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Abstract

The exponential growth of genomic variants uncovered by next generation sequencing necessitates 

efficient and accurate computational analyses to predict their functional effects. A number of 

computational methods have been developed for the task, but few unbiased comparisons of their 

performance are available. To fill the gap, The Critical Assessment of Genome Interpretation 

(CAGI) comprehensively assesses phenotypic predictions on newly collected experimental 

datasets. Here, we present the results of the SUMO conjugase challenge where participants were 

predicting functional effects of missense mutations in human SUMO-conjugating enzyme UBE2I. 

The performance of the predictors is similar to each other and is far from perfection. Evolutionary 

information from sequence alignments dominates the success: deleterious mutations at conserved 

positions and benign mutations at variable positions are accurately predicted. Prediction accuracy 

of other mutations remains unsatisfactory, and this fast-growing field of research is yet to learn the 

use spatial structure information to improve the predictions significantly.
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Introduction

Ever-growing next generation sequencing efforts identify copious missense variants that lead 

to single amino acid substitutions in proteins. Phenotypic effects for most of these variants 

are unknown, and their comprehensive functional studies are not feasible considering the 

scale. A number of computational methods have been developed to predict the effects of 

missense mutations and prioritize them for experimental work. These methods can be 

divided into three main categories: single predictors based on evolutionary considerations 

from sequence, single predictors deriving from additional information such as 3D structure 

and physicochemical attributes of amino acids, and meta-predictors that integrate scores 

from several other predictors(Gnad, et al., 2013; Miosge, et al., 2015). Compared to the 

abundance of prediction methods(Adebali, et al., 2016; Adzhubei, et al., 2010; Bromberg 

and Rost, 2007; Choi and Chan, 2015; Katsonis and Lichtarge, 2014; Kircher, et al., 2014; 

Kumar, et al., 2009; Li, et al., 2009; Martelli, et al., 2016; Niroula, et al., 2015; Pejaver, et 

al., 2017; Thomas and Kejariwal, 2004; Yue, et al., 2006), independent studies assessing 

their performance are scarce(Martelotto, et al., 2014; Miosge, et al., 2015; Schiemann and 

Stowell, 2016). The reliability of previous assessments remains unclear because predictors 

perform inconsistently across benchmarks, which may indicate unintended overlap between 

training and testing data sets(Grimm, et al., 2015). Therefore, a community-wide experiment 

on de novo generated testing sets is required to: (1) objectively assess different predictors, 

(2) reveal the strengths and weaknesses of methods, (3) highlight the most promising trends 

in the field, and (4) provide guidance for people outside the field in choosing optimal 

methods.

Here we evaluate the SUMO conjugase challenge in the Critical Assessment of Genome 

Interpretation (CAGI), in which participants were asked to predict the fitness effects of 

missense mutations in the human SUMO-conjugating enzyme (UBC9, also known as 

UBE2I). UBE2I is the only known human SUMO ligase (E2 enzyme) that transfers SUMO 

from the E1 complex to downstream substrates through a conserved Cys residue. UBE2I 

recognizes substrates by their consensus motif and catalyzes the sumoylation reaction, 

which can be assisted by E3 ligases(Geiss-Friedlander and Melchior, 2007). The SUMO 

pathway affects multiple transcription factors and regulates diverse cellular processes 

including protein degradation, cell proliferation, signal transduction, nuclear transport, and 

chromosome segregation(Flotho and Melchior, 2013; Gareau and Lima, 2010). UBE2I 

regulates proliferation and transformation in different cancers and is targeted by multiple 

viruses, including HIV, EBV and HPV(Everett, et al., 2013; Jaber, et al., 2009; Li, et al., 

2007; Qin, et al., 2011; Seeler and Dejean, 2017). A large number of novel missense 

mutations in UBE2I have been identified recently in cancer patients, but their functional 

impact remains unclear(Wu, et al., 2014). Furthermore, high-resolution spatial structures of 

different macromolecular complexes of UBE2I with its substrates and regulators are 

available, enabling predictors to use extensive structural information(Alontaga, et al., 2015; 

Bernier-Villamor, et al., 2002; Capili and Lima, 2007; Streich and Lima, 2016). Therefore, 

UBE2I is an excellent target for testing computational predictions of mutational effects.

The dataset used here to assess predictions was a collection of functional impact scores for 

human UBE2I mutants measured in a companion study (Weile et al., unpublished results). 
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Briefly, effects of missense mutations in UBE2I were measured using a previously-described 

Saccharomyces cerevisiae (yeast) complementation assay, in which a yeast strain carrying a 

temperature-sensitive allele of the endogenous UBC9 gene exhibits loss of growth that can 

be rescued by expressing human UBE2I(Sun, et al., 2016). The impact of specific mutants or 

mutant combinations was assessed by the relative growth rate in a competitive growth assay. 

This high-throughput experiment measured over 5,000 UBE2I mutants (682 single 

mutations, and 4,427 distinct mutation combinations) for predictions.

We received 16 prediction datasets from 9 groups. The assessment shows that most 

predictors are capturing qualitative (e.g., deleterious vs. benign) effects of mutations on 

proteins. However, the quantitative agreement between predictions and experimental 

measurements remains modest. The accuracy of predictions varies greatly among mutations 

and correlates strongly with the evolutionary signal in sequence alignment. While 

deleterious mutations at conserved positions are predicted best, predictions are poor for 

deleterious mutations at non-conserved positions and benign or beneficial mutations at 

conserved sites. Thus, significant improvements are needed and may come from more 

rigorous integration of features, better treatment of 3D structural information, consideration 

of epistatic effects, and analysis of interacting partners.

Materials and Methods

Experimental procedures

Full experimental details can be found in the companion study that reports the primary 

experimental results (Weile et al, submitted), but we briefly summarize the methods here.

Library construction—A library of over 5000 UBE2I variants using codon-replacement 

mutagenesis [Weile et al, submitted] was constructed. For each UBE2I codon we designed 

an oligonucleotide targeting that codon. Each oligo was synthesized with an NNK 

degeneracy at the position, thus allowing it to encode any amino acid, but only one stop 

codon. The UBC9 ORF was amplified in the presence of dUTP to generate uracil-doped 

template for the mutagenesis reaction. Oligonucleotides were then pooled and hybridized to 

the template. Gaps between hybridizations were filled with a non-strand-displacing 

polymerase and sealed by ligation. The uracil-doped template was removed using Uracil-

DNA-Glycosylase (UDG). The mutagenesis product was then amplified, adding flanking 

site-specific recombination sites to allow subcloning into Gateway Entry vectors. The 

resulting Entry pool was subcloned en masse into a library of barcoded Gateway Destination 

expression vectors. The Destination library was then transformed en masse into Escherichia 
coli. Over 10,000 individual colonies were picked and arrayed onto 384-well plates.

To establish the identity of each plasmid barcode and its associated set of mutations in the 

target ORF we used kiloSEQ (SeqWell Inc., Beverly, MA). Using the resulting sequence 

information, we determined the subset of clones that (i) contained a minimum of one 

missense mutation, (ii) contain no insertions or deletions, (iii) contained no mutations 

outside of the ORF, (iii) had unique barcodes, and (iv) had sufficient read coverage during 

kiloSEQ to allow for confident genotyping. This high-quality subset of clones was re-

arrayed to form the final clone library.
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Complementation assay—The library of mutant clones was pooled and transformed 

into a mutant yeast strain carrying a temperature-sensitive (ts) allele of UBC9. As positive 

and negative controls, sets of barcoded null-allele and wild type allele-bearing clones were 

also added. The pool was then split into six replicate plates; three replicates were grown at 

the permissive (non-selective) temperature (25°C), and three replicates were grown at the 

restrictive (selective) temperature (37°C). After 48 hours, the confluent plates were scraped 

and barcode loci amplified in preparation for next-generation sequencing. Barcode reads 

were then counted and used to calculate the relative abundance of each clone in the pool for 

each condition and replicate.

Competitive growth score calculation—For each clone in the assay, a log ratio was 

calculated of the average barcode read count at the restrictive temperature to the average 

count at the permissive temperature. These log ratios were then normalized to the log ratios 

observed for null and wild type controls, respectively, such that the resulting score will be 

zero if a clone's log ratio matches that of the null control, and it will be 1 if it matches the 

wild-type UBE2I controls.

To determine whether deviations from the wild type and null controls were significant, a 

Student’s t-test was used. Benjamini-Hochberg corrected q-values were then derived from 

the t-test p-values and used to filter the results (q < 0.05). The test revealed that clones that 

received negative scores due to their apparent growth being weaker than that of the null 

controls, did not significantly differ from the controls and can thus simply be considered as 

complete loss of function variants. On the other hand, a number of clones were found to 

grow significantly faster than the wild type controls.

Clones for which replicate experiments at the permissive temperature yielded fewer than ten 

barcoded counts were poorly measured, and excluded from the downstream analysis. 

Because empirical standard deviations calculated for each clone or mutation based on a 

small number of replicates are expected to be imprecise, we used regularized error 

estimation(Baldi and Long, 2001).

Three subsets of data were provided in the challenge. Subset 1 is the most accurate and 

consists of 219 single amino acid mutations for which at least three independent barcoded 

clones are represented, providing internal replicates of the experiment. Subset 2 contains 

another 463 single variants, while Subset 3 contains 4,427 mutants with two or more 

substitutions. To help participants calibrate numeric values, the distribution of experimental 

growth scores was provided in the challenge.

Positive control and the baseline predictor

To provide a reference for predictions, we defined a positive and a baseline predictor control. 

The positive control was the “perfect” prediction one would expect when experimental 

errors were considered. A prediction for each variant in the positive control was a randomly 

selected value from a Gaussian distribution with the given competitive growth score as mean 

and the experimental standard error as the standard deviation. The baseline predictor was 

based on the frequency of amino acids at each position in a UBC9 family multiple sequence 

alignment (MSA). The MSA was constructed using Promals3D(Pei and Grishin, 2014) from 
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UBC9 and its 228 orthologs/inparalogs from the InPararoid(Sonnhammer and Ostlund, 

2015) database (sequences and alignment are included in Supp. Material). For Subsets 1 and 

2, predictions were calculated using the following formula:

where Qm and Qw are the estimated probabilities of mutated and wild-type amino acids at a 

mutated position in the alignment as defined in, and Pm and Pw are Robinson-Robinson 

background frequencies(Robinson and Robinson, 1991) of the mutated and wild type amino 

acids. For Subset 3 with multiple mutations, we used the sum of the predictions for each 

single mutation.

Quantile transformation of original predictions

Most participants ignored calibrating their predictions using the distribution of experimental 

growth score given to them. Thus, rescaling of predictions was required to make predictors 

comparable in their scale, which is especially important for numeric comparison. We 

performed quantile transformation of the original predictions from participants and of our 

baseline predictor. Because predictors were not allowed to predict negative values and the 

negative competitive growth scores obtained in experiments did not show statistically 

significant difference from 0, all negative competitive growth scores were shifted to 0 before 

transformation. The mutations were ranked by the predicted values, and each mutation was 

assigned the experimental score with the same rank. The assigned experimental scores for 

mutants that are predicted to be ties are further averaged to obtain the final transformed 

predictions.

Scores for prediction assessment

Each method was evaluated by their ability to: (1) to classify mutations into categories such 

as deleterious and non-deleterious mutations (classification), (2) to rank mutations by their 

impacts on the protein function (ordinal association) and (3) to predict experimental 

competitive growth scores (numeric comparison). For the assessment, mutations were 

assigned by the growth score to the following categories: lower or equal to 0.3 for 

deleterious, between 0.3 and 0.7 for intermediate, from 0.7 to 1.3 for wild-type, and greater 

than 1.3 for advantageous. Table 1 summarizes scores for each aspect. Four out of these 

scores, i.e., Area Under ROC (AUC) for classification of deleterious mutations and the three 

ordinal association scores, rely on the rank of experimental scores and predictions, both of 

which contain ties and requires special treatment as noted in Table 1.

Evaluation of overall performance and its statistical significance

Four (three scores for ordinal association and Area Under ROC) of the measurements listed 

in Table 1 were purely based on rank and were not sensitive to the distribution of numeric 

values. Five others depended on the distribution of numeric values and thus were calculated 

with both original and quantile-transformed predictions. For each measurement, we 

transformed the original scores to Z-scores, and positive control and baseline predictor were 
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excluded from the calculation of mean and standard deviation of original scores to avoid 

their influence on the score distribution. The average Z-scores of the rank-based, original-

value-based, and transformed-value-based measurements were computed and summed up to 

be the final score to assess the performance on each subset. The final assessment score was a 

weighted sum of the scores from three subsets. Because the experimental competitive scores 

in Subset 1 were more accurate (with replicates) than those in Subset 2 and 3, Subset 1 was 

weighted twice as much as the other two subsets.

To take experimental errors into consideration, we assumed that the growth score for each 

mutant in a dataset (Subset 1, 2, and 3) can be randomly drawn from a Gaussian distribution 

defined by the reported growth score and the standard error. We repeated this procedure 

1000 times to generate 1000 derived datasets from Subset 1. Then, we performed bootstrap 

resampling on each derived dataset 40 times, and thus generated 40,000 samples from 

Subset 1. Similarly, we obtained 40,000 samples from Subset 2 but just 200 samples (40 

derived datasets each resampled 5 times with bootstrap) for Subset 3 due to time constraints 

required by the large number of mutants in it. We randomly chose three simulated samples 

from Subsets 1, 2 and 3 to form a new test set. A total of 40,000 new test sets were generated 

and used to assess the predictors using the same procedure as described above. We obtained 

the distribution of ranks for each group on these test sets. In addition, for each pair of 

groups, we compared their performance on each of the new test sets and counted their 

number of wins (head-to-head test).

Identification and characterization of well predicted and poorly predicted variants

The absolute difference between the experimental score and transformed prediction was 

used to assess the prediction quality for each mutation by each group. A heat map was 

plotted and visualized by ClustVis(Metsalu and Vilo, 2015) to illustrate the prediction 

quality of each mutation from every predictor and the baseline prediction control. To find 

common properties shared by well and poorly predicted variants, we calculated conservation 

by AL2CO(Pei and Grishin, 2001) and relative solvent accessibility of residues by 

DSSP(Kabsch and Sander, 1983).

Results

UBE2I mutation bias towards being deleterious to competitive growth

The effect of variants in the single-mutation high-accuracy Subset 1 on competitive growth 

is illustrated in Figure 1A. Out of 219 variants, six without a given competitive growth score 

or standard error were excluded from the analysis. The competitive growth scores were 

scaled so that mutant clones with growth identical to a null control were 0 and those with 

growth identical to a wild-type control were 1. 41% of all high-accuracy Subset 1 mutations 

were deleterious (Figure 1A).

The remaining single amino acid variants (Subset 2, 410 informative mutations) without 

replicates followed a similar distribution (Supp. Figure S1A), with 48% of Subset 2 

mutations falling in the deleterious category. For those remaining variants with multiple 

amino acid substitutions (Subset 3, 3,872 clones with experimental measurements, Supp. 
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Figure S1A), the distribution shifts further towards null (67% of Subset 3 mutations). Thus, 

almost half of the UBE2I single amino acid mutations and a majority of multiple mutations 

were detrimental to growth. On the other hand, relatively few UBE2I amino acid variants 

(42 or 6.7% of single-mutant variants and 209 or 5.4% of multiple-mutant variants) were 

advantageous.

Deleterious and advantageous mutations mapped to the UBE2I structure suggest 
functional effects

High-accuracy Subset 1 deleterious mutations mapped to the UBE2I structure distribute 

across the surface (Figure 1B), with only 8% of the mutations being completely buried (7 

out of 87 have solvent accessibility score 0). Many of the mutations cluster around the active 

site C93, with seven deleterious mutation positions being within 5 Å of the catalytic residue. 

For example, mutation of either of the two residues (D127 to V or G and Y87 to C or N) that 

surround the consensus substrate tetrapeptide Lysine residue that gets ligated to the C-

terminus of Sumo results in null-level growth. A more conservative mutation of the adjacent 

Y87 to H results in an intermediate growth phenotype with a score (0.318) close to the 

deleterious boundary. The distribution of these mutations near the active site suggests that 

correct positioning of the substrate Lysine is required for wild-type UBE2I activity. As such, 

a distribution of all variants that include the active site C93 tends to surround the null score 

0, with some of the multiple variants extending slightly towards wild-type growth scores 

(Supp. Figure S1B). The distribution of all variants that include the adjacent D127 is similar 

to that of the active site C93, except it includes a minor tail that extends towards higher 

competitive growth scores (Supp. Figure S1C).

A wealth of UBE2I structure information exists to aid in mutation prediction, including the 

UBE2I structure alone and numerous complex co-crystal structures. Inspection of the co-

complexes superimposed using UBE2I highlights binding surfaces on the ligase that overlap 

with mapped mutations. Quaternary complex structures with RanGap1 substrate, E3 ligase 

RanBP2 fragments, and SUMO1/2 show subtle conformational changes that help the E3 

ligase achieve SUMO specificity(Gareau, et al., 2012) (Figure 2). In this quaternary 

complex, the SUMO C-terminus is poised to modify the RanGap1 substrate lysine, and the 

RanBP2 E3 fragments adopt an extended conformation with the N-terminus wrapping 

around SUMO and C-terminus wrapping around UBE2I. In addition to the substrate lysine 

binding residues described above, several deleterious mutations map (within 4A) to the 

RanGap1 substrate binding surface (K74, A129, Q126, Y134, and T135), the SUMO 

binding surface (N85, S95, R104, I107, L114, G115, L119, and N124), and the E3 ligase 

binding surface (S2, I4, E12, R13, P28, K59, and S70). The overlap of deleterious mutations 

with the quaternary complex structure binding sites suggests a similar E3 ligation mode 

positioning SUMO for ligation to substrate is required for wild type yeast growth.

In addition to the various UBE2I target structure complexes, binary complex structures of 

UBE2I with other binding partners are known. A complex with the cys domain of SUMO E1 

(SAE1, PDB: 2px9) reveals a common binding surface on UBE2I for this binding partner 

that overlaps with the SUMO1/2 domains of the quaternary complex competent for 

modifying substrate. The structure of UBE2I with SUMO-activating enzyme subunit 2 
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(SAE2, PDB: 2px9), the null growth D127 mutants cannot form hydrogen bonds to an 

interacting loop of SAE2 in a similar manner as the native residue. The UBE2I SAE2 

interaction surface (residues in UBE2I within 4A of SAE2) includes the side chains of seven 

positions with deleterious mutations and three positions with intermediate mutations, with 5 

of these forming side chain specific hydrogen bonds to SAE2 that would be lost in the 

mutant. The interface also includes five wild type positions having either relatively benign 

mutations (K48R, K49N, I96L, and K101E) or lacking mutations (P128). Two SAE2 

interface residues in UBE2I have mutations (T91A and E98G) that confer advantageous 

growth, which perhaps suggests that SUMO transfer from E1 improves in these mutants.

Non-covalent (PDB: 2pe6 and 2uyz) and covalently modified (PDB: 2vrr) complex 

structures between UBE2I and SUMO1 reveal two alternate binding modes for SUMO1 that 

differ from the modification competent site found in the quaternary structures. Both alternate 

sites contain a number of additional deleterious mutations: R13, W16, and H20 in the non-

covalent site and G3, R13, T35, and L38 in the covalent site. The role of these mutations is 

less clear, given the fact that each of these sites overlaps with other binding partners. The 

non-covalent site significantly overlaps with that of the bound E3 ligase RanBP2 C-terminus 

while the covalent site overlaps with that of a bound RWD domain from RWDD3 (PDB: 

4y1l), the ubiquitin conjugating enzyme UBE2K (PDB: 2o25), as well as part of the C-

terminal E3 ligase RanBP2 surface. Finally, a complex between UBE2I and importin 

highlights UBE2I binding components leading to nuclear import (PDB: 2xwu). These 

interface positions include 15 deleterious mutations (12 with relatively severe alterations 

from the native structure). The presence of numerous deleterious mutations in the importin 

interface suggests that USB9 localization to the nucleus is required for the growth 

phenotype.

The relatively smaller proportion of high-accuracy Subset 1 mutations that are advantageous 

for growth also distribute across the UBE2I surface, with two of the residues being near the 

active site (T91 and E98). A distribution of competitive growth scores for all variants that 

include E98 shifts towards higher scores, displaying a broad second peak in the 

advantageous growth category (Supp. Figure S1C). Interestingly, both T91 and E98 can 

provide substrate contacts. For example, T91 forms hydrogen bonds with the consensus 

substrate tetrapeptide E, while E98 approaches a K just N-terminal to the conserved 

consensus tetrapeptide in one available UBE2I structure bound to substrate (PDB: 5d2m). 

Two of the activating mutations, K74 and K65, belong to a basic patch that discriminates 

negatively charged amino acid-dependent sumoylation motif (NDSM) substrates(Yang, et 

al., 2006). These NDSM substrates include an additional defined motif PsiKxE(xxSP) whose 

conserved S gets phosphorylated to promote sumoylation of several substrates(Hietakangas, 

et al., 2006). Thus, activating mutations appear to discriminate between sumoylation 

substrates, potentially shifting activity away from phosphorylation-dependent substrates and 

towards those alternate substrates that contribute to competitive growth.
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Negative growth scores and disparate distributions of predicted scores are a challenge for 
the assessment

Many clones grew slower than the null control, resulting in negative growth scores. FDR-

corrected t-tests based on the regularized standard deviations showed that none of these 

clones' growth scores were significantly different from the null controls. Thus, predictors 

were not allowed to assign negative growth scores. Unfortunately, this rule required 

reassignment of all the experimental mutations with negative growth scores. In an attempt to 

best accommodate predictions provided by participating groups (Figure 3), negative growth 

scores were shifted to 0, since most of the groups (11 out of 16) submitted multiple 0's and 

none of them submitted negative predictions. Such a reassignment of experimental growth 

scores resulted in many ties and required special attention to ties in the assessment (see 

Methods).

Although the groups were given the distribution of growth scores for each of the subsets, 

their distributions tended to be significantly different from the experimental distribution, 

with most of the groups (13) having a Kolmogorov–Smirnov (KS) test P-value less than 0.1 

(Supp. Table S1). Only three groups (47_1, 47_2, and 40_1) submitted scores with 

distributions similar to those provided. Some groups over-predicted null mutations (44_3, 

42_1, and 42_2) while others over-predicted wild-type mutations (41_1 and 41_2). Many of 

the groups also tended to ignore the advantageous mutations (41_1, 41_2, 42_1, 42_2, 44_3, 

44_4, 46_1, and 43_1). The difference in these score distributions does not affect assessment 

based on ranks, but causes problems in evaluation based on numeric values. For instance, we 

observed that re-scaling of the predicted growth scores to reduce the standard deviation 

could result in a considerable boost in the performance measured by RMSD between the 

predicted and experimental values. Therefore, we applied quantile transformation (see 

Methods) to the predictions to convert all the predictions to the same distribution as the 

experimental results, and the evaluation was done on both the original and the transformed 

predictions.

Assessment revealed modest performance comparable between the predictors

The predictors were evaluated by their ability to (1) classify mutations into fitness 

categories; (2) rank mutations by their effects on fitness (i.e., competitive growth rate of 

yeast); and (3) numerically predict competitive growth scores of mutants (Table 1). Table 2 

summarizes the overall performance of the predictors on three subsets. All participants 

except group 45 show significantly better than random performance, with the best 

performing groups being able to rank about 67% (Kendall-tau rank correlation coefficient: 

0.338) pairs of single mutants correctly (Supp. Table S2). The RMSD between transformed 

predictions and experimental scores is significantly better than random for all groups except 

group 45 (P > 0.05 for both original and transformed predictions). The results show a 

definite promise of predicting fitness effects of mutations. However, the current accuracy of 

the predictions is rather low, which is revealed by the large gap between the positive control 

(see Methods) and predictions. The performances on Subsets 1 and 2 (single mutation) are 

comparable, and are significantly better than that on Subset 3 (multiple substitutions), 

reflecting the difficulty in predicting effects of multiple mutations.
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Group 43 consistently outperformed most other methods across the three subsets, ranking 

first in the final assessment. Group 47 was best-performing in Subset 1, but was relatively 

poor in predicting the effect of multiple mutations. Surprisingly, the performance of our 

baseline predictor that uses only amino acid frequencies from the multiple alignment was 

better than many of the more complex predictors on all subsets, ranking second in the 

overall assessment. To assess how the ranking of predictors is affected by experimental 

errors or by the set of mutants obtained in the experiment, we performed the same 

assessment on 40,000 additional simulated experimental datasets (contains Subset 1, 2, and 

3, see Methods). The distribution of the ranks for predictors on these simulated datasets is 

shown in Figure 4A. Except group 43, all others revealed a wide distribution in ranks. 

Similarly, head-to-head test (Supp. Figure 2A) shows that group 43 ranks better than all 

other participants on over 99% of simulated datasets respectively, and it ranks better than our 

baseline control on 90% of the simulated datasets.

However, the superior performance of Group 43 to group 47 mainly results from its better 

ability in predicting the effect of multiple mutations (Subset 3). For Subset 3, Pearson’s or 

Spearman’s correlation coefficients are significantly different between Group 43 and other 

predictors (44, 46, 47, P < 0.05). In contrast, except Group 45 and 42, the ability for 

participants to predict the effects of single mutants (Subsets 1 and 2) is comparable (Table 

2). Their Pearson or Spearman’s rank correlation coefficients between experimental scores 

and predictions do not show statistically significant differences (P > 0.05) in subset 1. 

Besides, Group 47 only marginally outperformed Group 43 in about 57% of 40,000 

simulated datasets from Subsets 1 and 2 for single mutations. (Supp. Figure 2B)

Predictors are adequate at detecting deleterious mutations

One of the primary goals for prediction of mutation effects is to identify deleterious 

mutations. Thus, we specifically evaluated predictors’ ability in detecting mutations that 

result in a detrimental growth phenotype (growth score ≤ 0.3). The ROC curve of predicting 

deleterious mutations in Subset 1 by different predictors is shown in Figure 4B and Table 

S2. Except groups 45 and 42, other groups show comparable and adequate performance 

(AUC > 0.7 for top groups). In addition, we applied Matthews correlation coefficients 

(MCC) to evaluate the ability of predictors to partition mutations (Table S3) into the 

following categories: deleterious, intermediate, benign, and advantageous (see Method). 

MCC for discriminating deleterious mutations (most are above 0.3 for both original and 

transformed predictions) is consistently higher than the MCC for distinguishing mutations in 

other categories (from 0 to 0.2), indicating that the predictors are more reliable in detecting 

deleterious mutations. However, the ability for predictors to separate intermediate and 

advantageous mutations is not clearly better than random. This finding was further 

confirmed by the decrease in the Pearson correlation coefficient (Table S4) between 

predictions and experimental scores when deleterious mutations were excluded from Subset 

1.

Identification and characterization of mutations predicted well and poorly

The heat map of prediction quality by each group on each mutant in Subset 1 is shown in 

Figure 5A. The mutants form three clusters on the heat map: variants that are well or poorly 
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predicted by almost all predictors formed clusters 1 and 3, respectively (Supp. Figure S3); 

while cluster 2 contained mutations well or poorly predicted only by some predictors. In 

accordance with the performance on classification of mutations reflected by MCC, most 

poorly predicted variants were advantageous while most well predicted variants were 

deleterious.

Nevertheless, some deleterious mutations were poorly predicted. These mutations were at 

positions that are less conserved and more accessible to solvent. On the contrary, among 

wild-type mutations, poorly predicted ones were more conserved with lower relative solvent 

accessibility than the well predicted mutations (Figure 5B). In addition, among intermediate 

mutants, the poorly and well predicted ones showed similar solvent accessibility while well 

predicted intermediate variants were more conserved. Given the fact that solvent 

accessibility correlated with conservation (Pearson’s correlation=0.5), the sharp contrast 

between well and poorly predicted mutations in each category suggested that positional 

conservation in sequence alignment may dominate the predictions.

Discussion

To improve the value of assessment and thus have a positive influence on the development of 

better predictors, several challenges remain to be overcome. One major challenge is the 

generation of datasets for testing. Although disease-causing mutations may be most valuable 

for evaluating the performance of predictors, bias in their assessments may arise due to 

errors in public databases and possible inclusion of their data in sets against which the 

predictors are trained. To avoid these problems in the CAGI SUMO conjugase challenge, 

testing datasets were generated de novo by high-throughput yeast complementation assays. 

However, mutations may have different effects in yeast and human. Despite the large number 

of orthologues and a striking conservation of biological processes shared by yeast and 

human, unique properties exist in both biological systems. The sequence identity between 

yeast UBC9 and human UBE2I is only about 56%. In addition, orthologues of some 

interacting partners of UBE2I, such as RanBP2, is missing in yeast (Fauser, et al., 2001) 

while others like RanGAP1 share low sequence identity. And, interestingly, many 

substitutions of residues K65, K74 and K76 responsible for interactions between UBE2I 

with RanGAP1 showed beneficial effects in yeast complementation assays. In addition, 

these residues are also responsible for recognizing phosphorylated substrates(Gareau and 

Lima, 2010). Due to the absence of interacting partners in yeast, it is unclear whether these 

variants would have the same effects in human. For variants of the catalytic site position 

(C93), the yeast complementation assay showed functional disruptions similarly to human 

cells(Lin, et al., 2002). In Subset 1 and 2, all variants at the catalytic site were nearly null. 

The variants at R13 and R17, residues important for interaction with SUMO1 and nuclear 

import of UBE2I(Tatham, et al., 2003), were also deleterious in Subset 1 and 2. Thus, the 

yeast complementation assay can be used to identify functional effects of variants with 

certain limits. This uncertainty is expected to be resolved in future CAGI by using 

unpublished clinical data or data from human-derived cell lines.

Another problem arising in the CAGI assessment was the difference in numeric scale of 

predictions. Different numeric scales of predictions can skew the performance. For example, 
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the shrinkage of numeric prediction scale may lead to better RMSD, which does not 

necessarily reflect better predictions. We tried several transformation methods, including 

normalization and standardization; however, they did not lead to consistent results in 

numeric comparison. Therefore, the assessment was affected by transformation and there 

were possible biases introduced. However, compared with other re-scaling methods, our 

choice of directly assigning experimental competitive scores to predictions by comparing 

ranks was expected to minimize the differences between prediction and experimental score 

distributions. To address possible biases of score transformations, we introduced binary 

classification and ordinal association scores, which were more tolerant to numeric 

differences. We also evaluated scores for both original and transformed predictions and 

included them in the assessment to offset the concerns triggered by transformation. All of 

these score choices were aimed at removing bias and resulted in reasonable assessments. To 

address the problem in the future CAGI, a standard and agreed upon re-scaling procedure for 

submitted predictions could be automatically applied when participants submit their results.

Participants of CAGI4 included five published predictors: SAVER(Adebali, et al., 2016) 

(group 40), SNAP(Bromberg and Rost, 2007) (group 41), INPS3D(Savojardo, et al., 2016) 

(group 42), evolutionary action method(Katsonis and Lichtarge, 2014) (group 43), 

MutPred(Li, et al., 2009) & MutPred2(Pejaver, et al., 2017) (group 44) and four newly 

developed predictors (groups 39, 45, 46 and 47). These predictors can be classified into three 

groups: purely sequence-based (groups 39, 40, 41 and 43), those that combine sequence and 

spatial structure (groups 42, 44 and 46), and meta-predictors that integrate various 

predictions (groups 45 and 47) (Supp. Table S5). Each predictor offers unique 

implementation and combination of features. While all predictors use sequence alignments, 

they differ in how alignments are constructed and how alignment information is used. For 

instance, groups 39 and 41 aligned all confident HHblits(Remmert, et al., 2011) and PSI-

BLAST(Altschul, et al., 1997) hits as defined by E-value cutoff and length coverage, while 

group 40 differentiated orthologs and paralogs based on phylogenetic trees. Most groups 

used substitution frequencies to predict the effects of mutations, but group 41 predicted 

structural (solvent accessibility) and functional (annotation from UniProt) features from the 

sequences and integrated them with machine learning methods. Solvent accessibility is used 

by all predictors that incorporate structure information. Other features such as B-factor and 

secondary structure are also frequently used. In addition, group 46 analyzed biological 

assemblies and used different interaction interfaces present in all available structures of 

UBE2I. Most predictors use machine learning methods to integrate various features and 

predictions. For example, group 47 integrated 12 available predictors including two of the 

most popular methods SIFT(Kumar, et al., 2009) and POLYPHEN2 (Adzhubei, et al., 2010) 

using SVM with an RBF kernel.

Performance of most predictors was comparable on single mutations regardless of different 

factors and methods they used to make predictions. Most predictors could adequately predict 

deleterious mutations, especially those in conserved positions, and wild-type mutations in 

non-conserved positions. Similar performance of most predictors suggest predictions may 

heavily rely on sequence conservation. This idea was further strengthened by the surprising 

result that a simple conservation-based baseline predictor ranked among the top. This 

performance suggests that other attributes such as protein structures may not be fully utilized 
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by current predictors. However, whether protein structures can improve predictions 

significantly is still a matter of debate(Capriotti and Altman, 2011; Kumar, et al., 2009; 

Saunders and Baker, 2002; Schaefer and Rost, 2012). While some previous studies implied 

that addition of protein structure considerations to predictions only marginally elevates the 

performance(Kumar, et al., 2009; Saunders and Baker, 2002), others claimed the 

introduction of protein structures led to 6% improvements(Capriotti and Altman, 2011). It is 

possible that the usefulness of protein structures for predictions depends on the protein of 

interest, the positions of variants, or even on the quality of sequence conservation analysis 

performed by a predictor. More comprehensive studies are expected to clarify whether the 

introduction of structural features can contribute to better predictions.

For Subset 3, where each target is a combination of single variants, the performance of 

predictors decreased. Different summation schemes of predictions on single variants were 

used to assign the final prediction to the target. The best-performing Group 43 in Subset 3 

assigned the sum of the predictions of single variants to the target, while Group 47, which 

scored best in Subset 1, assigned predictions of most deleterious variant to the target. The 

discrepancy in performance between these groups suggested that the effects of multiple 

mutations on fitness may be additive and should be taken into account. However, 

experiments with our baseline predictor did not support this explanation. We compared the 

performance of two baseline predictors: the one that assigns the sum of scores for all 

mutations with the one that assigns the minimal score (i.e., most deleterious mutation only). 

Performance of the two predictors did not differ significantly (Kendall tau-b values for 

correlation between predictions and experimental data were 0.17 and 0.18). In addition, the 

Pearson’s correlation between the two controls was 0.91, suggesting highly similar 

predictions. Therefore, it remains unclear whether the consideration on additive effects of 

variants was the major reason that Group 43 had the best performance in Subset 3.

Notably, many variants have high standard errors even in Subset 1 (with several replicates). 

The small number of replicates is a possible reason. However, the distributions of 

experimental competitive growth scores for both null mutants and wild-type clones with 

more than three replicates also showed a wide distribution, implying varying responses from 

individuals with the same mutation. Such dispersion may be reflective of the measurement 

precision one might expect in a growth-based assay.

In summary, the SUMO conjugase challenge highlights better performance of methods for 

predictions of deleterious mutations at conserved sites, the type of mutations that is highly 

likely to cause disease. It also reveals that substantial improvements of predictions are 

needed to predict deleterious variants at non-conserved sites and benign mutations at 

conserved sites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. UBE2I Competitive Growth Score Distribution of Single Mutations
A) A histogram depicts the frequency of competitive growth scores for UBE2I mutations in 

the high-accuracy Subset1 denoting 213 single amino acid variants for which at least three 

independent barcoded clones are represented. Four growth response categories grouping 

mutations are labeled above the graph with their boundaries marked by vertical lines. Bars 

are colored in gradient from red (growth slower than the null control) to white (+/− growth) 

for deleterious mutations (−0.5 to 0.3) and from white (wild type) to blue (more growth than 

wild type) for advantageous mutations (1.3 to 2.3). The same competitive growth score 

gradient scales are applied to B-factors of corresponding residue positions in surface 

representations of the UBE2I structure (PDB: 1a3s) for B) deleterious competitive growth 
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score mutations and C) advantageous competitive growth score mutations. The consensus 

substrate tetrapeptide PsiKxE (magenta, with K and E in stick) and the C-terminal sumo 

peptide (green) from PDB: 1z5s superimposed with UBE2I highlights the active site. Select 

residues near the active site are labeled.
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Figure 2. Advantageous Growth Mutations
The Ubc9 (green cartoon) structure complex (PDB: 3uio) bound to RanGAP1 (magenta 

cartoon), SUMO2 (cyan cartoon) and the E3 ligase IR1 domain of RanBP2 (yellow cartoon) 

highlights positions of residues with advantageous growth mutations (red spheres, labeled 

according to WT position) with respect to the active site Cys (black sphere) and the 

consensus substrate tetrapeptide E and K residues (magenta spheres)
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Figure 3. Competitive Growth Score Prediction Distributions
A three-dimensional plot depicting the frequencies (vertical axis) of experimental 

competitive growth scores (horizontal axis) for Subset1 (exp) alongside all group predictions 

for competitive growth scores (depth axis). Groups are ordered by their KS test statistic from 

low (closer to experimental distribution) to high (farther from experimental distribution).
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Figure 4. Assessments on Predictors
A) Testing sets (from Subset 1,2 and 3) simulated to reflect confidence were repeated to 

obtain a distribution showing the robustness of relative ranks. The bottom and top of the box 

represents the first and third quantile of the distributions, respectively. the mean of the 

distribution (X); the median of the distribution (line); and the outliers which are 1.5 times 

the length of the interquartile range (circle) are distinguished. The lower rank indicates 

better performance. B) ROC for deleterious mutations. conserv, the baseline control.
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Figure 5. Performance Evaluation on Single Mutations
A) The absolute difference between experimental competitive growth scores and that 

predicted by each group method (using transformed data), as well as a baseline predictor 

(cont) based on residue frequency in multiple alignment, were calculated to reflect 

prediction quality for each mutation in Subset1. Difference data was uploaded to the 

ClustVis web tool to visualize the corresponding heatmap, with mutations (horizontal axis) 

colored from red (high difference) to blue (low difference). Mutations were clustered 

(depicted as a tree above the heatmap) using Euclidean distance with Ward minimum 

variance method linkage criterion. The three largest clusters correspond to overall poor 

prediction quality (red), intermediate prediction quality (green), and good prediction quality 

(blue). B) Group 1 poorly-predicted mutations (left, labeled below) and group 3 well 

predicted mutations (right, labeled below) were split into growth performance categories 

according to experimental growth score: deleterious, intermediate, wild type, and 

advantageous (none in well predicted mutations). Properties of the categorized mutations are 

illustrated in a bar chart: the frequency of mutations in each category with respect to the total 
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in the group (blue bars, Fraction), the average conservation fraction (red bars, Conservation) 

measured by Al2Co, and the average solvent accessibility fraction (green bars, Surface) 

measured by DSSP.
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Table 1

Summary of Measurements in Assessments

Classification

Area Under ROC P: number of true deleterious mutations; N: number of true non-deleterious mutations. Mutations are ranked by the predicted 
growth score.

 is the count of true deleterious mutations that are ranked no worse than the  true non-deleterious mutation. 

Each true deleterious mutation ranked the same as the  true non-deleterious mutation is counted as 0.5.

MCC
i ∊ (deleterious, intermediate, benign and advantageous); TP: true positive; TN: true negative; FP: false positive; FN: false 
negative.

F1
,

; 
TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Ordinal association

Kendall tau-b rank 
correlation

; 
nc the number of concordant pairs; , the number of discordant pairs; n, the total number of pairs; , number of values in 

the  group of ties by predictions; , number of values in the  group of ties by experimental scores.

Spearman’s rank correlation
, covariance between predicted and experimental ranks of mutants;  and , standard 

deviations of predicted and experimental ranks, respectively. Ties were randomly assigned distinct ranks first and then the 
average of these ranks were assigned to each of them.

Rank agreement test is the number of mutants with the difference between the predicted and experimental ranks below a certain cutoff i, 0≤i≤n−1, 
where n is the total number of mutations in a data set. Ties were randomly assigned distinct ranks. This random assignment 
was performed 50 times and the resulting scores were averaged.

Numeric comparison

Pearson’s correlation , covariance between predictions and experimental scores; 
, standard deviation of predictions; , standard deviation of experimental scores

RMSD

N, the size of a dataset; ,  predictions; ,  experimental scores

Value agreement test is the number of mutants with the difference between the predicted and experimental growth scores below a certain cutoff i. 
The cutoffs are taken from 0 to the number larger than maximal difference between experimental and predicted growth 
scores in the dataset, with an incremental of 0.01. The normalized area was used as the measurement.
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