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Abstract

Most people tend to bisect horizontal lines slightly to the left of their true center (pseudoneglect) and start visual
search from left-sided items. This physiological leftward spatial bias may depend on hemispheric asymmetries in
the organization of attentional networks, but the precise mechanisms are unknown. Here, we modeled relevant
aspects of the ventral and dorsal attentional networks (VAN and DAN) of the human brain. First, we demonstrated
pseudoneglect in visual search in 101 right-handed psychology students. Participants consistently tended to start
the task from a left-sided item, thus showing pseudoneglect. Second, we trained populations of simulated
neurorobots to perform a similar task, by using a genetic algorithm. The neurorobots’ behavior was controlled by
artificial neural networks, which simulated the human VAN and DAN in the two brain hemispheres. Neurorobots
differed in the connectional constraints that were applied to the anatomy and function of the attention networks.
Results indicated that (1) neurorobots provided with a biologically plausible hemispheric asymmetry of the
VAN-DAN connections, as well as with interhemispheric inhibition, displayed the best match with human data;
however; (2) anatomical asymmetry per se was not sufficient to generate pseudoneglect; in addition, the VAN
must have an excitatory influence on the ipsilateral DAN; and (3) neurorobots provided with bilateral competence
in the VAN but without interhemispheric inhibition failed to display pseudoneglect. These findings provide a proof
of concept of the causal link between connectional asymmetries and pseudoneglect and specify important
biological constraints that result in physiological asymmetries of human behavior.
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Most of us start our exploration of the environment from the left side. Here, we demonstrated this tendency
in undergraduate students, and trained artificial agents (neurorobots) to perform a similar visual search task.
The neurorobots’ behavior was controlled by artificial neural networks, inspired by the human fronto-parietal
attentional system. In seven distinct populations of neurorobots, different constraints were applied on the
network connections within and between the brain hemispheres. Only one of the artificial populations
behaved in a similar way to the human participants. The connectional constraints applied to this population
included known characteristics of the human fronto-parietal networks but had also additional properties not
previously described. Thus, our findings specify biological constraints that induce physiologic asymmetries
\Of human behavior. j
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Introduction

A thorough exploration of the space around us is es-
sential to everyday life. However, spatial exploration is not
perfectly symmetrical in humans. For example, when we
explore a scene to cancel out visual targets, we tend to
start the search from the left part of the scene (Bartolo-
meo et al., 1994; Azouvi et al., 2006). This physiological
leftward spatial bias is analogous to the slight physiolog-
ical leftward shift typically observed in horizontal line bi-
section, termed pseudoneglect (Bowers and Heilman,
1980), because it goes in the opposite direction to the
typical rightward bias showed by patients with left visual
neglect after right hemisphere damage (Schenkenberg
et al., 1980; Urbanski and Bartolomeo, 2008).

Evidence shows that visuospatial attention is a major
determinant of pseudoneglect (McCourt et al., 2005; Toba
et al., 2011), which might thus result from asymmetries in
the hemispheric control of attention (McCourt and Jewell,
1999; Ossanddn et al., 2014). However, the specific neu-
ral structures and the mechanisms at the basis of
pseudoneglect remain unknown.

In the human brain, visuospatial attention is controlled
by fronto-parietal networks, which demonstrate substan-
tial asymmetries favoring the right hemisphere (Heilman
and Van Den Abell, 1980; Mesulam, 1999; Corbetta and
Shulman, 2002). Dysfunction of these networks after right
hemisphere damage can induce signs of neglect for left-
sided events (Corbetta and Shulman, 2011; Bartolomeo
et al., 2012). A bilateral dorsal attentional network (DAN),
composed by the intraparietal sulcus/superior parietal
lobule and the frontal eye field/dorsolateral prefrontal cor-
tex, shows increased BOLD responses during the orient-
ing period (Corbetta and Shulman, 2002). A right-
lateralized ventral attentional network (VAN) includes the
temporoparietal junction and the ventrolateral prefrontal
cortex. The VAN is important for detecting unexpected
but behaviorally relevant events, and induces the DANs to
reorient attention toward these events. Anatomically,
three branches of a long-range white matter pathway, the
superior longitudinal fasciculus (SLF), connect these net-
works. The SLF has a ventro-dorsal gradient of hemi-
spheric asymmetry (Thiebaut de Schotten et al., 2011).
The ventral branch (SLF ) connects the VAN and is
anatomically larger in the right hemisphere than in the left
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hemisphere, whereas the dorsal branch (SLF I, connect-
ing the DAN) is more symmetrical. The lateralization of the
intermediate branch (SLF Il) displays interindividual differ-
ences, and is strongly correlated to the individual amount
of pseudoneglect in line bisection and to differences in the
speed of detection between left-sided and right-sided
targets. Specifically, larger SLF volumes in the right hemi-
sphere correlate with larger degrees of leftward bias
(Thiebaut de Schotten et al., 2011).

A further potential source of performance asymmetry
resides in the pattern of interhemispheric connections.
Behavioral and electrophysiological evidence suggests
that interhemispheric communication is not strictly sym-
metrical in humans, but it is faster from the right to the left
hemisphere (Marzi, 2010). Also, the posterior callosal con-
nections from the right parietal node of the DAN to its left
hemisphere homolog seem to be predominantly inhibitory
(Koch et al., 2011). Concerning the VAN, its right and left
temporo-parietal caudal nodes are not strongly con-
nected by callosal fibers (Catani and Thiebaut de Schot-
ten, 2012) and, thus, work in relative isolation from one
another.

It is tempting to relate these biological constraints to the
widespread leftward bias that occurs in human explor-
atory behavior. However, little is known about the specific
dynamic interplay between the attentional networks re-
sulting in pseudoneglect. On the one hand, methods used
in humans have substantial limitations of spatiotemporal
resolution and of inferential power, which severely limit
their scope. On the other hand, it is difficult to draw firm
conclusions from monkey neurophysiology, because of
important differences between humans and primates in
the organization of attention networks (Patel et al., 2015).
In the present study, we took a different approach to
unravel these issues. First, we tested a group of human
participants to establish the presence and characteristics
of pseudoneglect in a visual search task (experiment 1). In
experiment 2, we trained neurally controlled robots (neu-
rorobots) to perform a task as similar as possible to the
human one. We then articulated detailed implementations
of several instances of attention network architecture,
which directed the neurorobots’ performance, to identify
the structural and functional network constraints crucial
for simulating human performance.

Experiment 1: Pseudoneglect in Human
Visual Search

Introduction

Pseudoneglect has been mainly measured using tasks
of perceptual estimation of the length of horizontal lines
(Bowers and Heilman, 1980; Jewell and McCourt, 2000;
Toba et al., 2011). Analogous leftward biases seem also to
occur in visual search tasks, as a tendency to find first
targets on the left side of the display (Bartolomeo et al.,
1994; Azouvi et al., 2006), but evidence in this domain is
much less systematic. Thus, in the present context, it was
important to test our specific task to ensure the validity of
the human-robotic comparison of performance.
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Figure 1. Schema of the neurorobot equipped with an artificial eye, provided with a 7 X 7 light receptor retina and controlled by two

pairs of simulated extraocular muscles.

Materials and Methods
Ethics statement

The procedure was approved by the local ethics com-
mittee.

Participants

A total of 101 right-handed psychology students (76
females; mean age *= SD, 22.24 + 4.40) gave their in-
formed consent to perform a visual search experiment for
course credit.

Procedure

Participants were instructed to cancel as fast as possi-
ble targets displayed on a touch-sensitive tablet (Media-
com Winpad 801 8-inches, 120 dpi, 1280 X 800 pixels,
refresh frequency 60 Hz), by using a stylus pen. Partici-
pants were comfortably seated with a viewing distance of
~40 cm. Each session consisted of 30 trials. Each ftrial
was initiated by the participant touching a green round
button placed at the center of the screen. Subsequently,
a set of five dark-red (HEX #800000) filled round targets,
with a 40-pixel radius (0.76° visual angle), was presented.
Targets were randomly scattered on a display area of 512
X 512 pixels (9.7° X 9.7°), placed at the center of the
screen. On participant’s touch, cancelled targets became
bright red (HEX #FF0000). To assess lateral bias, we first
defined the center of the display as 0, so that the values
of the X coordinate went from -256 pixels (-4.85°) on the
extreme left to +256 pixels (+4.85°) on the extreme right.
Second, we measured the average position on the x-axis
of the first cancelled stimulus for each trial.

Results

As expected with this easy task, accuracy was at ceil-
ing, with all participants correctly cancelling all the tar-
gets. Results showed a left-biased distribution of the first
found target. The average X value was -80.23 pixels
(-1.52°), which significantly differs from the central posi-
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tion at X = 0 (Wilcoxon-Mann-Whitney two-tailed test,
Z = —6.37, p < 0.001).

Discussion

During a visual search task similar to that used for our
simulations, normal participants exhibited a leftward bias
(pseudoneglect), consisting of a tendency to start the
visual search from a left-sided target. This result was
observed in an experimental setting as close as possible
to that used for neurorobots, and replicates and extends
previous results obtained with different types of visual
search tasks, such as the line cancellation test (Bartolo-
meo et al., 1994) and the bells test (Rousseaux et al.,
2001).

Experiment 2: Visual Search in
Neurorobots

Introduction

A neurorobot is a real or simulated robot whose behav-
ior is controlled by an artificial neural network. For the
present experiment, we developed distinct populations of
simulated neurorobots controlled by artificial neural net-
works with different connectivity constraints. The neu-
rorobots’ task was designed to be as close as possible to
that performed by human participants in experiment 1.

Models

Code Accessibility: The code is available as Extended
Data 1 and in GitHub repository (Gigliotta, 2017).

The simulated robot (Fig. 1) has a single artificial eye
and an actuator (simulated hand) able to perform the
cancellation task. The robot’s eye can move and zoom,
and can thus be described as a pan/tilt/zoom camera,
because it can move along the horizontal and vertical
axes and can zoom in a range between 1X and 12X. The
use of a zoom was inspired by models of attention, which
stipulate that attention can either be distributed over the
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Figure 2. A-C, Different implementations of the attentional networks with interhemispheric inhibition (Koch et al., 2011) and DAN/VAN
architecture (Corbetta and Shulman, 2002). D, E, Two implementations of right-hemisphere networks with bilateral competence
(Heilman and Van Den Abell, 1980; Mesulam, 1981) and no interhemispheric inhibition. Arrows indicate connections that can be either
excitatory or inhibitory; red connections with triangular arrowheads denote excitatory connections; blue round arrowheads represent
inhibitory connections. LH, left hemisphere; RH, right hemisphere; Canc., cancellation units; LDAN and RDAN, dorsal attention
networks in the left and in the right hemisphere, respectively; LVAN and RVAN, ventral attention networks in the left and in the right
hemisphere; LVF and RVF, left and right visual field. Right and left VANs have the same number of neurons but different patterns of

connection strength.

whole field, but with low resolving power, or be continu-
ously constricted to small portions of the visual field with
a concomitant increase in processing power (Eriksen and
Yeh, 1985).

The artificial eye is equipped with a retina made up of a
7 X 7 grid of light receptors (Fig. 1). Each receptor outputs
an activation value computed by averaging the luminance
of the perceived stimuli across the receptive field, with
radius set to 80 pixels. Receptors are evenly distributed
within the artificial retina, which has a square form with a
side varying from 1120 pixels (no zoom) to 96 pixels
(maximum zoom). Thus, each stimulus can occupy a ret-
inal surface ranging from 0.8% to 100% of the artificial
retina. Horizontal and vertical movements of the eye are
controlled by four simulated muscles (Massera et al.,
2014; Fig. 1), in analogy to the medial, lateral, inferior, and
superior recti of the human eye.

Neural network

We used a standard neural network model in which
each node of the network has a sigmoid activation func-
tion ¢(x)=1/(1 + e™) and an adjustable threshold 9. The
output, O, is computed for each node i by using the
following equation:

O = <P(Ai)
Where:

November/December 2017, 4(6) e0154-17.2017

A=71+ EJW,/O/-

w; is the synaptic weight connecting unit j with unit /. The
pattern of connections between nodes has been chosen
according to biological evidence on DAN and VAN in
human brains (see below, Valence of VAN-DAN connec-
tions and of inter-DAN connections).

Figure 2A depicts the general template network. The
7 X 7 retina, consisting of 49 artificial neurons, consti-
tuted the input layer. The output layer controlled the zoom
with two artificial neurons, the extraocular muscles with
four neurons, and a decision unit for target detection,
which triggered the touch response when exceeding a
criterion threshold of 0.7. The hidden layer contained the
attention networks and a hidden network devoted to con-
trol vertical eye movements (four neurons, not depicted in
Fig. 1). We modeled the DAN and the VAN by building a
neural model organized across two hemispheres, with
visual information from each visual field projecting to the
contralateral hemisphere. Each DAN had five artificial
neurons; each VAN had four artificial neurons. These
parameters were based on pilot work, and reflect a trade-
off between network complexity and the time needed to
run simulations. With these parameters, each simulation
required about a week to be completed on our hardware.
The VAN-DAN connections in the right hemisphere out-
numbered those in the left hemisphere, to simulate anal-
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ogous results for the human SLF Il (Thiebaut de Schotten
et al., 2011).

The interhemispheric connections were also modeled
by following anatomic and functional results obtained in
the human brain, and outlined in the Introduction. Thus,
(1) they connected only the DANs, but not the VANSs,
which thus worked in relative isolation from one another
(Catani and Thiebaut de Schotten, 2012; their Fig. 9.4D)
and (2) they were inhibitory, such that each DAN inhibited
the contralateral one (Koch et al., 2011): each DAN in-
duced contralaterally-directed eye movements and inhib-
ited ipsilaterally-directed eye movements. The DANs
controlled zooming and cancellation behaviors. All the
hidden units within the DANs also had reentrant connec-
tions, which integrate the previous input with the current
one, thus simulating a sort of simplified visual memory, in
analogy to similar mechanisms occurring in the primate
brain (Salazar et al., 2012). Thus, reentrant connections
resulted in some persistence of the previous inputs across
steps within a given trial.

Given the importance of eye position in visually-guided
target reaching (Lewis et al., 1998), we provided eye
position information to neurorobots through an efference
copy of the motor output. In particular, motor outputs
controlling the four ocular muscles were connected one to
one with the four input neurons, with a fixed weight of 1
(i.e., perfect copy from input to output).

Cancellation task

Similar to the human experiment (see Experiment 1),
neurorobots performed a 30-trial cancellation task. The
human and robotic tasks were designed with the explicit
constraint of being as similar as possible. Targets were
presented on a virtual display measuring 512 X 512 pix-
els. At the start of each trial, the gaze of the artificial eye
was initialized at the center of the display, with no zoom.
Again similarly to the human experiment, each trial con-
sisted of a set of 5 round targets, with a luminance value
of 0.5 (in conventional units ranging from 0 to 1.0) and a
radius of 40 pixels, randomly scattered in the virtual dis-
play. On cancellation, targets increased their luminance to
the maximum value of 1.0.

The adaptive/learning process

For the present work, neurorobots were trained by
means of a genetic algorithm, a form of evolutionary
computation that implements a Darwinian process of ad-
aptation that can model cognitive development and trial-
and-error learning, especially when only distal rewards
are available (Nolfi and Floreano, 2000; Di Ferdinando
et al., 2007). Genetic algorithms are a useful alternative to
supervised learning in settings such as the present one,
because we employed a fitness function based on the
number of cancelled targets, and not a set of input-output
pairings which could be used to minimize the error by a
supervised learning mechanism such as back-propa-
gation. A typical experiment starts with the generation of
a random set of individual neurorobots (each defined by a
specific set of parameters of a neurocontroller). Each
individual is then evaluated according to a fitness function
representing the desired performance on a requested
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task. Due to genetic operators, such as mutation and
crossover, the best individuals will populate the next gen-
eration. The process iterates until a specific performance
or a fixed number of generations is reached. In the present
work, each genetic string encodes the value of synaptic
connections w; and neuron thresholds in the range (=5 to
5). Initially, for each evolutionary experiment a set of 100
random individuals (i.e., competing sets of parameters for
the neural network of the neurorobot) were generated and
evaluated for their ability to find targets. Targets had to be
found as fast as possible on each of 24 cancellation trials,
lasting 700 timesteps each. At the end of the evaluation
phase, individuals were ranked according to their perfor-
mance, and the best 20 were used to populate the next
generation after having undergone a mutation process.
Each parameter was encoded by an 8-bit string, thus
mutations were implemented by bits switching with prob-
ability p = 0.01. The number of generations was set to
3000.

Three behavioral components contributed to the overall
fitness, F: an exploration component, a component pro-
portional to the number of target correctly cancelled, and
a reward for responses promptness.

The exploration component, which was introduced to
avoid the bootstrap problem (Nolfi and Floreano, 2000),
rewarded the ability of the neurorobot to explore its visual
field. In particular, the area that can be explored through
eye movements was split in 100 cells. Exploration fitness
(EF) was then computed for each trial by dividing the
number of visited cells by 100. A second fithess compo-
nent (TF) was represented for each trial by the number of
correctly cancelled targets divided by 5 (i.e., the total
number of presented targets). Finally, a reward for
promptness (PF) was given when all the five targets were
cancelled. PF was inversely proportional to the number of
timesteps nt, used to cancel all the stimuli:

PF = nt/700

The overall fitness was calculated as

F=EF + TF + PF.

After training, neurorobots’ performance in the cancel-
lation task was evaluated on 30 new trials, to measure
their accuracy in finding the targets and the position of the
first cancelled target, as estimated by the average value of
the X coordinate of the first cancelled stimulus across
trials.

Valence of VAN-DAN connections and of inter-DAN
connections

A set of five populations of neurorobots, each com-
posed of 40 individuals, featured neurocontrollers with
different connectional constraints. Neurocontrollers A, B,
and C (Fig. 2) had left-right asymmetric connections be-
tween VAN and DAN (i.e., the simulated SLF Il), with a
greater number of connections in the right hemisphere
(120) than in the left hemisphere (108). The ratio of this
asymmetry difference (0.05) corresponds to the average
asymmetry ratio of SLF Il in 20 human subjects, as de-
scribed by Thiebaut de Schotten et al. (2011; their Sup-
plementary Table 1). In neurocontroller A (Fig. 2A), there
were no constraints in terms of type of connections (in-
hibitory or excitatory) along the VAN and DAN. In neuro-
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Figure 3. Mean percentage of correct cancellations computed across 30 trials for each population of 40 neurorobots provided with
neurocontrollers A-E. The middle bar of the boxplot indicates the median of the tested population. The top and the bottom of the box
indicate respectively the first (q1) and the third (q3) quartiles. Whisker length extends until the last data point that is not considered
as an outlier, i.e., a point that is greater than g3 + 1.5 X (@8 — q1) or less than g1 - 1.5 X (q3 — g1). There were no outliers in the current

dataset.

controller B, a further constraint was added: VAN to DAN
pathways were set to be excitatory during the training
process (Fig. 2B). Finally, in neurocontroller C also the
connections projecting from the retina to the VAN were
set to be excitatory (Fig. 2C). To better evaluate the effect
on performance of SLF Il asymmetry, we trained two
additional control populations based on neurocontroller
C: CO with completely symmetrical VAN-DAN connec-
tions (laterality ratio = 0) and C1 with VAN-DAN connec-
tions only present in the right hemisphere and absent
VAN-DAN connections in the left hemisphere (complete
right lateralization of SLF II).

Earlier models of spatial attention (Heilman and Van
Den Abell, 1980; Mesulam, 1981) postulated a bilateral
competence of the right hemisphere for both hemispaces,
without explicit consideration of interhemispheric interac-
tions. To simulate these models, we trained two additional
populations of neurorobots (neurocontrollers D and E in
Fig. 2; 40 individuals for each population). In these neu-
rocontrollers, the right hemisphere received visual infor-
mation from both the right and the left visual hemifields,
while the left hemisphere received information only from
the right, contralateral visual hemifield. Moreover, there
were no inhibitory connections between the right DAN
and its left homolog. The rest of the architecture was the
same as for all the other neurocontrollers. The only differ-
ence between neurocontroller D and neurocontroller E
was the valence of the connections running from the
visual fields to VAN and DAN. In neurocontroller D, the
valence of the visuo-attentional connections was not con-
strained and could thus assume either a positive or a
negative valence. In neurocontroller E, visuo-attentional

November/December 2017, 4(6) e0154-17.2017

connections were constrained to be excitatory, similar to
neurocontroller C.

Two additional control simulations were designed to
assess the importance of the inhibitory valence of inter-
DAN connections. In these simulations, we used neuroro-
bots identical to model C, except that the inter-DAN
connections were (1) let free to evolve as excitatory or
inhibitory (neurocontroller F), or (2) constrained to be fa-
cilitatory (neurocontroller G).

Results
Behavioral results

Figure 3 shows the ability of the five populations of
neurobots to correctly solve the task. The mean per-
centages of correct cancellations are reported for each
population. Figure 4 reports the performance of the pop-
ulations equipped with neurocontrollers A-E on correct
cancellations. Each boxplot contains data collected for 40
neurorobots tested on 30 cancellation trials.

There were significant differences in the amount of
correct cancellations across the populations A-E
[Kruskal-Wallis test, x°. , — 200 = 38.96, p = 7.10e-08].
Neurocontrollers with interhemispheric inhibition (A-C)
performed better than neurocontrollers without interhemi-
spheric inhibition (D and E; post hoc pairwise compari-
sons using Dunn’s test, all p < 0.05).

Importantly, the spatial position of the first canceled
target (X coordinate value for each trial; Fig. 4) did differ
across the populations A-E, X2(4, n = 200 = 34.198, p =
4.65e-07. The position of the first canceled target was not
different from 0 (central position) in neurorobots equipped
with neurocontroller A (Wilcoxon-Mann-Whitney, p = 0.1,
two-tailed) and with neurocontroller D (o = 0.5). Neuroro-
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Figure 4. Average x values of the first cancelled target, computed across 30 trials for each population of 40 neurorobots provided with

neurocontrollers A-E.

bots E, with bilateral competence in the right hemisphere
and excitatory visual-attentional connections, showed a
rightward bias, opposite to human pseudoneglect (me-
dian = 58.81, z = —2.88, p = 0.004). Neurorobots B and
C tended instead to start their exploration from a left-
sided target (neurocontroller B, median = —33.27, z =
—2.06, p = 0.02; neurocontroller C, median = 63.29, z =
—5.35, p < 0.001), thus showing a leftward bias reminis-
cent of human pseudoneglect. The control populations
with complete SLF Il symmetry (CO), or extreme rightward
SLF Il asymmetry (C1), showed the predicted patterns of
performance: no pseudoneglect for CO (median = 20.44,
z = —0.82, p = 0.411), and large pseudoneglect for C1
(median = —96.53, z = —7.41, p = 1.299e-13; Fig. 5).
The additional control populations F (unconstrained
inter-DAN connections) and G (excitatory inter-DAN con-
nections) achieved an overall worse performance as com-
pared with neurorobots C [Kruskal-Wallis test, XZQ, n=119 =
49.67, p = 1.635e-11]. However, neurorobots F (median

correct cancellations, 83.33%; 1st quartile, 79.33%; 3rd
quartile, 88.00%) performed better than neurorobots G
(median correct cancellations, 75.33%; 1st quartile,
70.33%; 3rd quartile, 79.67%; Dunn’s test, all p < 0.05).
There were also differences between populations C, F, and
G in the initial spatial bias [Kruskal-Wallis test, Xz(zy n=119 =
9.24, p = 0.0099]. Interestingly, in population F inter-DAN
connections had a strong tendency to evolve toward
inhibition; at the end of the evolutionary process, only two
of 40 individuals (5%) had evolved excitatory connec-
tions. Perhaps as a consequence, neurorobots F tended
to start their exploration from the left side (median X value
for the 1st canceled target, —77.94 pixels; 1st quartile,
—119.76; 3rd quartile, —39.20), similar to neurorobots C.
In contrast, neurorobots G, with excitatory inter-DAN con-
nections, did not show any consistent lateral bias (median
X value for the 1st target, —2.92 pixels; 1st quartile,
—84.53; 3rd quartile, 61.95; Wilcoxon-Mann-Whitney, p =
0.45, two-tailed). These results strongly suggest that in

Populations
o)
o

C1r

1 1 1 1

-200 -150 -100 -50

0 50 100 150 200

X coordinate of the first cancellation (mean value in pixels)

Figure 5. Average x values of the first cancelled targets, for all the neurorobots provided with neurocontrollers C, C0O, and C1. Only
average x values of neurocontrollers C and C1 significantly differed from 0.
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Figure 6. Average position on the x-axis of the first cancelled targets for human participants (H) and for artificial neurorobots equipped

with neural networks A, B, C, C0O, C1, D, and E.

our setting inhibitory inter-DAN connections (1) conferred
an evolutionary advantage in terms of cancellation accu-
racy and (2) were important to the development of
pseudoneglect behavior.

Neural results
To better understand the neural dynamics leading to

the exploratory bias, we examined the average activations
of the DANs across all the individuals for each population,
equipped with neurocontrollers C (biologically-inspired
asymmetry) and C, (symmetrical attention networks). We
then computed a laterality index of DAN average activa-
tions between the two hemispheres: (mean right DAN
activation — mean left DAN activation)/(mean right DAN
activation + mean left DAN activation), with a possible

range from —1 (prevalent left DAN activity) to +1 (preva-
lent right DAN activity). Figure 7-10 reports the course of
the laterality index across timesteps. As expected, left
and right DAN activations were balanced with neurocon-
troller Cy. On the other hand, in neurocontroller C activa-
tions were unbalanced toward the right hemisphere DAN.
A crucial aspect for pseudoneglect concerns the initial
timesteps in which the exploratory bias occurs. A higher
imbalance toward the right hemisphere DAN is present at
the outset of the cancellation task for neurorobots C, as a
consequence of asymmetries in their network architec-
ture, while it is obviously absent for neurorobots C,, with
symmetrical networks. The initial imbalance favoring the
right hemisphere DAN is the likely basis of the spatial bias
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Figure 7. Laterality indexes of DAN activation computed for individuals equipped with neurocontroller C and CO. A value of 0 means
that activation in left and right hemisphere DANs is balanced; positive values denote prevalence of right hemisphere DAN, negative

values indicate prevalence of left hemisphere DAN.
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Figure 8. Average activation of hidden neurons in right hemisphere DAN (RDAN) and in left hemisphere DAN (LDAN), for the first 30
steps of individuals equipped with neurocontrollers C and CO. The activity scale goes from 0 (black) to 1 (white). Note the early, large
left-right asymmetry in neurobiologically inspired C agents, which subsequently decreases. The symmetrical CO agents do not show
any asymmetries of performance.
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Figure 9. Relative frequencies of the distribution of the position of the first cancelled target for 101 human participants (see
experiment 1) and for the populations of neurorobots C (equipped with the biologically inspired neurocontroller), CO (presenting
symmetrical DANs), and C1 (with VAN-DAN connections only present in the right hemisphere).
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temporal sequence of cancellation in human participants and in

neurorobot population C. Error bars represent credible intervals
of 95%.

toward the initial cancellation of a left-sided item in neu-
rorobots C.

Figure 7-10 shows the average activation of the hidden
DAN neurons in the left and in the right hemisphere during
the first 30 timesteps of the cancellation task, for agents
equipped with the biologically inspired neurocontroller C,
and for those equipped with the symmetrical neurocon-
troller C,. The initial activation is symmetrical for the Cq
agents, but it is higher in the right hemisphere than in the
left hemisphere for the C agents. Thus, an asymmetry of
VAN connections results in a corresponding activation
asymmetry in the anatomically symmetrical DANs. The
DAN asymmetry in the initial phases of the task is the
simulated neural correlate of behavioral pseudoneglect.
After the initial phase, the left-right differences are ab-
sorbed by the increased activity of the hidden units; when
left and right activities reach saturation, the behavioral
asymmetry decreases (see Fig. 7, where asymmetry of
performance decreases around timestep 150 for neuro-
controller C).

Comparison between human and robotic performance

Human participants and robotic populations as a whole
did not show the same distribution of the position of the
first cancelled targets [Kruskal-Wallis test, X2(5, n— 301) =
67.88, p < 0.001; Fig. 6]. Post hoc tests (Dunn’s test with
Bonferroni correction) demonstrated a difference in dis-
tribution between humans and neurocontrollers A (p <
0.001), B (p = 0.0394), C, (p < 0.001), and C; (p =
0.0153). However, the position distribution derived from
human performance and neurocontroller C’s performance
showed a similar degree of leftward asymmetry (Fig. 9;
Dunn’s test, p = 1.0; Levene’s test of homogeneity, p =
0.39). Thus, all robotics agents performed differently from
humans, with the notable exception of the neurorobot
population C, whose performance provided a good ap-
proximation to human performance.

We then compared the performance over time of hu-
man participants and model C neurorobots not only for
the first canceled target (Figure 7-10) but also across all
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the remaining targets. We performed a Bayesian repeated
measures ANOVA (JASP software, version 0.8.2), with
agents (human, neurorobots C) as between-group factor,
and the spatial position (X coordinate) of the sequence of
all the five canceled targets as within-group factors. The
Inclusion Bayes Factor, which compares ANOVA models
that contain a given effect to equivalent models stripped
of the effect, showed decisive evidence (BFInclusion =
2.137e +42) for the cancellation order main effect. Thus,
the order of cancellation of all the five targets depended
on their spatial position (Figure 7-10). Importantly, this
effect was statistically equivalent for the human and the
neurorobot C populations. In particular, there was sub-
stantial evidence against the existence of a group main
effect (BFInclusion = 0.144), and strong evidence against
the existence of a group X cancellation-order interaction
(BFInclusion = 0.046). These results show that the neu-
rorobots from population C and human subjects behave
similarly over time when canceling all the five targets.

Discussion

In this study, we established specific connectivity con-
straints leading to a lateral spatial bias (pseudoneglect) in
artificial organisms trained to perform a visual search task
by using genetic algorithms. A form of pseudoneglect that
was qualitatively and quantitatively similar to that shown
by normal participants did emerge in artificial neuroro-
bots, but only in those harboring hemispheric asymme-
tries of connectivity that simulated those typically
occurring in the human brain. As a further condition, a
general excitatory influence of VAN on the ipsilateral DAN
was necessary for pseudoneglect to occur in neuroro-
bots. This novel result suggests that hemispheric asym-
metry alone is not sufficient to generate a leftward bias,
and thus further specifies the likely connectional con-
straints of pseudoneglect.

We first consider our results in the light of neurophysi-
ological studies of pseudoneglect, and then in relation to
existing modeling studies of the human attentional sys-
tem. A particular instance of pseudoneglect occurs with
the landmark task: When judging lines prebisected to the
left of their true center, normal participants consider the
left segment as being longer than the right one (Milner
et al.,, 1992). Spatial attention has been shown to be a
major determinant of this phenomenon (Toba et al., 2011).
Szczepanski et al. (2010) and Szczepanski and Kastner
(2013) tested normal participants’ spatial bias on covert
attention tasks and on the landmark task by using a
multimodal approach, combining psychophysics, fMRI
and transcranial magnetic stimulation (TMS). They tested
only frontal and parietal ROIs in the DAN, and did not
explore the VAN. Their subjects’ sample showed a mixed
spatial bias: some subjects had a leftward bias
(pseudoneglect), but most subjects showed a rightward
bias (Szczepanski and Kastner, 2013). On average, the
bias was rightward, unlike most of the literature results.
The lateralization of the bias correlated with the lateraliza-
tion index of the fMRI activation in the ensemble of the
DAN ROlIs during a covert spatial attention task. Specifi-
cally, subjects that had more left hemisphere activation
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also had a contralateral, i.e., rightward, bias in the land-
mark task; conversely, subjects with more right hemi-
sphere activation tended to have a leftward behavioral
bias. TMS-induced interference on the left- or right-
hemisphere parietal nodes during the landmark task
caused an ipsilateral shift of the bias: right parietal TMS
caused a rightward shift compared to the initial bias, and
left parietal stimulation caused a leftward shift. Stimulat-
ing both right and left parietal ROIls did not cause a shift.
Szczepanski and Kastner (2013) suggested that there is
an interhemispheric competition between the DAN nodes,
and the lateralization of the sum of the weights in the DAN
activation shifts the attentional focus contralaterally. The
possibility of long-range suppression, which might involve
the DANSs in both hemispheres, was shown in the monkey
LIP: firing rate was suppressed when a saccade target
was as far as 50° from the neuron receptive field (Falkner
et al,, 2013).

Thus, these results are broadly consistent with the
functioning of the present neurorobot population C. In
agreement with Szczepanski and Kastner (2013)’s con-
clusions, the DAN in the current model is conceptualized
as a whole, and not as separated nodes. Additionally,
Szczepanski and Kastner’s data showed that there is
large variability between participants in the direction and
degree of lateralization of DAN activation, that on average
did not significantly differ between the hemispheres. Here,
we aimed to explore the typical functional architecture in
the human population. Therefore, we chose to model the
DAN as laterally symmetrical and the VAN as right later-
alized. However, there are several differences between
the current models and Szczepanski et al. (2010). First,
they used a landmark task while here we used a search
task. Second, the overall behavioral pattern here was of a
leftward classical pseudoneglect bias and not the right-
ward bias found by Szczepanski et al. (2010), This might
result from substantial differences in the studied samples
or in the tasks used. Third, and more importantly, the
VAN, which has a major contribution in the current model,
was not tested in their studies.

The architecture of neurorobot C is partly inspired by
the results of Koch et al. (2011), which might oversimplify
the nature of interhemispheric interactions. Several fMRI
studies of human attention areas found evidence of bilat-
eral activation of attention areas, with a contralateral bias
(Patel et al., 2015). In neurorobots D and E, we introduced
bilateral competence in the right hemisphere networks
(Heilman and Van Den Abell, 1980; Mesulam, 1981). How-
ever, performance in these models showed no consistent
spatial bias. This suggests that right hemisphere bilateral
competence by itself might not be crucial to the emer-
gence of pseudoneglect. Moreover, in our setting the
inhibitory valence of inter-DAN connections was impor-
tant for the development of an initial leftwards spatial bias,
as well as to reach optimal levels of performance, as
stressed by additional control simulations in which inter-
DAN connections were either set free to evolve as inhib-
itory or excitatory (neurorobots F), or constrained to
assume only excitatory valence (neurorobots G). On the
other hand, evidence from neglect patients (Bartolomeo
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and Chokron, 1999) challenges models of attention exclu-
sively based on interhemispheric rivalry (Kinsbourne,
1970, 1977, 1993). In addition, bilateral competence in
attentional areas might be important in long-term com-
pensation of neglect (Lunven et al., 2015; Bartolomeo and
Thiebaut de Schotten, 2016). Our results stressing the
importance for pseudoneglect of both right-hemisphere
bilateral competence and interhemispheric competition
may thus pave the way for an integrated interpretation of
different lines of research on normal or dysfunctional
human attention networks.

In their recent review, Borji and Itti (2013) provided a
taxonomy of nearly 65 computational models of visual
attention. Many of these models focused on reproducing
eye movements (e.g., the saliency-based models re-
ported in Borji and Itti, 2013), following a bottom up
approach. Typically, these models extract a set of fea-
tures, represented as maps, from an incoming image.
Then, feature maps are combined in a saliency map where
a winner-take-all mechanism will designate the spatial
region to be attended. Saliency-based attention models in
general do not account for exploration biases, with the
exception of a recent model (Borji and Tanner, 2016),
where an object center bias (the tendency to focus on the
center of objects) is reproduced by adding an ad-hoc bias
map to the saliency map. While important for building
predictive models, this result seems of little relevance to
lateral biases such as pseudoneglect. Other models
(Deco and Rolls, 2004; Deco and Zihl, 2004) simulated
attention as emerging from the competition of several
brain areas subjected to bottom-up and top-down biases.
These models do not drive eye movements; the scan path
is simulated as a sequence of activations of the simulated
posterior parietal cortex. Lanyon and Denham (2004,
2010) added to these models simulated eye movements
and an adjustable attention window scaled according to
stimuli density. Despite being successful at reproducing
scan paths in healthy individuals and neglect patients,
these models do not address the issue of pseudoneglect.
Other models of attention did not consider pseudoneglect
because of their training procedure or design constraints
(Pouget and Sejnowski, 2001; Mozer, 2002; Monaghan
and Shillcock, 2004; Di Ferdinando et al., 2007). Di Fer-
dinando et al. (2005) explored line bisection and target
cancellation performance in four biologically inspired neu-
ral networks. The networks’ patterns of connectivity var-
ied along different degrees of asymmetry, inspired by
specific theories. Pseudoneglect occurred in line bisec-
tion but not in visual search. In these models, motor
outputs were only used for target selection; there was no
active exploration of the environment, whereas when our
neurorobots explored their environment the correspond-
ing input information changed as a function of eye move-
ments. Nonetheless, the present study shares with Di
Ferdinando et al. (2005) and other work from the Zorzi
group (Casarotti et al., 2012) the stress on accounts of
attentional phenomena relying on sensory-motor transfor-
mations, as stated by the premotor theory of attention
(Rizzolatti et al., 1987). Specifically, our results support
the hypothesis that the way in which the movements of
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the actuators are controlled affects the performance on a
cancellation task (Gigliotta et al., 2015).

Thus, contrary to most available models of attention,
our artificial robots are trained to correctly cancel target
stimuli, and are free to self-organize to find a proper
solution, within the sole limits of the imposed connectivity
constraints. These constraints were inspired by available
data concerning the anatomic and functional organization
of the attentional networks in the human brain. To the best
of our knowledge, this is the first attempt to simulate
pseudoneglect as a consequence of activity in the dorsal
and ventral attention networks in the two hemispheres of
the human brain. While this article was under review, two
theoretical papers were published that also took into
account the dorsal/ventral architecture of the attentional
networks (Parr and Friston, 2017; Seidel Malkinson and
Bartolomeo, 2017), but neither endeavored to simulate
pseudoneglect. Another original feature of the present
models is the embodiment factor, consisting of the ex-
plicit modeling of eye movements (Bartolomeo et al.,
2002; Lanyon and Denham, 2004; Di Ferdinando et al.,
2007; Miglino et al., 2009; Gigliotta et al., 2015). In par-
ticular, the present models extended the models devised
by Di Ferdinando et al. (2007), by increasing the complex-
ity of the organisms’ retina, the biological plausibility of
the motor system and that of the neural controllers. Conti
et al. (2016) also adopted an embodied perspective,
based on a humanoid robot platform. In their study, an
iCub robot was trained to remove objects from a table, a
task reminiscent of a cancellation task. Intrahemispheric
disconnections were able to produce neglect-like behav-
ior. However, the embodiment of the model was limited by
the facts that selection of a visual target was conducted
independently of the motor behavior and that the robot’s
eyes were kept fixed during the cancellation task. More-
over, although hemisphere asymmetry was modeled by
increasing the number of right hemisphere processing
units, no bias in normal performance is reported.

Moreover, contrary to most published work, our model
attempted to simulate the relationships between the vi-
sual pathways and the attentional networks by respecting
important biological constraints. Visual pathways project
mainly to the hemisphere contralateral to each visual field.
However, theoretical models of visual attention posit that
the left hemisphere mainly deals with the contralateral
hemispace, whereas the right hemisphere has a more
bilateral competence (Heilman and Van Den Abell, 1980;
Mesulam, 1981). In previous computational models this
asymmetry has not always been simulated in a biologi-
cally plausible way. In some cases, both simulated hemi-
spheres received visual information from the whole visual
field, with attention asymmetries being represented in
inner layers (Monaghan and Shillcock, 2004; Di Ferdi-
nando et al., 2007). In Conti et al. (2016)’s model, the right
hemisphere received information from both visual hemi-
fields, whereas the left hemisphere processed only the
contralateral visual hemifield. Our models D and E had
similar architecture, but were unable to mimic human
performance. Moreover, there is no anatomic evidence of
such asymmetries in the visual pathways, and information
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exchange in the occipital visual areas is mainly limited to
the vertical meridian (Berlucchi, 2014). In our model, these
important biological constraints of visual information pro-
cessing were respected, because each artificial hemi-
sphere received visual information from the contralateral
hemifield; interhemispheric connections were only pres-
ent at a later stage of processing, between the artificial
DANSs.

It might be argued that in our model C a leftward bias
was simply transferred or amplified from the input to the
output layers. If so, however, we would have expected to
observe a constant leftward bias, akin to right-sided ne-
glect. What we found, instead, was just an initial leftward
bias, at the onset of the exploration task, analogous to
human physiologic pseudoneglect. To observe this initial
bias, the VAN-DAN connections had to have an excitatory
valence. This occurrence does not result from existing
empirical data and is thus a novel prediction of the model.
Also, neurorobot populations D and E, which also had
more right hemisphere than left hemisphere resources,
and should then have a similar input-to-output amplifica-
tion, did not show pseudoneglect, presumably because of
the lack of interhemispheric inhibition.

The level of detail of the models is not a trivial matter,
because it has to provide meaningful novel information
while remaining tractable. A potential limitation of our
study is the use of simplified versions of the fronto-
parietal cortical networks, without taking into consider-
ation the substructures of the DAN and VAN, which are
both broad and partly heterogeneous networks (Colby
and Goldberg, 1999), nor subcortical structures such as
striatum, thalamus and superior colliculus (Krauzlis et al.,
2017). For example, the connectional anatomy of VAN
components such as the temporoparietal junction (e.g.,
with the ventral cortical visual stream) and of the ventro-
lateral prefrontal cortex (e.g., with limbic structures) is
likely to be crucial to the functioning of the VAN. Yet, our
simplified model, with a VAN receiving visual input and
sending excitatory connections to the ipsilateral DAN,
was able to mimic human performance to an impressive
level of accuracy.

More generally, our modeling is consistent with evi-
dence from healthy subjects and neglect patients, stress-
ing the importance of entire fronto-parietal networks, or of
their dysfunction, in behavioral patterns such as
pseudoneglect (Szczepanski and Kastner, 2013), or visual
neglect (Corbetta and Shulman, 2011; Bartolomeo et al.,
2012), respectively. Also, integrated fronto-parietal activ-
ity, with subtle, task-dependent differences in network
dynamics, occurs during attention orienting in monkeys
(Buschman and Miller, 2007). Concerning visual neglect,
evidence suggests that a major determinant of this con-
dition is indeed a dysfunction of the right hemisphere VAN
(Corbetta and Shulman, 2011; Urbanski et al., 2011), or of
its connections with the ipsilateral DAN (Thiebaut de
Schotten et al., 2005).

Finally, we note that the present population-based
model can be potentially used to explore in a natural
manner the universal properties (the basic brain architec-
ture) and individual differences in network efficiency, two
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aspects recently underlined by Posner (2014) as appro-
priate features for future models of attention.

In conclusion, we have demonstrated the emergence of
pseudoneglect behavior in artificially evolving neuroro-
bots searching for visual objects, under specific connec-
tional constraints. These neurorobots provide a plausible
model for the dynamic interactions between fronto-
parietal attention networks in the human brain.
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