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Y chromosomes typically harbour a small number of genes and an abun-

dance of repetitive sequences. In Drosophila, the Y chromosome comprises

multimegabase long segments of repetitive DNA and a handful of

protein-coding genes. In mammals, the Y chromosome also harbours a dis-

proportionally high abundance of repeats. Here, we built on a Drosophila
melanogaster model in which the Y chromosome is decoupled from sexual

determination. Genotypes were genetically identical for the autosomes, X

chromosome, and mitochondria, but differ by the presence or dose of the

Y chromosome. Addition of an extra Y chromosome had limited impact in

males. However, the presence of a Y chromosome in females induced a dis-

proportionate response in genes expressed in the ovaries as well as genes

encoded by the mitochondrial genome. Furthermore, the data revealed sig-

nificant consequences of Y chromosome presence in larvae neuronal tissue.

This included the repression of genes implicated in reproductive behaviour,

courtship, mating and synaptic function. Our findings exhibit the Y chromo-

some as a hotspot for sex-specific adaptation. They suggest roles for natural

selection on Y-linked genetic elements exerting impact on sex-specific tissues

as well as somatic tissues shared by males and females.
1. Introduction
Y chromosomes present a number of molecular features that evolved in part

due to their experience of higher mutation rates, restriction to male lineages,

stronger selective pressures for male fitness and inability to purge individual

mutations due to the lack of recombination. Thus, the Y chromosome is

repeat rich in most organisms, with multicopy genes, repetitive arrays and dis-

proportionate amounts of satellite DNA and transposable elements (TEs). The

Drosophila melanogaster Y chromosome is an extreme case: it harbours multimega-

base long stretches of satellite DNA repeats and an exceptionally high density of

TEs [1–3]. Based on the gene density of X-linked euchromatic segments, over

4000 genes were expected in this approximately 40 Mb Y-linked DNA segment

that accounts for about 20% of the male haploid genome. However, the chromo-

some only contains some 14 protein-coding genes, many of which appear to be

recently acquired through transposition from autosomal and X-linked genes [4].

Males and females have distinct genetic needs for optimal fitness, with

asymmetrically transmitted genetic elements serving key roles in sex-specific

adaptation [5–13]. While the Y chromosome accumulates evolutionary adap-

tations that favour males, sex linkage also removes selective costs due to

male–female trade-offs [14,15]. The Y chromosome is expected to evolve buffer-

ing mechanisms to counter deleterious outcomes emerging from female-selected

genetic elements. This includes, for instance, costs emerging from variation in

mitochondrial DNA (mtDNA), a genome that accumulates evolutionary vari-

ation with disproportionate consequences to spermatogenesis and male fertility

[12,16–18]. Finally, the Drosophila sex chromosomes are sensitive to epigenetic
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modifications that occur along spermatogenesis or oogenesis

[19–23], which add another layer of complexity in their

regulatory interactions.

In mammals, the presence of the Y chromosome in females

has been detected across several brain regions [24], and its

abundance increases during pregnancy [25]. The event is sup-

ported by stable incorporation of DNA injected intravenously

into mice [26] and experimental tests revealing that male fetal

stem cells can colonize maternal tissues and differentiate into

tissue-specific resident cells, including neurons [27,28]. Despite

suggestions that sex chromosomes play a special role encoding

sex-differences in brain function [29–31], the physiological and

functional significance of Y-linked DNA in male or female

tissues have remained unclear [26,27,32–34].

To investigate the impact of a male-restricted DNA on

regulatory outcomes, we constructed Drosophila strains that

differ from their progenitor only in the presence/dose of the

Y chromosome but were otherwise genetically identical for

all other chromosomes and mitochondria. Surprisingly, the

presence of an extra Y chromosome in XY/Y male genotypes

had limited impact on global gene expression levels. Our

observations indicated that a female-restricted tissue (ovary

of adult flies) was disproportionally sensitive to Y chromo-

some presence. Nevertheless, Y chromosome presence on the

central nervous system (CNS) of third instar larvae, a somatic

tissue common to males and females, was also significant. The

data showed that the presence of a male-adapted chromosome

in larval neuronal tissues significantly influenced genetic path-

ways associated with reproductive behaviour, mating and

synaptic function. These changes were accompanied by evi-

dence of genetic interaction between the Y chromosome and

the mitochondria.
2. Material and methods
(a) Introgression of the Y chromosome into isogenic

backgrounds
Y chromosome substitution lines were produced as previously

described [9] (electronic supplementary material, figure S1),

with the 4361 strain subjected to 24 generations of brother–

sister mating. Y chromosome substitution strains, denoted as

4361(c) and 4361(o), are genetically identical except for the

origin of the Y chromosome. Next, we generated isogenic strains

with an extra Y chromosome. The key strain in this procedure is a

C(1;Y)3, In(1)FM7, w[1] m[2]/0/C(1)M4, y[2] genotype (Bloo-

mington stock number 995) [35]. Note that C(1;Y)3, In(1)FM7,
w[1] m[2]/0/C(1)M4, y[2] does not have a free Y chromosome

(hereafter denoted X^X/0/X^Y). Both attached X^X and X^Y
chromosomes are remarkably stable in the X^X/0/X^Y configur-

ation [36], and chromosome breaks are readily visualized. The

X^X/0/X^Y lineage was subjected to five generations of inbreed-

ing through brother–sister mating immediately prior to the start

of the study. Genotypes that differ only by the presence of the Y

chromosome (X^X/0 and X^X/Y) and the number of Y chromo-

somes (X^Y/0 and X^Y/Y) were produced and phenotypically

monitored (electronic supplementary material, figures S2 and

S3). The presence and dose of the Y chromosome in X^X/Y
and X^Y/Y were validated by PCR of the Y-linked gene kl-3.

The strains (X^Y/Y and X^X/Y) were designed to be genetically

identical to the progenitor strain of the same sex (X^Y/0 and

X^X/0), except for Y chromosome number and origin. Genotypes

[995, 995(c) and 995(o)] were sequenced with shotgun Illumina

sequencing. RNA-seq of whole flies was performed in replicated
pools of approximately 30 virgin flies of the same sex and aged

for 48 h post-eclosion.

(b) Ovary and testis dissection
Virgin males and females 48 h post-eclosion were collected. Testes

and ovaries were dissected and isolated [37,38]. The correspond-

ing carcasses of females were saved to confirm the introgression

of the Y chromosome by PCR of a 180 bp fragment from the

third exon of the Y-linked gene kl-3. After confirming the presence

of the Y chromosome, total RNA was isolated from two biological

replicates with 10 pairs of ovaries in each, and submitted for

RNA-seq.

(c) Larval central nervous system dissection
and genotyping

The CNS was isolated according to Egger et al. [39]. Briefly, L3

larvae were dissected in 20 ml of phosphate-buffered saline

under a stereomicroscope. The clean CNS was individually

immersed in 20 ml of ice-cold TRIzol, flash frozen and stored at

2808C [39]. Matched carcasses were saved to confirm the geno-

type of the sample (electronic supplementary material, figure S4).

RNA from each carcass was isolated with 200 ml of TRIzol and

Direct-zol RNA miniprep columns (Zymo Research). RNA was

eluted with 30 ml of nuclease free water and checked with Nano-

drop (Thermo Fisher Scientific). The sex of larvae was

determined with PCR of the eighth exon of the Y-linked gene

kl-3 or the control eif5, and validated along positive (pool of

adult male flies) and negative (pool of adult female flies) controls

(electronic supplementary material, figure S5a). The presence of

the Y chromosome was confirmed by PCR of the Y-linked gene

kl-3 using the housekeeping gene eif5 as a control in single

female carcass, together with positive (pool of adult male flies)

and negative controls (pool of adult female flies) (electronic sup-

plementary material, figure S5b). Neuroblasts from X^X/Y were

combined into two biological replicates with five individuals in

each, and submitted for RNA-seq.

(d) RNA-seq library preparations
Total RNA was isolated with TRIzol, mRNA purified twice with

magnetic beads linked to poly-T tails (Dynabeadsw mRNA

DIRECTTM Purification Kit). The quality of mRNA preparations

was accessed with the Agilent 2100 Bioanalyzer system (Agilent

Technologies). Samples were subjected to library synthesis using

the automated Apollo 324TM NGS Library Prep system with

PrepX RNA-Seq kit (Wafergen). The final product of each library

was submitted to 15 cycles of PCR enrichment in reactions contain-

ing one barcode for each sample. Final libraries were purified with

magnetic beads to an average size of 350 bp, checked with Agilent

2200 TapeStation (Agilent Technologies), and submitted to 150

cycles of paired-end sequencing (2 � 150 bp) using HiSeq 2500

(Illumina). Two biological replicates were sequenced for each

sample. Sequencing data are available at GEO with the accession

number GSE93699.

(e) Mapping and analysis
Raw Illumina reads were trimmed using Trimgalore under

default quality parameters (-q 30 –phred33). RNAseq trimmed

reads were mapped against the reference genome (annotation

6.07) using bowtie2 under-sensitive option. Samtools was used

to convert between SAM and BAM files and to sort BAM files.

We used GFold function ‘count’ to extract read counts for anno-

tated genes from sorted BAM files according to the GTF file

(annotation 6.07). Read counts (electronic supplementary

material, table S2) were used to calculate differential expression

with DESeq2 (version 1.8.1), R software (version 3.2.3) and
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RStudio (version 0.99.467) and subjected to quality control (elec-

tronic supplementary material, figures S6–S8). We conducted

separate contrasts for the lines carrying the free Y chromosomes

[Y(c) and Y(o)] and combined p-values across experiments with

Fisher’s method [40]. Finally, q-values were calculated with the

q-value package (http://qvalue.princeton.edu/). Biological func-

tions of genes differentially expressed were assessed through

study of gene ontology using the online tool GOrilla (http://

cbl-gorilla.cs.technion.ac.il/) [41,42].

( f ) Digital PCR for mitochondrial DNA copy number
Adult flies (2-day-old) were used. Samples used for copy number

analysis were treated with RNase A and normalized with Qubit

3.0 Fluorometer. DNA dilutions were made based on the esti-

mated abundance of targets, and copy number assessed using

BioRad’s digital PCR.

(g) FlyAtlas
Microarray data were downloaded from FlyAtlas (http://flya-

tlas.org/data.html) and converted to log10 scale. In order to

evaluate the tissue of origin of the differentially expressed

genes (DEGs), the set of DEGs in the whole body of X^X/Y
flies was merged with the FlyAtlas expression data. The

expression average of upregulated genes was calculated for

each tissue and illustrated with a Radar Plot; the values along

the radial axis represent the average expression (arbitrary units

of microarray signal) of the DEGs in each tissue. To identify

tissue-specific genes, we calculated Z scores for expression

values of each adult tissue for a total of 14 621 probes. Using a

Z score cut-off greater than 3.5, we identified 4440 probes with

expression in a single tissue. The association between DEGs

and tissue-specific expression was assessed with Fisher’s exact

test. For the correlation plot, DEGs in the ovary of X^X/Y were

identified and combined with the FlyAtlas. Pearson correlation

between tissues was calculated with the ‘cor’ function and

plotted with the library ‘corrplot’. Fold changes obtained with

DESeq2 were used to create density plots in ‘ggplot2’. All data

were processed using the R software (v. 3.2.3) and RStudio

(v. 0.99.467).
3. Results and discussion
We constructed Drosophila strains that differ only in the pres-

ence/dose of the Y chromosome (electronic supplementary

material, figures S1–S5) but that were otherwise genetically

identical for all other chromosomes and mitochondria. The

presence of the Y chromosome impacted female whole-

body gene expression, whereas an extra Y chromosome had

limited impact on males (figure 1). Accordingly, in the

contrast between X^X/0 versus X^X/Y flies we observed

54 up- and 77 downregulated genes (q , 0.10). Y chromo-

some presence in females preferentially affected genes

expressed in the ovaries (figure 1b), with nine times more

ovary-specific genes than expected by chance (electronic sup-

plementary material, figure S9; p , 0.001, Fisher’s exact test).

We also detected mild enrichment for candidates expressed in

midgut and salivary glands (electronic supplementary

material, figure S10). As a control, we investigated male

X^Y/0 and X^Y/Y genotypes that are genetically identical

except for the extra Y chromosome; the data showed a

mostly stable mRNA profile in these flies (six up- and no

downregulated genes; q , 0.10). Next, we dissected ovaries

from X^X/0 and X^X/Y flies as well as testes from X^Y/0
and X^Y/Y males. We observed 383 DEGs between dissected
ovaries of X^X/0 and X^X/Y (92 up- and 291 downregulated

genes; q , 0.10), whereas we found negligible differences

between dissected testis of X^Y/0 and X^Y/Y (18 up- and

six downregulated genes; q , 0.10). The data suggested that

female-exclusive tissues were acutely impacted by the pres-

ence of a Y chromosome. These observations are partially

expected due to the limited opportunity for natural selection

to act on Y chromosome genetic effects that impact

female-exclusive tissues.

Direct Y chromosome effects in somatic tissues could also

be functionally significant. The brain is a well-known organ

with sexual dimorphism clearly documented from insects to

mammals [29]. To address the consequence of a male-adapted

chromosome in neuronal female cells, we studied genome-

wide expression of mRNA in CNS of larvae carrying a Y

chromosome. CNS from third instar larvae present a more

homogeneous cell population than adult heads and were care-

fully dissected [43]; the procedure was efficiently performed,

with the average time spent to dissect each larva at approxi-

mately 1 min (electronic supplementary material, figure S4).

Matched individual carcasses were saved to identify male

and female larvae (electronic supplementary material, figure

S5). We detected a significant impact of Y chromosome pres-

ence in dissected neuronal tissues, with 108 up- and 213

downregulated genes in X^X/Y (q , 0.10; figure 1); notably,

the set of downregulated genes was enriched for candidates

involved in ‘behaviour’ (greater than threefold enrichment;

p , 0.001 (mHG)) (figure 2 and electronic supplementary

material, table S1), including ‘mating behaviour’ (greater

than fivefold enrichment; p , 0.001 (mHG)) and ‘reproductive

behaviour’ (greater than fivefold enrichment; p , 0.001

(mHG)) (electronic supplementary material, table S1). In

addition, genes that control synaptic transmission were also

significantly repressed by the Y chromosome. For instance,

we detected repression of 69 out of 93 genes whose protein

products are localized at the pre-synapsis (GO:0098793) (p ,

0.001 (Fisher’s exact test)) and 38 out of 47 genes whose protein

products are localized at the post-synapsis (GO:0098794) (p ,

0.001 (Fisher’s exact test)) (figure 2). The Y chromosome also

impacted other functional classes controlling neuronal signal-

ling (figure 3; electronic supplementary material, figures S11

and S12). For instance, we observed the downregulation of

genes involved in dopamine metabolism in X^X/Y flies

(figure 3). This pathway comprises 12 genes, six of which

were significantly inhibited by the presence of the Y chromo-

some (Black, Ddc, Dop1R1, Dop1R2, Ebony, and Punch).

Dopamine signalling in flies, as well as in mammals, is associ-

ated with motor coordination, motivation, reward, addiction,

learning and memory [44–51]. Among genes repressed in

the CNS of X^X/Y genotypes, we also noted candidates

involved in neuronal development. For instance, two out of

four Drosophila genes encoding Down syndrome cell adhesion
molecules (Dscam), a group of proteins implicated in the neuro-

logical phenotypes associated with Down’s syndrome, were

significantly repressed by the presence of the Y chromosome

(q , 0.10). These genes are conserved in vertebrates and can

be transcribed in tens of thousands of isoforms by alternative

splicing in Drosophila [52–54]; this repertoire regulates dendri-

tic elaboration or axonal arborization through homophilic

repulsion [55,56]. The mechanism is the basis of self-avoidance

that allows axonal and dendritic processes to uniformly cover

their synaptic fields. Collectively, the data indicated that Y

chromosome presence in female neuronal tissues exert

http://qvalue.princeton.edu/
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Figure 1. Y chromosome presence in females modulates ovary-specific genes. (a) Number of DEGs in each contrast and across four q-value thresholds (electronic
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significant impacts on specific pathways, and raise the possi-

bility that sex-specific adaptations linked to Y chromosome

function might be partially responsible for the patterns.

The Y chromosome and the mitochondria are asymmetri-

cally selected and expected to be hotspots for sex-specific

adaptation [5,8,12,57–60]. A consequence of sex-specific evol-

ution is sex-specific disruption when a genetic element that

evolves in one sex exerts impacts on the other sex. For

instance, mtDNA variation exerts a disproportionate impact

on gene expression in male reproductive tissues [12]. Regulat-

ory interactions between the Y chromosome and the

mitochondria have been observed before [13] and might be

gauged through changes in mitochondrial gene expression

or copy number. We evaluated the transcription of all 33

genes encoded by the mitochondrial genome in female geno-

types carrying the Y chromosome. The analysis revealed that

the expression of mitochondrial genes in the reproductive
tissue was strongly repressed (figure 4). All 33 genes were

downregulated in the ovary of X^X/Y genotypes (p , 0.001,

Fisher’s exact test), with most genes repressed at greater than

1.5-fold change. The shift towards repression of mitochondrial

genes was also significant in the CNS (p , 0.05, Fisher’s exact

test). Conceivably, lowered mtDNA copy number could

explain reduced expression of mitochondrially encoded

genes. However, analysis with quantitative digital PCR for

genes in the mitochondrial genome (Cox-1 and 16S) showed

that copy number of the mtDNA was undistinguishable

between female strains with and without the Y chromosome

(electronic supplementary material, figure S13). Collectively,

the data supports the hypothesis that cryptic Y-linked adap-

tations exert their function through genetic interactions with

the mitochondria, and indicates that Y-mitochondria inter-

action is mediated through transcriptional changes rather

than reduction in the number of mtDNA copies.
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The Y chromosome has been implicated in natural variation

of a number of phenotypes [13–15,61–63]. The phenotypic

variation occurs despite lack of diversity in Y-linked

protein-coding genes and it is presumably mediated by mol-

ecular mechanisms involving repetitive element variation

and their influence on gene expression regulation [1,64–66].
One model predicts that repetitive Y-linked elements that

require silencing by DNA-binding proteins generate a ‘chro-

matin sink’ with genome-wide impact on the balance

between euchromatic (active) and heterochromatic (repressive)

domains [13,67,68]. Thus, it could be expected that an extra

dose or presence of the Y chromosome would modify the
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expression of genes normally silent [1]. We examined

the expression of genes located in repressive chromatin

domains [69], and found that their expression was unchanged

in whole body (male and female), testis and ovaries of flies

with Y chromosome aneuploidy; only DEGs in the CNS data-

set were enriched for candidates located within repressive

chromatin (electronic supplementary material, figure S14).

We also evaluated the transcription of 12 functionally active

genes buried within heterochromatin (concertina, light, rolled,
Dbp80, Nipped-B, Ribosomal protein L15, Ribosomal protein L38,
Nipped-A, chitinase-3, l(2)41Ab, unextended, and Yeti) and

found that in all cases their expression was undistinguishable

from the control (electronic supplementary material, figure

S15). Collectively, our results indicate that the dose/presence

of the Y chromosome had limited influence on genes localized

within repressive chromatin domains. Instead, the data

suggest functional responses to the Y chromosome.

The Y chromosome can exert important evolutionary roles

in both reproductive and somatic tissues. Typically, the influ-

ence of the Y chromosome is most pronounced during male

gametogenesis, such as the case when it triggers X-chromosome

DNA breaks and lowers the viability of sperm carrying the X

chromosome [6,70–72]. In mammals, the influence of the Y

chromosome has also been suggested to occur in females

through epigenetic modifications on the genetic material of

sperm cells carrying the X chromosome [73]. Accordingly, poly-

morphic Y-linked effects were transmitted to the female

progeny with impacts on the severity and onset of autoimmune

phenotypes in the adult [73]. However, the consequences of Y

chromosome presence in female tissues or the sensitivity of

gene expression to the presence of an extra Y chromosome

have remained unaddressed. This has been partially because

of the lack of suitable genetic models to address direct genomic
responses to Y chromosome presence, absence and number.

Here, we show that Drosophila males were mostly insensitive

to the presence of an extra Y chromosome whereas the presence

of the Y chromosome in females exerted a significant impact in

the ovary with substantial downregulation of mitochondrial

genes. The presence of the Y chromosome in females also

exerted functionally coherent impacts on the CNS. The obser-

vation that genes implicated in reproductive behaviour are

significantly downregulated by Y chromosome presence is

intriguing. The data indicated that both pre-synaptic and

post-synaptic genes are affected even though less than 3% of

the genes are shared between these two sets. Our observations

provide a framework to address direct Y chromosome modu-

lation of female genome function while controlling for genetic

variation in all other genetic elements in both reproductive

and somatic tissues.
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