87]. The hypothesized

expansion of genome expression in the two phases of the life

cycle brought together new combinations of cell types and

organs. Thus, rhizoids, vascular system and stomata were

linked developmentally for the first time. This change in life

cycle, therefore, also put in place the key components that regu-

late transpiration, which formed a physiological platform of

primary importance to the establishment and subsequent

diversification of the vascular plants.

(c) Reduction and simplification of gametophyte linked
to subterranean mycotrophic phase

The life cycles of the fossil plants discussed here are at odds

with the widely held view that the gametophyte generation

of the earliest vascular plants was a simple thalloid plant

akin to the modern hornworts or the surficial photosynthetic

gametophytes of ferns [12,15,22]. Their axial growth and the

presence of a vascular system and stomata are notable differ-

ences. How far did this new life cycle variant persist into the

vascular plant crown group and are there any vestiges in

species living today? One hypothesis holds that gametophyte

reduction happened early in the stem group, resulting in a

simple thalloid form akin to the autotrophic gametophytes of

some modern pteridophytes [77]. A second proposes that

highly differentiated gametophytes persisted into the vascular

plant crown group in early members of the euphyllophytes

and lycophytes [64,88]. Neither yet has clear support.
Discovery of the gametophyte of the Rhynie chert lycopod

Asteroxylon mackiei (vascular plant crown group) could, there-

fore, prove decisive. A later reduction of the gametophyte

from complex axial ancestral forms would be more consistent

with the view that axial gametophytes are plesiomorphic in

living vascular plants [13]. The subterranean gametophytes

of Ophioglossaceae, Psilotaceae and Lycopodiaceae typically

take an axial, branched form with rhizoids and mycorrhizal

fungi [89]. Vascular systems are generally absent, but tracheids,

phloem and endodermis were observed in the gametophytes of

one polyploid race of Psilotum [89]. Certain forms of Lycopo-

diaceae gametophytes are especially interesting because

apical growth ceases with the apex differentiating into a term-

inal trumpet-shaped or cup-shaped structure on which the

sporophyte develops. Other non-axial forms develop into dis-

tinctive disc-shaped gametangiophores with a convoluted

margin (figure 5c). Both types resemble known or suspected

fossil gametangiophores. The loss of vasculature, stomata

and the reduced axial growth form could be explained by the

intriguing idea that the gametophyte generation of vascular

plants went through a persistent subterranean mycotrophic

phase [13].
5. Fossil phenotypes are relevant to plant
developmental genetics

In addition to providing insights into the origins of the life

cycles of vascular plants, the Rhynie chert fossils present an

additional set of phenotypes against which to evaluate our

growing understanding of the molecular developmental basis

of life cycle regulation. There has been much progress recently
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in our understanding of the genetic basis of the alternation

of generations [90,91]. In green plants two families of

homeodomain proteins play key roles: KNOTTED-LIKE

HOMEOBOX (KNOX) and BELL-LIKE HOMEOBOX (BELL).

Their interactions are known to be deep rooted in gamete

gender identity and zygote development of the chlorophyte

alga Chlamydomonas reinhardtii [92]. KNOX and BELL genes

underwent numerous duplications within the streptophyte

clade giving rise to multiple paralogues [93,94]. The KNOX

family split into two classes within the charophytes (Class I,

Class II) before the evolution of the multicellular diploid spor-

ophyte [94,95]. In the moss Physcomitrella patens, both are

crucial for sporophyte development. Neither class of KNOX

genes is functional during vegetative growth of the gameto-

phyte, but both are activated in the egg cell and the

surrounding archegonial cells. Developmental genetics further

indicates that in P. patens one BELL paralogue is involved in the

haploid to diploid transition [96] and that KNOX2 activity in

the developing sporophyte represses the gametophyte genetic

programme [97]. In the gametophyte, sporophyte-specific

developmental programmes are repressed via epigenetic con-

trol of sporophyte-specific gene expression exerted by

POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) genes [98].

This works by silencing transcription factor genes via histone

methylation and known targets of PRC2 include KNOX and

BELL. Thus, some of the genetic machinery controlling the hap-

loid-to-diploid transition in green algae is conserved in land

plants and this has been extended and developed via expansion

and neofunctionalization of the relevant gene families and via

the evolution of novel epigenetic mechanisms.

The early fossil life cycle variants discussed here differ

significantly from contemporary plant life cycles in the much

greater similarity between sporophyte and gametophyte.

Although similar, it has been pointed out rightly that they

are not strictly isomorphic [10,68]. Where known, gameto-

phytes are generally smaller than sporophytes, but overall

size and growth architecture of the larger Rhynie chert game-

tophytes is still unknown. Also, we should bear in mind that

differences in growth form between phases of the life cycle

do not necessarily imply underlying differences in genetic

regulation. In the brown seaweed Ectocarpus, life cycle phases

that are near isomorphic under laboratory culture can exhibit

marked heteromorphism in the field [99]. Nevertheless, from

a developmental perspective the significant point about the

fossils is that with the exception of the phase defining organs

(i.e. gametangia, sporangia) all tissue types and organ systems

are expressed in both gametophyte and sporophyte. One

might, therefore, conclude that broadly the same genetic pro-

gramme is being expressed in the two phases of the life cycle.

Thus, if the expression and function of KNOX/BELL in the

sporophyte (repression of gametophyte development) and

PRC2 in the gametophyte (repression of sporophyte develop-

ment) are conserved in Viridiplantae the downstream gene

regulatory networks that they control must differ in the

Rhynie chert plants from those in modern vascular plants

and the balance of these controls has also shifted between life

cycle phases.
6. Future directions
Fossils are beginning to reveal new and diverse life cycle

variants among the earliest land plants. The nature of these
life cycles is still comparatively poorly understood and further

surprises may be in store. Studies of spore development in

fossil and living plants could shed further light on the myster-

ious early meiotic variants [100,101]. Further basic information

is needed on overall growth habit of the gametophyte phase of

most Rhynie chert plants as well as comparisons with meris-

tem structure in living groups (e.g. Lycopodiaceae). The

Rhynie chert still holds information on the life cycle of the ear-

liest crown group vascular plants (e.g. Asteroxylon mackiei),
which is currently unknown, but is crucial to understanding

how and perhaps why the gametophyte phase of vascular

plants became reduced and simplified. The Rhynie chert is a

unique site, but compression fossil floras are much more

abundant. The ecological roles of the gametophyte and its

prevalence in these early marginal lake and river environments

may have been greatly underestimated and needs reappraisal.

Recent research on model organisms in green plants high-

lights the central importance of homeodomain transcription

factors and epigenetics in the regulation of life cycles. There

is still much to learn about how KNOX/BELL expression

and chromatin modification by PRC2 influence the develop-

ment of gametophytes and sporophytes in groups that bridge

the phylogenetic gap between model moss (P. patens) and

model angiosperms (e.g. A. thaliana) [90,98]. Particularly inter-

esting taxa include vascular plants with well-developed axial

gametophytes, including Lycopodiaceae, Psilotaceae and

Ophioglossaceae. Gametangiophores in some Lycopodiaceae

possess a meristematic feature similar to that in some of the ear-

liest known fossil gametophytes, and diploid gametophytes of

Psilotaceae have been known to differentiate vascular tissues.

The shift in life cycle from matrotrophic sporophyte to free-

living one was caused by a significant redeployment of genetic

regulatory mechanisms. These changes also linked for the first

time in one developmental system rhizoids, vascular tissues

and stomata, putting in place the critical components that

regulate transpiration in the vascular plants.

Broadening comparisons to life cycles in other eukaryotes

could deepen our understanding of the early evolution of

novel plant life cycle variants and the ecological conditions

under which they flourished [90]. Many red, brown and green

seaweeds have haploid and diploid phases that encompass a

full spectrum of forms from extreme heteromorphy to isomor-

phy [15]. Moreover, recent molecular phylogenetic analyses

reveal considerable switching among life-history strategies

[102,103]. During the crown group radiation of brown algae

(Cretaceous–Paleogene) isomorphic life cycles evolved repeat-

edly from heteromorphic antecedents [102]. The most widely

evoked ecological explanation for the maintenance and diver-

sity of haploid–diploid life cycles postulates that they have a

capacity to exploit a broader range of environmental conditions

because the two ploidy phases occupy different ecological

niches [99]. So, as originally envisaged by Stebbins & Hill [34],

the evolution of haploid–diploid life cycles in land plants and

the subsequent divergence of the two phases might be explic-

able in ecological terms. In many seaweeds the life cycle

alternates between crustose and foliose phases, which has

been interpreted as an adaptation to seasonal variation [99].

Crustose forms growing as filaments in crevices in the substra-

tum can withstand harsh winter conditions, whereas foliose

forms are able to take advantage of more benign spring con-

ditions to grow rapidly and to reproduce. Similar forces might

have been at play driving the early evolution of morphological

differences between sporophyte and gametophyte in vascular
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plants. Perhaps the gametophyte generation went through a

persistent subterranean mycotrophic phase (crustose form)

whereas the sporophytes flourished on a more seasonal basis

above ground (foliose form). Increasingly detailed phylogenies

of algae together with an understanding of the genetic regulat-

ory basis of their life cycles will help in furthering our

understanding of the early evolution of life cycles in plants.
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