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ΔN-Bcl-xL, a therapeutic target for neuroprotection

Introduction
The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial 
protein and a member of the Bcl2 family. It plays anti-apop-
totic functions by preventing oligomerization of pro-apop-
totic Bax and Bak (Cheng et al., 1996; Sattler et al., 1997; Iva-
novska et al., 2004; Soane et al., 2008), reducing cytochrome 
c release (Kharbanda et al., 1997; Kim et al., 1997; Carthy et 
al., 2003) and regulating caspase activity (Zaidi et al., 2001; 
Bruey et al., 2007). In addition to its significance in cell sur-
vival, Bcl-xL is reported to play critical roles in neurophysi-
ology by controlling intracellular energy metabolism, mito-
chondrial and other intracellular membrane dynamics, and 
neuronal growth. Bcl-xL enhances mitochondrial adenosine 
triphosphate (ATP) production by decreasing unnecessary 
proton leakage across the mitochondrial inner membrane 
via direct interaction with F1F0 ATP synthase (Alavian et al., 
2011; Chen et al., 2011). It also promotes synaptic vesicle 
endocytosis and regulates homeostasis of synaptic vesicle 
pools; these functions are required for normal neurotrans-
mission (Li et al., 2013). Bcl-xL promotes neurite outgrowth 
and branching (Park et al., 2015); thus it protects from the 
loss of axons and dendrites during neurotoxic insults and it 
supports proper synapse formation (Li et al., 2008). 

Neuroprotection via ΔN-Bcl-xL Regulation
Despite its neuroprotective roles, Bcl-xL also participates in 
the promotion of neuronal death. Full length Bcl-xL protein 
contains caspase dependent cleavage sites within its N-ter-
minus (Clem et al., 1998). Accumulation of a fragmented 

form of Bcl-xL, ΔN-Bcl-xL, is associated with mitochondrial 
injury, or neuronal injury in both in vitro and in vivo models 
of cerebral ischemia (Jonas et al., 2004, 2005; Ofengeim et 
al., 2012; Park et al., 2017). Application of recombinant ΔN-
Bcl-xL protein within the presynaptic terminal induces ab-
normally large mitochondrial membrane conductance (Jonas 
et al., 2004). Recombinant ΔN-Bcl-xL protein also forms 
mitochondrial pores and enhances the release of apoptogen-
ic factors including cytochrome c (Basañez et al., 2001). In 
addition to the effects of recombinant ΔN-Bcl-xL protein, 
we have found that glutamate-mediated excitotoxicity and 
ischemic stroke enhance the formation of endogenous ΔN-
Bcl-xL in hippocampal neurons; this event leads eventually 
to neuronal death (Ofengeim et al., 2012; Park et al., 2017). 
Therefore, strategies that prevent ΔN-Bcl-xL appearance, ac-
tivity, or accumulation in the neurons have been found to be 
neuroprotective. ΔN-Bcl-xL may be an important therapeu-
tic target in the treatment of brain injury caused by cerebral 
ischemia or neurodegenerative diseases.

The most recent study from our laboratory reported that 
application of the pharmacological inhibitor, ABT-737, pre-
vents ΔN-Bcl-xL-mediated neurotoxicity (Park et al., 2017). 
Our in silico model shows that cleavage of the Bcl-xL N-ter-
minus does not alter ABT-737 binding sites, thus ΔN-Bcl-
xL can form a complex with ABT-737. Although ABT-737 
interacts with both full length and ∆N-Bcl-xL, the binding 
affinity to each protein may be different. BH3 containing 
proteins Bak or Bad are capable of binding to the BH1, BH2 
and BH3 pocket of the 3-dimensional structure of Bcl-xL 
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(Sattler et al., 1997). ABT-737 is a BH3 mimetic; it may in-
teract with Bcl-xL similarly to Bak or Bad. Since full-length 
Bcl-xL contains a BH4 domain that is removed by caspase 
cleavage, creation of ΔN-Bcl-xL from full length Bcl-xL may 
expose the binding sites, thus ∆N-Bcl-xL may have a higher 
efficiency to form the ABT-737-∆N-Bcl-xL complex com-
pared to full length Bcl-xL. In neurons treated with a low 
concentration of ABT-737, ∆N-Bcl-xL may be preferentially 
targeted compared to full length Bcl-xL, while a high con-
centration of ABT-737 blocks both anti-apoptotic full length 
and pro-apoptotic cleaved ∆N-Bcl-xL. Although we have 
not investigated the mechanism of ΔN-Bcl-xL-ABT-737 
binding in detail, we nevertheless predict that ΔN-Bcl-xL 
undergoes conformational changes after losing the N-termi-
nus or upon binding to mitochondrial membranes. The new 
conformation of ΔN-Bcl-xL may be more accessible to ABT-
737, presumably by exposing the hydrophobic groove that 
contains ABT-737 binding sites (Lee et al., 2007). 

Our data show that ABT-737 exerts dose dependent effects 
in primary hippocampal neurons. At a high concentration, 
ABT-737 exacerbates glutamate-induced mitochondrial 
dysfunction and neuronal death. However, at a low concen-
tration, it conserves mitochondrial function and protects 
neurons against excitotoxic insult by blocking pro-apop-
totic functions of ΔN-Bcl-xL. We further report that ΔN-
Bcl-xL is located at both the outer and inner membranes 
of mitochondria, and that it directly alters mitochondrial 
inner membrane potential. Our data suggest that applica-
tion of ABT-737 prevents ΔN-Bcl-xL-mediated mitochon-
drial dysfunction and neuronal death by multiple pathways 

Figure 1 ABT-737 inhibits activity and formation of ∆N-Bcl-xL. 
(A) Excitotoxic stimulation caused by cerebral ischemia triggers caspase-dependent cleavage of Bcl-xL and forms ∆N-Bcl-xL. Accumulation of 
∆N-Bcl-xL at the inner membrane leads to mitochondrial dysfunction associated with mPTP opening and cytocrome c release, then eventually 
causes neuronal death. (B) Excitotoxic stimulation produces ∆N-Bcl-xL protein, but ABT-737 binds with the active site of ∆N-Bcl-xL, therefore in-
activates neurotoxic functions of ∆N-Bcl-xL at the mitochondria (the immediate mechanism of action of ABT-737). (C) Inactivation of ∆N-Bcl-xL 
by ABT-737 blocks mPTP opening and cytocrome c release which eventually inhibits caspase activation (delayed function of ABT-737). Therefore, 
application of ABT-737 also blocks formation of ∆N-Bcl-xL. Bcl-xL: B-cell lymphoma-extra large; mPTP: mitochondrial permeablity transition 
pore.

(Figure 1). An immediate mechanism of ABT-737’s action 
is to bind directly to ΔN-Bcl-xL, inactivating it and protect-
ing mitochondrial membranes from injury. In addition to 
sequestering already formed ΔN-Bcl-xL, prevention of the 
appearance of ΔN-Bcl-xL by ABT-737 also attenuates tra-
ditional apoptotic cascades mediated by, for example, the 
mitochondrial permeability transition pore, cytochrome 
c release and caspase activation; these actions of ABT-737 
eventually block more ΔN-Bcl-xL production by caspases 
by inhibiting a positive feedback loop. Together, ABT-737 
prevents the function of ΔN-Bcl-xL both by inhibiting its 
activity and blocking its formation (Figure 1). 

In addition to our current publication (Park et al., 2017), 
various approaches to protect the brain by preventing ΔN-
Bcl-xL action have been reported previously. Ofengeim et 
al. (2012) reported neuroprotective properties of ABT-737 
in an in vivo system. The authors found that stereotaxic in-
jection of ABT-737 before or after 4 vessel occlusion pro-
tected CA1 hippocampal neurons from ischemia-induced 
cell death. This study also showed that ΔN-Bcl-xL is capable 
of triggering cell death under conditions of Bax or Bak 
depletion indicating that ΔN-Bcl-xL-mediated cell death 
mechanisms may occur independently of traditional Bax 
or Bak mediated cell death pathways. Application of ABT-
737 attenuated ischemia-induced large-channel opening 
in mitochondrial membranes and reduced the number of 
degenerating neurons in the hippocampus. Miyawaki et al. 
(2008) reported that in ischemic preconditioning, where a 
short exposure of ischemia prior to the main ischemic event 
protects rodent brains, the conversion of procaspase 3 to 
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form the active caspase 3 in CA1 pyramidal neurons was 
attenuated. They further found that prevention of formation 
of ΔN-Bcl-xL was correlated with decreased activation of 
caspase 3, suggesting that preconditioning protects neu-
rons from apoptotic death through inhibition of the onset 
of the positive feedback loop of caspase activation and full 
length Bcl-xL cleavage. In investigating Bcl-xL binding part-
ners that potentially interfere with Bcl-xL cleavage, Arena 
et al. (2013) reported that PTEN-induced putative kinase 
1 (PINK1) binds to Bcl-xL. Interaction between PINK1 
and Bcl-xL causes Bcl-xL phosphorylation which impairs 
cleavage of Bcl-xL’s N terminus thereby exerting protection 
against apoptotic stimulation. 

Our current publication also demonstrates the effect of 
prolonged ΔN-Bcl-xL exposure in the primary hippocam-
pal neurons through a system of exogenous ΔN-Bcl-xL 
overexpression in addition to glutamate-mediated acute 
endogenous ΔN-Bcl-xL formation (Park et al., 2017). Unlike 
during acute ΔN-Bcl-xL formation, over expression of ΔN-
Bcl-xL alone did not demonstrate dramatic neurotoxicity. 
Neurons overexpressing ΔN-Bcl-xL did not die even over 
2 weeks of overexpression in our study. During neuronal 
development, neurons may undergo adaptation to compen-
sate for ΔN-Bcl-xL-mediated mitochondrial dysfunction to 
retain their survival. Despite having no significant change 
in viability, however, ∆N-Bcl-xL overexpressing neurons 
demonstrated a reduced mitochondrial potential. It is still 
unclear if ∆N-Bcl-xL-mediated mitochondrial potential 
loss is exclusively due to alteration of mitochondrial inner 
membrane leak or due to cytochrome c release and the in-
ability to generate a mitochondrial membrane potential. 
Nevertheless, we expect that ΔN-Bcl-xL-induced inner 
membrane depolarization may cause the onset of mito-
chondrial fission and mitophagy, the latter of which is the 
degradation or self-digestion of mitochondria. In another 
proposed function for Bcl-xL in mitophagy, Maiuri et al. 
(2007) and Pedro et al. (2015) reported that the interaction 
between Bcl-xL and the pro-autophagic protein Beclin-1 
suppresses autophagy, but that the BH3 protein Bad and 
other BH3-containing proteins induce autophagy by caus-
ing a disassociation of Beclin-1 from Bcl-xL. The BH3 mi-
metic ABT-737 also inhibits Beclin-1/Bcl-xL interaction and 
enhances autophagy (Malik et al., 2011). Since ∆N-Bcl-xL is 
a BH3 containing fragment, ∆N-Bcl-xL could also play the 
part of the BH3-only proteins or mimetics in causing a dis-
association of Beclin-1 from its inhibitory binding partners. 
Prolonged exposure to ∆N-Bcl-xL (12–14 days of transfec-
tion) could induce formation of autophagosomes containing 
mitochondria thus initiating mitochondrial degradation. It 
is known that inhibition of apoptosis may shift the balance 
to other forms of cell death/survival, including autophagy/
mitophagy (Lalaoui et al., 2015; Radogna et al., 2015; White, 
2015), therefore we suggest that ∆N-Bcl-xL overexpression 
in the absence of death-inducing stimuli may tip the balance 
toward autophagy as a survival mechanism. Gustafsson’s 

group also reported involvement of the BH3 protein, Bnip3 
in mitochondrial autophagy. Bnip3 induces translocation 
of Parkin, a ubiquitin ligase that is downstream of PINK1. 
Parkin-expressing mitochondria then enter autophago-
somes (Lee et al., 2011; Rikka et al., 2011). Mitophagy due 
to Parkin accumulation has been reported in glutamate-in-
duced excitotoxicity (Van Laar et al., 2015). Various studies 
reported that defects in mitophagy are associated with other 
neurological disorders (Youle and Narendra, 2011; Scott et 
al., 2017), and regulation of mitophagy homeostasis controls 
survival or recovery of neurons (Amato et al., 2017; Zhan et 
al., 2017; Zhang et al., 2017). 

Conclusion
In summary, our results support that production of ∆N-Bcl-
xL by cleavage of full length Bcl-xL controls mitochondrial 
inner membrane dynamics (e.g., mitochondrial permeability 
transition and mitochondrial membrane potential). In ad-
dition, ∆N-Bcl-xL interaction with the inner mitochondrial 
membrane may induce mitochondrial remodeling in sur-
viving neurons presumably via mitophagy during neuronal 
development or during prolonged low level excitotoxic ex-
posure. Together, arresting ∆N-Bcl-xL activity, production 
or accumulation protects the brain from neurotoxic insults 
but may prevent the activation of autophagic pathways, 
therefore, we suggest that ∆N-Bcl-xL is a novel but complex 
therapeutic target to treat brain injuries that are relevant to 
stroke, Alzheimer’s and Parkinson’s diseases.
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