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Summary

Adenocarcinoma accounts for more than 40% of lung malignancy, and microscopic pathology 

evaluation is indispensable for its diagnosis. However, how histopathology findings relate to 

molecular abnormalities remains largely unknown. Here we obtained hematoxylin and eosin 
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stained whole-slide histopathology images, pathology reports, RNA-sequencing, and proteomics 

data of 538 lung adenocarcinoma patients from The Cancer Genome Atlas and used these to 

identify molecular pathways associated with histopathology patterns. We report cell cycle 

regulation and nucleotide binding pathways underpinning tumor cell dedifferentiation, and we 

predicted histology grade using transcriptomics and proteomics signatures (area under curve > 

0.80). We built an integrative histopathology-transcriptomics model to generate better prognostic 

predictions for stage I patients (P=0.0182±0.0021) compared with gene expression or 

histopathology studies alone, and the results were replicated in an independent cohort 

(P=0.0220±0.0070). These results motivate the integration of histopathology and omics data to 

investigate molecular mechanisms of pathology findings and enhance clinical prognostic 

prediction.

The eTOC Blurb

Integrative omics-histopathology analyses identified the gene and protein expression patterns 

associated with lung adenocarcinoma differentiation. Regularized machine-learning models using 

both transcriptomics and histopathology information better predicted the survival outcomes of 

stage I lung adenocarcinoma patients, with the results replicated in an independent cohort.

Keywords

Machine learning; Cancer genomics; Cancer imaging; Predictive medicine; Non-small-cell lung 
cancer

Introduction

Lung cancer causes more than 1.4 million deaths per year worldwide, and adenocarcinoma 

is the most common subtype(Jemal et al., 2011; Siegel et al., 2014). For decades, 

histopathology evaluation has been the definitive diagnostic method for lung cancer(Collins 

et al., 2007). However, the underlying molecular mechanisms for histological patterns are 

not fully understood(Gardiner et al., 2014; Zugazagoitia et al., 2014). In addition, whole-

slide histopathology image scanning and high-throughput omics technologies generate 
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terabytes of personal tumor profile per patient, but how to integrate these data to advance 

precision cancer medicine remain to be explored(Yu and Snyder, 2016).

Histopathology morphology has guided the diagnosis of lung cancer and defined subtypes of 

lung malignancy(Travis et al., 2011). To diagnose lung cancer, pathologists prepare 

microscopic slides from tissue samples, stain them with hematoxylin and eosin, which non-

specifically bind to nuclear acids and proteins, respectively(Fischer et al., 2008). These 

slides are observed under light microscopy, and the cyto-architectural features define the 

specific types and subtypes of lung tumors. Studies have shown that certain pathology 

annotations, such as the level of tumor cell dedifferentiation, are associated with survival 

outcomes(Harpole et al., 1995). However, this manual evaluation process involves some 

level of subjectivity(Raab et al., 2005), and it is difficult to integrate these visual findings 

with terabytes of omics information. Thus, how these visual patterns associated with their 

underlying biological processes remain largely unknown(Zugazagoitia et al., 2014).

Computer vision algorithms have attained exceptionally good performance for image 

classification(Danuser, 2011; Lawrence et al., 1997). Previously, investigators have defined 

many types of quantitative image features, including the size, perimeter, shape, eccentricity, 

and texture patterns of the cell nuclei and cytoplasm, to analyze pathology images 

objectively(Beck et al., 2011; Yu et al., 2016b). A number of image features are not easily 

identified by human evaluators, but they are significantly associated with cancer patients’ 

diagnoses and prognoses (Beck et al., 2011). These results support the clinical utility of 

quantifying the morphological changes of tumor cells with an automated and objective 

algorithm.

Moreover, with the advent of the omics (including genomics, transcriptomics, and 

proteomics) revolution, there is the potential for understanding the molecular biology of 

histological phenotypes by integrating omics and morphological features of the tumor 

cells(Haspel et al., 2010; Wall and Tonellato, 2012; Wilkerson et al., 2012; Yuan et al., 

2012). Omics studies have provided insights into the molecular mechanisms of many cancer 

types(Dong et al., 2016; Snyder, 2016; Yu et al., 2016a; Yu and Snyder, 2016; Zhang et al., 

2016), and have characterized the inter-individual differences in disease phenotypes(Clinical 

Lung Cancer Genome and Network Genomic, 2013; Henry et al., 2016; Yu et al., 2017). The 

systematic integration of histomorphological studies and omics profiles is expected to 

provide further understandings of tumor cell morphology and potentially more accurate 

stratification of patients’ prognoses(Beck et al., 2011; Liu et al., 2006; Yu and Snyder, 2016; 

Yuan et al., 2012).

Here we analyze lung adenocarcinoma samples and correlate cell morphology features from 

histopathology images with genomic, transcriptomic or proteomic profiles to generate 

hypotheses about the biological processes associated with morphological changes and the 

molecular basis of cancer development. Additionally, the integration of histopathology 

features and omics profiles improved the prediction accuracy of patient prognosis, which 

contributes to personalizing cancer treatment plans(Chin et al., 2011; Revannasiddaiah et al., 

2014; Tang et al., 2014).
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Results

Patient Characteristics

We analyzed data from a total of 538 lung adenocarcinoma patients previously collected by 

The Cancer Genome Atlas (TCGA) project (Cancer Genome Atlas Research, 2014). These 

data included genetic variants identified by whole-exome sequencing, tumor transcriptomics 

profiles characterized by RNA-sequencing, tumor proteomics information quantified by 

reverse phase protein array, and clinical variables such as tumor stage and survival 

information. We also obtained digital whole-slide histopathology images of the primary 

tumors along with the accompanying pathology reports from the same TCGA data set. We 

divided the TCGA data set into distinct training and test sets for machine learning 

approaches. To validate our survival prediction methods, we acquired RNA-sequencing, 

histopathology annotations, and survival information of an independent lung 

adenocarcinoma patient cohort (n=27) from Mayo Clinic (Sun et al., 2014). Supplemental 

Table 1 shows the patient characteristics of all participants in the TCGA cohorts under study. 

Supplemental Table 2 shows the clinical profiles of stage I patients in both TCGA and Mayo 

Clinic cohorts for survival analysis. The tumor grade, stage I sub-classifications (stage IA 

and IB), and survival outcomes of stage I adenocarcinoma patients in the two cohorts were 

not significantly different (P-values: 0.1833, 0.4362, 0.3556, respectively).

We first processed the pathology images by applying an automated algorithm to convert the 

whole-slide histopathology scans into overlapping tiles, selected the regions of interest and 

discarded blank background, segmented the cells, and extracted quantitative features from 

the images, such as the size, shape, intensity distribution, and texture features from the 

identified tumor cells and tumor nuclei. Since there are tens to hundreds of cells per image 

tile, we calculated summary statistics including mean, median, percentiles, and standard 

deviations to capture the distribution of each basic quantitative feature. We next identified 

pathology grade from pathology reports and collected gene expression and protein 

expression data generated by RNA-sequencing and reverse-phase protein array respectively. 

The resulting histopathology and omics profiles served as the input to our machine learning 

tasks (Figure 1A).

Genes Involved in Cell Cycle Regulation and Nucleotide Binding are Predictive of 
Histological Grade

With an aim of revealing the biological processes underlying tumor differentiation, we first 

used machine-learning methods to identify the correlations between pathology grade and 

global gene/protein expression profiles (Figure 1B). To reduce the impact from inter-rater 

variability on tumor grade, we divided the patient cohort into a higher-grade group (with 

poorly differentiated or moderately to poorly differentiated tumor) and a lower grade group 

(with well differentiated or moderately differentiated tumor)(Barletta et al., 2010), built 

transcriptomics and proteomics signatures for pathology grade in the training set (n=300 for 

transcriptomics; n=109 for proteomics), and evaluated the prediction models with the held-

out test set (n=128 for transcriptomics; n=47 for proteomics).
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We found that the gene expression profiles of 15 genes predicted the histopathology grade in 

the held-out test set with an area under the receiver operating characteristic curve (AUC) of 

0.80 ± 0.0067 (Figure 2A). This prediction performance was significantly better than a 

random classifier (P < 0.001), and each of the 15 features was significantly associated with 

histopathology grade (adjusted P < 0.01). The expression levels of the top genes associated 

with tumor grade are summarized in Supplemental Figure 1A. All genes highly associated 

with tumor grade possessed significantly more gene-gene interactions compared with a null 

model consisting of random genes (P<0.0001, Figures 2C and Supplemental Figure 2A. 

Please see the STAR Methods section for the statistical methods.). KEGG pathway analysis 

showed that the differentially expressed genes between the two grade groups are enriched in 

cell cycle, DNA replication, and p53 signaling pathways. GO enrichment analysis also 

revealed that these genes were highly enriched in mitosis, cell cycle regulation, and 

nucleotide binding. Similarly, we identified a proteomics signature that correlated with 

pathology grade. Our classifiers using a total of 15 proteins attained AUCs approximately 

0.81 ± 0.0071 in the test set, demonstrating that these protein expression profiles were 

indicative of pathology grade (Figure 2B). The abundance levels of the proteins indicative of 

tumor differentiation levels were outlined in Supplemental Figure 1B. The prediction 

performance was significantly better than expected by chance (P < 0.001). These proteins 

have significant interactions among one another (P<0.0001; Figures 2C and Supplemental 

Figure 2B). GO and KEGG analysis revealed that proteins predictive of tumor grade are 

enriched in cancer signaling pathways and regulation of cell development, pointing to the 

regulatory mechanisms related to tumor cell differentiation at the protein level. Taken 

together, our analyses suggest that genes participating in the cell cycle and cancer signaling 

pathways contribute to the levels of tumor cell dedifferentiation.

Correlation of Quantitative Histopathology Features with TP53 Mutation and Histological 
Sub-classifications

Next, we investigated the associations between quantitative histopathology measurements 

and omics data as well as previously established histological sub-classifications. To quantify 

the histopathology changes, we previously developed an automated method to identify the 

tumor nucleus and cytoplasm patterns. The extracted features were shown to associate with 

patient diagnosis and prognosis (Yu et al., 2016b)

TP53 mutation in lung adenocarcinoma has been associated with poorer prognosis(Ahrendt 

et al., 2003; Gu et al., 2016). We correlated the TP53 mutation status with the established 

quantitative morphological features. Our results showed that TP53 mutation was 

significantly associated with the pixel intensity distribution in the cytoplasm as well as the 

texture features in the tumor nuclei (adjusted Wilcoxson rank sum test P < 0.05; 

Supplemental Table 3). Transcriptomic analysis showed that TP53 mutation was correlated 

with dysregulation of genes participating in the DNA replication, mismatch repair, and cell 

cycle pathways (hypergeometric test Benjamini–Hochberg adjusted P < 0.05; Supplemental 

Table 4).

We further associated quantitative histological features with sub-classifications of lung 

adenocarcinoma patients. Previously, researchers defined a few tumor sub-classifications 
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associated with the genomic and transcriptomic patterns of lung adenocarcinoma, including 

acinar predominant, papillary predominant, and solid predominant tumors(Cancer Genome 

Atlas Research, 2014). When correlating these sub-classifications with quantitative 

histological features, a texture feature of the tumor nucleus was significantly different 

among the sub-classifications, after correcting for multiple tests (adjusted Wilcoxson rank 

sum test P = 0.0254; Supplemental Table 5). Five image features that quantified the radial 

distribution of pixels were marginally significant in their associations with these sub-

classifications (adjusted Wilcoxson rank sum test P = 0.054), and clustering analysis 

identified some heterogeneity in patients with the same sub-classification (Supplemental 

Figure 3). In addition, 68 quantitative image features were associated with the purity of 

tumor (Supplemental Table 6). Despite the wide range of purity score in the TCGA cohort, a 

LASSO regression model with the quantitative image features showed a moderate 

correlation between the histopathology-estimated purity scores and those measured by 

sequencing (Spearman’s correlation coefficient = 0.323; P<0.0001).

Integrative Model for Survival Prediction in Patients with Stage I Lung Adenocarcinoma

Next, we explored the use of omics and histopathology data to build regularized Cox 

proportional hazards models (Tibshirani, 1997) to predict patient survival. Patients with 

pathology stage I generally have better survival outcomes than patients with stage II or 

higher (log-rank test P<0.001; Figure 3A). However, the survival outcomes of stage I 

patients are very diverse and difficult to predict. After being diagnosed with stage I lung 

adenocarcinoma, more than half of this patient population died within 5 years, but there are 

approximately 15% of stage I patients who survived 10 years or more after the initial 

diagnosis. In addition, the clinical distinction between stage IA and stage IB did not reliably 

distinguish patients with different survival outcomes (P=0.878; Figure 3B), and the 

differences in overall survival between lung adenocarcinoma patients with stage II or higher 

tumor was not statistically significant in our cohort (P=0.139 among stage IIa, IIb, IIIa, IIIb, 

and IV; Supplemental Figure 4A) either. Furthermore, tumor grade alone did not 

significantly correlate with stage I patient survival (P>0.06; Figure 3C and Supplemental 

Figure 4B).

Previously, researchers have proposed gene expression profiles associated with survival 

outcomes in stage I lung adenocarcinoma patients(Bianchi et al., 2007). However, the 

reported gene set together with known clinical variables could not reliably distinguish the 

survival outcomes of stage I patients in either the TCGA or the Mayo Clinic cohort 

(P=0.1097±0.0096 and P=0.0560±0.0108 respectively, adjusted for patient age; Figures 3D 

and 3E).

We built integrative models by employing gene expression, histopathology grade, and 

patient age as input features of the regularized Cox proportional hazards model. The 

integrative model performed better than gene expression or histopathology alone in 

prognostic prediction (P=0.0182±0.0021, adjusted for patient age; Figure 3F) on cross-

validation in the TCGA cohort. We further replicated this integrative prediction method in 

the Mayo Clinic cohort (P=0.0220±0.0070, adjusted for patient age; Figure 3G), which 

confirmed the improved performance of our integrative method. Since the Mayo Clinic 
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cohort was not involved in building the survival prediction model, these results suggested the 

generalizability of our prognostic stratification framework. These results indicated the 

efficacy of combining the information from multiple sources and modalities in improving 

cancer prognosis prediction.

Discussion

Our results demonstrate promising biological applications and prognostic utilities of 

considering both omics and histopathology features. We investigate the correlation of 

functional omics profiles with pathology grade, revealing both genes and proteins associated 

with tumor grade. Pathway analyses on these transcriptomics and proteomics patterns 

suggested that the level of cancer cell differentiation was related to mitosis and cell division 

pathways. This finding is consistent with the observation that higher-grade tumors generally 

have higher mitotic figures, i.e. the number of cells undergoing mitosis observed by light 

microscopy, and more atypical mitosis(Kadota et al., 2012; Poleri et al., 2003). The slight 

difference between the enrichments from the gene and the protein level analyses might 

originate from the fact that gene expression levels can be altered by posttranscriptional 

modifications. Our methods can be used to identify the molecular mechanisms driving other 

clinically important pathology findings in other complex diseases.

There are several limitations of this work. One limitation is that all patients are from medical 

centers in the United States. Participants in our cohorts came from 11 participating medical 

centers across the country but are predominantly Caucasians. Results from other studies 

have shown different genetic alterations in lung adenocarcinoma in other ethnic 

groups(Koivunen et al., 2008; Shi et al., 2014). Thus, it would be interesting to 

systematically analyze the functional omics and histopathology in patients of other 

ethnicities. In addition, the Mayo Clinic data set only contains 27 patients, and all of them 

were never-smokers. Although our integrative methods showed significant improvement in 

survival prediction in this cohort, the improvement over gene expression or histopathology 

only model was smaller than that in the TCGA test set. Further validation with a larger 

cohort is needed.

In summary, this work systematically correlated histopathology patterns with omics findings 

to develop models to predict survival outcomes of lung adenocarcinoma patients. The 

developed algorithms are likely extensible to other tumor types or complex diseases.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Michael Snyder (mpsnyder@stanford.edu).

Method Details

Extracting Genomic, Transcriptomic, Proteomic, Histopathology, and Clinical 
Features of Lung Adenocarcinoma Patients—A high-quality data set for omics, 

histopathology, and clinical information of all 538 lung adenocarcinoma patients was 
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obtained from The Cancer Genome Atlas (TCGA) data portal(Cancer Genome Atlas 

Research, 2014). The omics data were processed by standard bioinformatics pipelines 

(GATK(McKenna et al., 2010) for exome-sequencing, RSEM(Li and Dewey, 2011) for 

RNA-sequencing, and ArrayPro for reversed phase protein array) by the TCGA consortium. 

Whole-slide histopathology images, pathology reports, as well as clinical information were 

acquired for this patient cohort. To validate our clinical prediction method, an independent 

cohort of stage I lung adenocarcinoma patients (n=27) from Mayo Clinic was identified 

from the Gene Expression Omnibus(Sun et al., 2014). RNA-sequencing results and clinical 

variables were obtained and histopathology grade was manually extracted from the 

associated pathology reports. This study was retrospective and did not involve 

randomization or blinding. All samples with available data were included in the study.

Quantification and Statistical Analysis

Correlating Omics Profiles with Histopathology Annotations by Machine 
Learning Methods—Histopathology grade was manually extracted, due to their 

implications for patients’ survival outcomes and their presence in most pathology 

reports(Barletta et al., 2010; Warth et al., 2012). To reduce the impact of inter-observer 

disagreement, pathology grades were binarized into a higher-grade group (poorly 

differentiated or moderately-to-poorly differentiated) or a lower-grade group (well 

differentiated or moderately differentiated)(Barletta et al., 2010). These group assignments 

led to relatively balanced groups, with at least 40% of cases in each group.

Breiman’s random forest(Breiman, 2001; Liaw and Wiener, 2002) was used to correlate 

transcriptomics and proteomics profiles with pathology grade. To reduce the risk of 

overfitting, the information gain ratio of each feature is calculated and only the top features 

ranked by information gain ratio were selected and included in the model. Wilcoxon rank 

sum test, which does not rely on assumptions about the probability distributions of the 

variables, was performed to evaluate the expression difference of each of the selected 

feature, and the Benjamini-Hochberg procedure was performed to adjust for multiple tests. 

Unlike convention machine learning methods that tend to select a minimal number of 

complementary features, this method ensured that the selected feature sets contain the 

individual transcriptomics or proteomics patterns correlated with the histopathology 

annotation of interest, which could be used for enrichment analysis.

To evaluate the performance of the resulting classifiers, the data set was divided into distinct 

training and test sets, with 80% of the cases in the training and 20% in the test set. There is 

no overlap between the training and test set. The top features were selected and the models 

were finalized using the training set. To ensure the robustness of the machine learning 

framework, the random partition process was repeated 20 times, generating distinct training 

and test sets each time with no overlaps between training and test data. The machine 

learning models were built using the training data and evaluated on the test set. The 

distribution of the area under the receiver operating characteristic curves (AUC) for the 

classifiers from repeated random partitions was reported.

To identify the biological pathways implicated in the selected lists of genes and proteins, we 

performed gene ontology (GO) enrichment analysis, KEGG pathway analysis, and network 
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analysis using the String Database Tool (Szklarczyk et al., 2015). To estimate the 

enrichments in gene-gene interactions, the String Database Tool used a Poisson-Binomial 

variable to model the number of edges connecting the genes, and calculated the P-value of 

observing the number of gene-gene interactions under the null hypothesis that this gene set 

did not possess more gene-gene interactions than a random set(Franceschini et al., 2013). 

Significant gene-gene interactions often indicated that the selected genes participated in 

related molecular pathways. The gene expression and protein expression levels associated 

with tumor grade were visualized using heatmaps, and hierarchical clustering was employed 

to group genes/proteins with similar expression patterns.

Genetic Aberrations, Tumor Purity and their Correlations with Quantitative 
Histopathology—The associations between quantitative histopathology image features 

and TP53 mutation status were investigated due to the clinical significance of TP53 mutation 

and the availability of patients with both TP53 mutation information and histopathology 

image data(Cancer Genome Atlas Research, 2014). To extract the quantitative features from 

the whole slide histopathology images, a fully automated computational framework was 

employed (Yu et al., 2016b). The framework employed the “IdentifyPrimaryObjects” and 

the “IdentifySecondaryObject” modules in CellProfiler to identify the lung tumor cells and 

tumor cell nuclei from the histopathology slides, and used the "Measure Image Area 

Occupied", “Measure Correlation", Measure Granularity", "Measure Image Intensity", 

"Measure Image Quality", "Measure Object Size Shape", "Measure Object Intensity", 

"Measure Object Radial Distribution", "Measure Object Neighbors", and "Measure Texture" 

modules to extract the size, shape, intensity distribution, and texture features from the 

identified tumor cells(Carpenter et al., 2006). A total of 694 basic quantitative image 

features for the tumor cells were extracted using this bioinformatics framework 

(Supplemental Data 1). Wilcoxon rank sum test with Benjamini-Hochberg procedure was 

employed to identify the associations between the quantitative image features and TP53 

mutation status.

Similar procedures were employed to characterize the correlations between quantitative 

histopathology image features and adenocarcinoma sub-classifications as well as tumor 

purity estimates in the TCGA cohort(Cancer Genome Atlas Research, 2014). When 

correlating with adenocarcinoma sub-classification, analysis of variance with Benjamini-

Hochberg procedure was used to account for the multiple classes. Tumor purity estimates 

were binarized into two groups, where samples with absolute purity call less than 0.5 were 

categorized as the low purity group and those with absolute purity call greater than or equal 

to 0.5 were defined as the high purity group. Wilcoxon rank sum test with Benjamini-

Hochberg procedure was employed to identify the associations between the quantitative 

image features and purity groups. A Least Absolute Shrinkage and Selection Operator 

(LASSO) regression model was built using the quantitative image features, and Spearman's 

rank correlation coefficient, a non-parametric measure of rank correlation, was calculated to 

quantify the association between the predicted purity value and the absolute purity call.

Prognostic Prediction—Survival stratification by tumor stage and grade were evaluated 

with the log-rank test, which is non-parametric. Sets of reported genes associated with stage 
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I lung adenocarcinoma patient survival(Bianchi et al., 2007) were intersected with gene 

expression levels measured in the TCGA data set. LASSO-Cox proportional hazards 

models(Friedman et al., 2010; Simon et al., 2011; Tibshirani, 1997) were employed to 

handle right-censored survival information and avoid overfitting. The LASSO-Cox method 

used L1 regularization to push the coefficients of uninformative features to zero, which 

achieved the goal of feature selection while building the survival model.

Current clinical stratification methods using tumor stage and grade as well as a previously-

reported gene expression signature(Bianchi et al., 2007) were used as the baseline for 

comparison. The survival stratifications between all stages as well as between stage IA and 

stage IB were investigated. In order to better predict the diverse clinical prognoses of stage I 

adenocarcinoma patients, integrative LASSO-Cox models were built using the previously 

reported gene expression signature(Bianchi et al., 2007), the pathology grades, and patient 

age as inputs. The regularization parameters in the LASSO-Cox models were optimized 

through cross-validation on the training set. After all parameters in the model were finalized, 

a survival index was calculated for each patient in the training set, and the median survival 

index in the training set was used as a threshold for distinguishing longer-term survivors 

from shorter-term survivors. Patients with missing pathology or omics data were discarded 

from the analysis. All models were adjusted for patient age.

Evaluation of Prognostic Prediction Models—To evaluate the prediction 

performance of our prediction models in the TCGA cohort, leave-one-out cross-validation 

was employed. The log-rank test was used to determine the difference in survival outcomes 

between the predicted groups.

To further validate the survival model, an independent cohort from Mayo Clinic(Sun et al., 

2014) was obtained and the gene expression and histopathology profiles of each patient in 

this cohort were analyzed. The same procedure described above was used to stratify patients 

in this replication set into two survival groups. Again, the log-rank test was used to 

determine the survival outcome difference between groups.

Data and Software Availability

The quantitative histopathology image features are provided in Supplemental Data 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Gene and protein expression levels predicted lung adenocarcinoma grade.

• Quantitative histopathology features correlated with omics classifications.

• An integrative omics-pathology model better predicted stage I patients’ 

prognosis.

• The improved survival prediction results were replicated in an independent 

cohort.

Yu et al. Page 14

Cell Syst. Author manuscript; available in PMC 2018 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(A) Model for data integration of this study. We processed the genomics, transcriptomics, 

and proteomics profiles of the primary tumor of lung adenocarcinoma patients and extracted 

quantitative histopathology features with a fully automated computational algorithm. The 

associations between functional omics and histopathology profiles were then analyzed to 

better understand the biology of this cancer. We further utilized both elements to generate an 

improved clinical prediction framework for lung adenocarcinoma patients. (B) A flow 

diagram of the machine learning approach for classification. We divided the data sets into 

distinct training and test sets, extracted genomic, transcriptomic, proteomic, and 
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histopathology features from the tumor samples, selected the top features, built random 

forest models, and used the untouched test set to evaluate the model performance.
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Figure 2. 
Functional omics profiles predicted the dedifferentiation levels of lung adenocarcinoma. (A) 

The expression levels of fifteen genes selected by information gain ratio accurately predicted 

pathology grade, with an area under the ROC curve (AUC) approximately 0.80 ± 0.0067. 

(B) Fifteen proteomics features predicted histology grade with good accuracy. A panel of 

protein markers predicted pathology grade with AUC greater than 0.81 ± 0.0071. (C) 

Dysregulated genes and proteins associated with tumor grade were enriched in gene-gene/

protein-protein interactions. The observed numbers of gene-gene/protein-protein interactions 

and the expected numbers were shown for the transcriptomic and proteomic analyses.
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Figure 3. 
Integrative models with gene expression profiles and pathology information predicted the 

survival outcomes of stage I lung adenocarcinoma patients. Red asterisks indicated censored 

data. (A) Lung adenocarcinoma patient survival stratified by tumor stage. Stage I patients 

generally have better prognoses (P<0.001), but there are significant inter-individual 

differences in their survival outcomes. (B) Survival outcomes of stage IA and stage IB lung 

adenocarcinoma patients. This refinement in the staging system could not distinguish 

patients with different prognoses in this cohort (P=0.878). (C) Stage I lung adenocarcinoma 

patient survival stratified by tumor grade. Grade alone could not predict patient survival 
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reliably (P=0.0616). (D) A previously reported gene set could not distinguish longer-term 

survivors (n=112) from shorter-term survivors (n=110) with statistically significance in the 

TCGA stage I lung adenocarcinoma cohort (P=0.1097±0.0096). (E) The same set of genes 

could not distinguish patient survival in the Mayo Clinic stage I lung adenocarcinoma cohort 

either (P=0.0560±0.0108; 13 predicted longer-term survivors; 14 predicted shorter-term 

survivors). (F) Integrating pathology with gene expression profiles better predicted patient 

survival in the TCGA stage I lung adenocarcinoma cohort (P=0.0182±0.0021; 110 predicted 

longer-term survivors; 112 predicted-shorter-term survivors). (G) The improved performance 

of the integrative survival prediction method is replicated in the Mayo Clinic stage I lung 

adenocarcinoma cohort (P=0.0220±0.0070; 11 predicted longer-term survivors; 16 predicted 

shorter-term survivors).
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